organic compounds
Racemic 2′-hydroxy-4′,4′-dimethylpyran-1,5-dihydroxyxanthone monohydrate
aFaculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and dDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: suchada.c@psu.ac.th
The title xanthone (systematic name: 3,6,11-trihydroxy-1,1-dimethyl-2,3-dihydrochromeno[2,3-f]chromen-7-one monohydrate), known as pruniflorone N, crystallized as a monohydrate, C18H16O6·H2O. The three ring systems of the xanthone skeleton are approximately coplanar, with an r.m.s. deviation of 0.0270 (1) Å from the plane through the 14 non-H atoms. The O atoms of the two hydroxy substituents on the benzene rings also lie close to this plane, with deviations of 0.019 (1) and 0.070 (1) Å. The 2′-hydroxy-4′,4′-dimethylpyran ring is disordered over two positions with a 0.798 (3):0.202 (3) site-occupancy ratio. An intramolecular O—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, the xanthone and water molecules are linked into a three-dimensional network by O—H⋯O hydrogen bonds and weak C—H⋯O interactions. π–π interactions, with centroid–centroid distances of 3.5982 (7), 3.6081 (7) and 3.6456 (7) Å, are also observed.
Related literature
For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to xanthones and their biological activity, see: Boonnak, Karalai et al. (2010); Boonnak, Khamthip et al. (2010); Gopalakrishnan et al. (1997); Ho et al. (2002); Obolskiy et al. (2009). For related structures, see: Boonnak et al. (2006); Boonnak, Chantrapromma et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813021223/sj5348sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813021223/sj5348Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813021223/sj5348Isup3.cml
The green fruits of C. formosum ssp. pruniflorum (5.00 kg) were extracted with CH2Cl2 (2 x 20 L, for a week) at room temperature and was further evaporated under reduced pressure to afford a crude CH2Cl2 extract (31.42 g), which was subjected to QCC (Quick Column Chromatography) on silica gel using hexane as a first
and then increasing the polarity with acetone to give 14 fractions (F1–F14). Fraction F10 was separated by QCC eluting with a gradient of acetone–hexane to give 17 subfractions (F10A–F10Q). Subfractions F10N was separated by CC and eluted with gradient of EtOAc–hexane to obtain 8 subfractions (F10N1–F10N8). Subfraction F10N6 was separated by CC and eluted with CHCl3 to give the title compound as a yellow solid (5.3 mg). Yellow block-shaped single crystals of the title compound suitable for x-ray were recrystallized from acetone–CH3OH (9.5:0.5, v/v) after several days (M.p. 523–525 K).Hydroxy H atoms were located from the difference maps and refined isotropically. The remaining H atoms were placed in calculated positions with d(C—H) = 0.93 Å for aromatic, 0.98 for CH, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the
for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The 2'-hydroxy-4',4'-dimethylpyran is disordered over two sites with refined site occupancies of 0.798 (3) and 0.202 (3). All disordered atoms were subjected to similarity restraints. The same Uij parameters were used for atom pairs C12A/C12B, C13A/C13B, C18A/C18B, C19A/C19B and O5A/O5B.Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).Fig. 1. The chemical transformation that yields the title compound. | |
Fig. 2. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. O—H···O intramolecular hydrogen bond was drawn as a dashed line. Open bonds show the minor component. | |
Fig. 3. The crystal packing of the major component of (I) viewed along the c axis, showing the three dimensional molecular network. Hydrogen bonds were drawn as dashed lines. |
C18H16O6·H2O | Dx = 1.517 Mg m−3 |
Mr = 346.20 | Melting point = 523–525 K |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 4949 reflections |
a = 9.8965 (2) Å | θ = 2.0–31.3° |
b = 15.2329 (3) Å | µ = 0.12 mm−1 |
c = 20.1122 (4) Å | T = 100 K |
V = 3031.96 (10) Å3 | Block, yellow |
Z = 8 | 0.65 × 0.21 × 0.13 mm |
F(000) = 1456 |
Bruker APEXII CCD area-detector diffractometer | 4949 independent reflections |
Radiation source: sealed tube | 4378 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ϕ and ω scans | θmax = 31.3°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −10→14 |
Tmin = 0.927, Tmax = 0.985 | k = −22→22 |
40070 measured reflections | l = −27→29 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.145 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0754P)2 + 2.1985P] where P = (Fo2 + 2Fc2)/3 |
4949 reflections | (Δ/σ)max = 0.001 |
275 parameters | Δρmax = 0.71 e Å−3 |
0 restraints | Δρmin = −0.97 e Å−3 |
C18H16O6·H2O | V = 3031.96 (10) Å3 |
Mr = 346.20 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 9.8965 (2) Å | µ = 0.12 mm−1 |
b = 15.2329 (3) Å | T = 100 K |
c = 20.1122 (4) Å | 0.65 × 0.21 × 0.13 mm |
Bruker APEXII CCD area-detector diffractometer | 4949 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4378 reflections with I > 2σ(I) |
Tmin = 0.927, Tmax = 0.985 | Rint = 0.030 |
40070 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.145 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.71 e Å−3 |
4949 reflections | Δρmin = −0.97 e Å−3 |
275 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.58520 (10) | 1.15586 (6) | 0.38580 (5) | 0.01809 (19) | |
O2 | 0.40787 (9) | 1.05055 (6) | 0.32849 (4) | 0.01448 (18) | |
O3 | 0.36164 (10) | 1.03467 (6) | 0.12623 (5) | 0.0205 (2) | |
O4 | 0.17901 (10) | 0.92011 (7) | 0.14256 (5) | 0.0201 (2) | |
O5A | 0.03637 (14) | 0.85070 (10) | 0.35563 (7) | 0.0161 (3) | 0.798 (3) |
O6A | 0.12745 (13) | 0.76392 (8) | 0.43976 (6) | 0.0202 (3) | 0.798 (3) |
H6A | 0.082 (3) | 0.7235 (18) | 0.4244 (13) | 0.031 (7)* | 0.798 (3) |
O5B | 0.0688 (6) | 0.8401 (5) | 0.3682 (3) | 0.0161 (3) | 0.202 (3) |
O6B | 0.0235 (10) | 0.7824 (7) | 0.4712 (4) | 0.072 (3) | 0.202 (3) |
H6B | 0.0048 | 0.7334 | 0.4570 | 0.108* | 0.202 (3) |
C1 | 0.48453 (11) | 1.10150 (7) | 0.28720 (6) | 0.0129 (2) | |
C2 | 0.57959 (12) | 1.15648 (8) | 0.31807 (6) | 0.0144 (2) | |
C3 | 0.66177 (12) | 1.20850 (8) | 0.27862 (6) | 0.0163 (2) | |
H3A | 0.7261 | 1.2444 | 0.2985 | 0.020* | |
C4 | 0.64937 (13) | 1.20774 (8) | 0.20928 (6) | 0.0179 (2) | |
H4A | 0.7054 | 1.2430 | 0.1835 | 0.021* | |
C5 | 0.55441 (13) | 1.15485 (8) | 0.17905 (6) | 0.0170 (2) | |
H5A | 0.5450 | 1.1553 | 0.1330 | 0.020* | |
C6 | 0.47209 (12) | 1.10035 (8) | 0.21811 (6) | 0.0140 (2) | |
C7 | 0.37462 (12) | 1.04051 (8) | 0.18811 (6) | 0.0148 (2) | |
C8 | 0.29411 (12) | 0.98915 (7) | 0.23357 (6) | 0.0135 (2) | |
C9 | 0.19417 (12) | 0.93068 (8) | 0.20908 (6) | 0.0148 (2) | |
C10 | 0.11267 (12) | 0.88544 (8) | 0.25236 (6) | 0.0165 (2) | |
H10A | 0.0455 | 0.8483 | 0.2364 | 0.020* | |
C11 | 0.13192 (13) | 0.89594 (8) | 0.32090 (6) | 0.0164 (2) | |
C14 | 0.25267 (13) | 0.95266 (8) | 0.42430 (6) | 0.0174 (2) | |
C15 | 0.23195 (12) | 0.94999 (8) | 0.34905 (6) | 0.0142 (2) | |
C16 | 0.31063 (11) | 0.99645 (7) | 0.30282 (6) | 0.0125 (2) | |
C12A | 0.05298 (16) | 0.84187 (10) | 0.42636 (8) | 0.0164 (3) | 0.798 (3) |
H12A | −0.0370 | 0.8351 | 0.4461 | 0.020* | 0.798 (3) |
C13A | 0.11699 (19) | 0.92194 (15) | 0.45651 (13) | 0.0174 (4) | 0.798 (3) |
H13A | 0.1332 | 0.9104 | 0.5033 | 0.021* | 0.798 (3) |
H13B | 0.0528 | 0.9700 | 0.4538 | 0.021* | 0.798 (3) |
C18A | 0.36942 (19) | 0.89084 (13) | 0.44175 (10) | 0.0194 (4) | 0.798 (3) |
H18A | 0.3486 | 0.8326 | 0.4266 | 0.029* | 0.798 (3) |
H18B | 0.3823 | 0.8902 | 0.4891 | 0.029* | 0.798 (3) |
H18C | 0.4506 | 0.9109 | 0.4205 | 0.029* | 0.798 (3) |
C19A | 0.28024 (18) | 1.04439 (18) | 0.45227 (13) | 0.0197 (4) | 0.798 (3) |
H19A | 0.2176 | 1.0855 | 0.4333 | 0.030* | 0.798 (3) |
H19B | 0.3709 | 1.0617 | 0.4414 | 0.030* | 0.798 (3) |
H19C | 0.2695 | 1.0436 | 0.4997 | 0.030* | 0.798 (3) |
C12B | 0.1244 (7) | 0.8194 (4) | 0.4320 (3) | 0.0164 (3) | 0.202 (3) |
H12B | 0.2063 | 0.7834 | 0.4295 | 0.020* | 0.202 (3) |
C13B | 0.1485 (10) | 0.9088 (8) | 0.4616 (6) | 0.0174 (4) | 0.202 (3) |
H13C | 0.0658 | 0.9430 | 0.4602 | 0.021* | 0.202 (3) |
H13D | 0.1759 | 0.9031 | 0.5077 | 0.021* | 0.202 (3) |
C18B | 0.3963 (9) | 0.9160 (6) | 0.4462 (5) | 0.0194 (4) | 0.202 (3) |
H18D | 0.4651 | 0.9575 | 0.4342 | 0.029* | 0.202 (3) |
H18E | 0.4132 | 0.8612 | 0.4241 | 0.029* | 0.202 (3) |
H18F | 0.3975 | 0.9072 | 0.4934 | 0.029* | 0.202 (3) |
C19B | 0.2419 (10) | 1.0488 (9) | 0.4550 (7) | 0.0197 (4) | 0.202 (3) |
H19D | 0.1551 | 1.0733 | 0.4446 | 0.030* | 0.202 (3) |
H19E | 0.3115 | 1.0852 | 0.4365 | 0.030* | 0.202 (3) |
H19F | 0.2526 | 1.0458 | 0.5024 | 0.030* | 0.202 (3) |
O1W | 0.28541 (14) | 0.24213 (8) | 0.57159 (6) | 0.0341 (3) | |
H1O4 | 0.239 (3) | 0.9598 (17) | 0.1248 (14) | 0.057 (8)* | |
H1O1 | 0.654 (2) | 1.1869 (15) | 0.3967 (11) | 0.037 (6)* | |
H2W1 | 0.307 (2) | 0.1986 (15) | 0.5874 (11) | 0.032 (5)* | |
H1W1 | 0.316 (3) | 0.2464 (17) | 0.5304 (14) | 0.053 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0202 (4) | 0.0208 (4) | 0.0132 (4) | −0.0044 (3) | −0.0025 (3) | −0.0005 (3) |
O2 | 0.0139 (4) | 0.0180 (4) | 0.0115 (4) | −0.0039 (3) | −0.0002 (3) | 0.0012 (3) |
O3 | 0.0252 (5) | 0.0249 (5) | 0.0114 (4) | −0.0025 (4) | −0.0014 (3) | −0.0001 (3) |
O4 | 0.0225 (5) | 0.0230 (4) | 0.0148 (4) | −0.0026 (4) | −0.0040 (3) | −0.0032 (3) |
O5A | 0.0150 (7) | 0.0206 (6) | 0.0127 (7) | −0.0041 (5) | −0.0042 (4) | 0.0038 (4) |
O6A | 0.0239 (6) | 0.0134 (5) | 0.0232 (6) | −0.0028 (4) | −0.0061 (5) | 0.0020 (4) |
O5B | 0.0150 (7) | 0.0206 (6) | 0.0127 (7) | −0.0041 (5) | −0.0042 (4) | 0.0038 (4) |
O6B | 0.067 (6) | 0.103 (7) | 0.046 (4) | −0.054 (5) | −0.018 (4) | 0.041 (5) |
C1 | 0.0124 (5) | 0.0137 (5) | 0.0128 (5) | 0.0005 (4) | 0.0012 (4) | 0.0012 (4) |
C2 | 0.0142 (5) | 0.0139 (5) | 0.0151 (5) | 0.0014 (4) | −0.0001 (4) | −0.0005 (4) |
C3 | 0.0158 (5) | 0.0139 (5) | 0.0191 (5) | −0.0016 (4) | 0.0007 (4) | 0.0000 (4) |
C4 | 0.0189 (5) | 0.0166 (5) | 0.0181 (5) | −0.0014 (4) | 0.0043 (4) | 0.0026 (4) |
C5 | 0.0187 (5) | 0.0175 (5) | 0.0147 (5) | 0.0005 (4) | 0.0026 (4) | 0.0017 (4) |
C6 | 0.0143 (5) | 0.0150 (5) | 0.0126 (5) | 0.0009 (4) | 0.0007 (4) | 0.0005 (4) |
C7 | 0.0155 (5) | 0.0157 (5) | 0.0132 (5) | 0.0020 (4) | −0.0004 (4) | 0.0001 (4) |
C8 | 0.0131 (5) | 0.0145 (5) | 0.0127 (5) | 0.0010 (4) | −0.0008 (4) | −0.0004 (4) |
C9 | 0.0148 (5) | 0.0148 (5) | 0.0149 (5) | 0.0024 (4) | −0.0026 (4) | −0.0022 (4) |
C10 | 0.0147 (5) | 0.0148 (5) | 0.0201 (6) | −0.0007 (4) | −0.0005 (4) | −0.0033 (4) |
C11 | 0.0167 (5) | 0.0134 (5) | 0.0191 (6) | −0.0004 (4) | 0.0034 (4) | −0.0008 (4) |
C14 | 0.0193 (5) | 0.0190 (5) | 0.0137 (5) | 0.0008 (4) | 0.0034 (4) | 0.0033 (4) |
C15 | 0.0151 (5) | 0.0130 (5) | 0.0145 (5) | 0.0009 (4) | 0.0017 (4) | 0.0002 (4) |
C16 | 0.0116 (5) | 0.0125 (4) | 0.0133 (5) | 0.0005 (4) | −0.0007 (4) | 0.0001 (4) |
C12A | 0.0149 (6) | 0.0202 (7) | 0.0142 (6) | −0.0004 (5) | 0.0013 (5) | 0.0024 (5) |
C13A | 0.0145 (11) | 0.0199 (9) | 0.0178 (7) | 0.0005 (7) | 0.0024 (8) | −0.0019 (6) |
C18A | 0.0179 (9) | 0.0230 (10) | 0.0172 (7) | −0.0029 (6) | −0.0011 (6) | 0.0038 (7) |
C19A | 0.0226 (11) | 0.0229 (7) | 0.0137 (6) | −0.0067 (11) | 0.0018 (10) | −0.0021 (5) |
C12B | 0.0149 (6) | 0.0202 (7) | 0.0142 (6) | −0.0004 (5) | 0.0013 (5) | 0.0024 (5) |
C13B | 0.0145 (11) | 0.0199 (9) | 0.0178 (7) | 0.0005 (7) | 0.0024 (8) | −0.0019 (6) |
C18B | 0.0179 (9) | 0.0230 (10) | 0.0172 (7) | −0.0029 (6) | −0.0011 (6) | 0.0038 (7) |
C19B | 0.0226 (11) | 0.0229 (7) | 0.0137 (6) | −0.0067 (11) | 0.0018 (10) | −0.0021 (5) |
O1W | 0.0452 (7) | 0.0290 (6) | 0.0280 (6) | 0.0157 (5) | 0.0178 (5) | 0.0078 (5) |
O1—C2 | 1.3635 (15) | C11—C15 | 1.4065 (17) |
O1—H1O1 | 0.86 (2) | C14—C13B | 1.439 (12) |
O2—C1 | 1.3665 (14) | C14—C15 | 1.5279 (17) |
O2—C16 | 1.3681 (14) | C14—C19A | 1.531 (3) |
O3—C7 | 1.2543 (15) | C14—C18A | 1.531 (2) |
O4—C9 | 1.3557 (15) | C14—C13A | 1.563 (3) |
O4—H1O4 | 0.92 (3) | C14—C18B | 1.589 (10) |
O5A—C11 | 1.3627 (18) | C14—C19B | 1.593 (14) |
O5A—C12A | 1.4383 (19) | C15—C16 | 1.4041 (16) |
O6A—C12A | 1.4233 (19) | C12A—C13A | 1.502 (3) |
O6A—H6A | 0.82 (3) | C12A—H12A | 0.9800 |
O5B—C11 | 1.421 (7) | C13A—H13A | 0.9700 |
O5B—C12B | 1.432 (8) | C13A—H13B | 0.9700 |
O6B—C12B | 1.391 (10) | C18A—H18A | 0.9600 |
O6B—H6B | 0.8200 | C18A—H18B | 0.9600 |
C1—C6 | 1.3951 (15) | C18A—H18C | 0.9600 |
C1—C2 | 1.4043 (16) | C19A—H19A | 0.9600 |
C2—C3 | 1.3852 (16) | C19A—H19B | 0.9600 |
C3—C4 | 1.4001 (17) | C19A—H19C | 0.9600 |
C3—H3A | 0.9300 | C12B—C13B | 1.506 (14) |
C4—C5 | 1.3791 (18) | C12B—H12B | 0.9800 |
C4—H4A | 0.9300 | C13B—H13C | 0.9700 |
C5—C6 | 1.4037 (16) | C13B—H13D | 0.9700 |
C5—H5A | 0.9300 | C18B—H18D | 0.9600 |
C6—C7 | 1.4579 (17) | C18B—H18E | 0.9600 |
C7—C8 | 1.4432 (16) | C18B—H18F | 0.9600 |
C8—C16 | 1.4068 (16) | C19B—H19D | 0.9600 |
C8—C9 | 1.4192 (16) | C19B—H19E | 0.9600 |
C9—C10 | 1.3723 (17) | C19B—H19F | 0.9600 |
C10—C11 | 1.4007 (17) | O1W—H2W1 | 0.76 (2) |
C10—H10A | 0.9300 | O1W—H1W1 | 0.88 (3) |
C2—O1—H1O1 | 106.5 (15) | C15—C14—C19B | 113.5 (5) |
C1—O2—C16 | 120.22 (9) | C18A—C14—C19B | 121.8 (4) |
C9—O4—H1O4 | 103.5 (17) | C13A—C14—C19B | 93.3 (4) |
C11—O5A—C12A | 118.35 (12) | C18B—C14—C19B | 106.0 (5) |
C12A—O6A—H6A | 105.8 (19) | C16—C15—C11 | 114.76 (11) |
C11—O5B—C12B | 124.3 (5) | C16—C15—C14 | 124.61 (11) |
C12B—O6B—H6A | 65.6 (13) | C11—C15—C14 | 120.58 (11) |
C12B—O6B—H6B | 109.5 | O2—C16—C15 | 116.35 (10) |
O2—C1—C6 | 123.31 (10) | O2—C16—C8 | 120.19 (10) |
O2—C1—C2 | 116.24 (10) | C15—C16—C8 | 123.45 (11) |
C6—C1—C2 | 120.46 (11) | O6A—C12A—O5A | 108.92 (13) |
O1—C2—C3 | 123.52 (11) | O6A—C12A—C13A | 112.50 (13) |
O1—C2—C1 | 117.70 (10) | O5A—C12A—C13A | 111.81 (15) |
C3—C2—C1 | 118.78 (11) | O6A—C12A—H12A | 107.8 |
C2—C3—C4 | 120.95 (11) | O5A—C12A—H12A | 107.8 |
C2—C3—H3A | 119.5 | C13A—C12A—H12A | 107.8 |
C4—C3—H3A | 119.5 | C12A—C13A—C14 | 115.99 (17) |
C5—C4—C3 | 120.25 (11) | C12A—C13A—H13A | 108.3 |
C5—C4—H4A | 119.9 | C14—C13A—H13A | 108.3 |
C3—C4—H4A | 119.9 | C12A—C13A—H13B | 108.3 |
C4—C5—C6 | 119.62 (11) | C14—C13A—H13B | 108.3 |
C4—C5—H5A | 120.2 | H13A—C13A—H13B | 107.4 |
C6—C5—H5A | 120.2 | C14—C18A—H18A | 109.5 |
C1—C6—C5 | 119.93 (11) | C14—C18A—H18B | 109.5 |
C1—C6—C7 | 118.58 (11) | C14—C18A—H18C | 109.5 |
C5—C6—C7 | 121.48 (11) | C14—C19A—H19A | 109.5 |
O3—C7—C8 | 122.25 (11) | C14—C19A—H19B | 109.5 |
O3—C7—C6 | 121.51 (11) | C14—C19A—H19C | 109.5 |
C8—C7—C6 | 116.23 (10) | O6B—C12B—O5B | 108.8 (6) |
C16—C8—C9 | 118.31 (11) | O6B—C12B—C13B | 104.9 (8) |
C16—C8—C7 | 121.35 (10) | O5B—C12B—C13B | 102.5 (7) |
C9—C8—C7 | 120.33 (10) | O6B—C12B—H6A | 58.2 (11) |
O4—C9—C10 | 120.09 (11) | O5B—C12B—H6A | 90.9 (11) |
O4—C9—C8 | 119.61 (11) | C13B—C12B—H6A | 161.6 (12) |
C10—C9—C8 | 120.30 (11) | O6B—C12B—H12B | 113.3 |
C9—C10—C11 | 119.15 (11) | O5B—C12B—H12B | 113.3 |
C9—C10—H10A | 120.4 | C13B—C12B—H12B | 113.3 |
C11—C10—H10A | 120.4 | H6A—C12B—H12B | 71.7 |
O5A—C11—C10 | 110.63 (11) | C14—C13B—C12B | 109.1 (8) |
O5A—C11—C15 | 125.32 (12) | C14—C13B—H13C | 109.9 |
C10—C11—C15 | 123.96 (11) | C12B—C13B—H13C | 109.9 |
C10—C11—O5B | 122.0 (3) | C14—C13B—H13D | 109.9 |
C15—C11—O5B | 113.0 (3) | C12B—C13B—H13D | 109.9 |
C13B—C14—C15 | 114.1 (5) | H13C—C13B—H13D | 108.3 |
C13B—C14—C19A | 111.1 (5) | C14—C18B—H18D | 109.5 |
C15—C14—C19A | 114.34 (14) | C14—C18B—H18E | 109.5 |
C13B—C14—C18A | 97.8 (4) | H18D—C18B—H18E | 109.5 |
C15—C14—C18A | 108.17 (12) | C14—C18B—H18F | 109.5 |
C19A—C14—C18A | 110.04 (14) | H18D—C18B—H18F | 109.5 |
C15—C14—C13A | 106.70 (13) | H18E—C18B—H18F | 109.5 |
C19A—C14—C13A | 105.91 (13) | C14—C19B—H19D | 109.5 |
C18A—C14—C13A | 111.67 (12) | C14—C19B—H19E | 109.5 |
C13B—C14—C18B | 109.5 (5) | H19D—C19B—H19E | 109.5 |
C15—C14—C18B | 112.6 (4) | C14—C19B—H19F | 109.5 |
C19A—C14—C18B | 93.4 (3) | H19D—C19B—H19F | 109.5 |
C13A—C14—C18B | 123.3 (3) | H19E—C19B—H19F | 109.5 |
C13B—C14—C19B | 100.2 (6) | H2W1—O1W—H1W1 | 111 (2) |
C16—O2—C1—C6 | −1.71 (17) | O5B—C11—C15—C14 | −6.8 (3) |
C16—O2—C1—C2 | 178.53 (10) | C13B—C14—C15—C16 | 172.2 (5) |
O2—C1—C2—O1 | −1.42 (16) | C19A—C14—C15—C16 | 42.85 (17) |
C6—C1—C2—O1 | 178.81 (10) | C18A—C14—C15—C16 | −80.14 (15) |
O2—C1—C2—C3 | 178.89 (10) | C13A—C14—C15—C16 | 159.59 (13) |
C6—C1—C2—C3 | −0.87 (17) | C18B—C14—C15—C16 | −62.2 (4) |
O1—C2—C3—C4 | −178.60 (11) | C19B—C14—C15—C16 | 58.3 (4) |
C1—C2—C3—C4 | 1.06 (18) | C13B—C14—C15—C11 | −10.3 (5) |
C2—C3—C4—C5 | 0.05 (19) | C19A—C14—C15—C11 | −139.67 (13) |
C3—C4—C5—C6 | −1.34 (19) | C18A—C14—C15—C11 | 97.34 (14) |
O2—C1—C6—C5 | 179.85 (11) | C13A—C14—C15—C11 | −22.94 (16) |
C2—C1—C6—C5 | −0.40 (18) | C18B—C14—C15—C11 | 115.3 (3) |
O2—C1—C6—C7 | −1.39 (17) | C19B—C14—C15—C11 | −124.2 (4) |
C2—C1—C6—C7 | 178.36 (10) | C1—O2—C16—C15 | −176.75 (10) |
C4—C5—C6—C1 | 1.51 (18) | C1—O2—C16—C8 | 3.63 (16) |
C4—C5—C6—C7 | −177.21 (11) | C11—C15—C16—O2 | 179.21 (10) |
C1—C6—C7—O3 | −177.90 (11) | C14—C15—C16—O2 | −3.18 (17) |
C5—C6—C7—O3 | 0.84 (18) | C11—C15—C16—C8 | −1.18 (17) |
C1—C6—C7—C8 | 2.41 (16) | C14—C15—C16—C8 | 176.43 (11) |
C5—C6—C7—C8 | −178.85 (11) | C9—C8—C16—O2 | 178.52 (10) |
O3—C7—C8—C16 | 179.76 (11) | C7—C8—C16—O2 | −2.47 (17) |
C6—C7—C8—C16 | −0.56 (16) | C9—C8—C16—C15 | −1.07 (17) |
O3—C7—C8—C9 | −1.26 (18) | C7—C8—C16—C15 | 177.93 (11) |
C6—C7—C8—C9 | 178.42 (10) | C11—O5A—C12A—O6A | −90.38 (16) |
C16—C8—C9—O4 | −177.83 (10) | C11—O5A—C12A—C13A | 34.57 (19) |
C7—C8—C9—O4 | 3.16 (17) | O6A—C12A—C13A—C14 | 70.0 (2) |
C16—C8—C9—C10 | 2.57 (17) | O5A—C12A—C13A—C14 | −52.97 (19) |
C7—C8—C9—C10 | −176.45 (11) | C13B—C14—C13A—C12A | −79 (2) |
O4—C9—C10—C11 | 178.68 (11) | C15—C14—C13A—C12A | 45.45 (18) |
C8—C9—C10—C11 | −1.72 (18) | C19A—C14—C13A—C12A | 167.66 (16) |
C12A—O5A—C11—C10 | 169.91 (13) | C18A—C14—C13A—C12A | −72.56 (19) |
C12A—O5A—C11—C15 | −13.5 (2) | C18B—C14—C13A—C12A | −87.2 (4) |
C12A—O5A—C11—O5B | 37.4 (11) | C19B—C14—C13A—C12A | 161.2 (5) |
C9—C10—C11—O5A | 175.95 (12) | C11—O5B—C12B—O6B | 165.2 (8) |
C9—C10—C11—C15 | −0.73 (19) | C11—O5B—C12B—C13B | 54.5 (9) |
C9—C10—C11—O5B | −168.5 (3) | C15—C14—C13B—C12B | 48.6 (7) |
C12B—O5B—C11—O5A | −154.9 (17) | C19A—C14—C13B—C12B | 179.6 (5) |
C12B—O5B—C11—C10 | 150.7 (5) | C18A—C14—C13B—C12B | −65.3 (6) |
C12B—O5B—C11—C15 | −18.3 (8) | C13A—C14—C13B—C12B | 109 (3) |
O5A—C11—C15—C16 | −174.07 (12) | C18B—C14—C13B—C12B | −78.6 (8) |
C10—C11—C15—C16 | 2.13 (17) | C19B—C14—C13B—C12B | 170.3 (7) |
O5B—C11—C15—C16 | 170.9 (3) | O6B—C12B—C13B—C14 | 179.8 (7) |
O5A—C11—C15—C14 | 8.22 (19) | O5B—C12B—C13B—C14 | −66.7 (7) |
C10—C11—C15—C14 | −175.59 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H1O4···O3 | 0.92 (3) | 1.67 (3) | 2.5337 (14) | 156 (3) |
O1—H1O1···O1Wi | 0.86 (2) | 1.81 (2) | 2.6599 (16) | 172.5 (19) |
O1W—H2W1···O4ii | 0.77 (2) | 2.13 (2) | 2.8756 (16) | 166 (2) |
O1W—H1W1···O6Aiii | 0.88 (3) | 1.93 (3) | 2.8078 (17) | 175 (3) |
O6A—H6A···O1iii | 0.82 (3) | 2.10 (3) | 2.8838 (16) | 160 (3) |
C18A—H18A···O6A | 0.96 | 2.44 | 3.078 (2) | 124 |
C18A—H18C···O4iv | 0.96 | 2.60 | 3.530 (2) | 164 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x+1/2, −y+1, z+1/2; (iii) −x+1/2, y−1/2, z; (iv) x+1/2, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H1O4···O3 | 0.92 (3) | 1.67 (3) | 2.5337 (14) | 156 (3) |
O1—H1O1···O1Wi | 0.86 (2) | 1.81 (2) | 2.6599 (16) | 172.5 (19) |
O1W—H2W1···O4ii | 0.77 (2) | 2.13 (2) | 2.8756 (16) | 166 (2) |
O1W—H1W1···O6Aiii | 0.88 (3) | 1.93 (3) | 2.8078 (17) | 175 (3) |
O6A—H6A···O1iii | 0.82 (3) | 2.10 (3) | 2.8838 (16) | 160 (3) |
C18A—H18A···O6A | 0.96 | 2.44 | 3.078 (2) | 124 |
C18A—H18C···O4iv | 0.96 | 2.60 | 3.530 (2) | 164 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x+1/2, −y+1, z+1/2; (iii) −x+1/2, y−1/2, z; (iv) x+1/2, y, −z+1/2. |
Acknowledgements
The authors thank Prince of Songkla University for generous support. The authors extend their appreciation to the Deanship of Scientific Research at the King Saud University and the Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Boonnak, N., Chantrapromma, S. & Fun, H.-K. (2006). Acta Cryst. E62, o2034–o2036. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Boonnak, N., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2010). Acta Cryst. E66, o817–o818. Web of Science CrossRef CAS IUCr Journals Google Scholar
Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Chantrapromma, K. & Kato, S. (2010). Chem. Pharm. Bull. 58, 386–389. CrossRef CAS PubMed Google Scholar
Boonnak, N., Khamthip, A., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Tewtrakul, S., Chantrapromma, K., Fun, H.-K. & Kato, S. (2010). Aust. J. Chem.. 63, 1550–1556. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Gopalakrishnan, G., Banumathi, B. & Suresh, G. (1997). J. Nat. Prod. 60, 519–524. CrossRef CAS PubMed Web of Science Google Scholar
Ho, C. K., Huang, Y. L. & Chen, C. C. (2002). Planta Med. 68, 975–979. Web of Science CrossRef PubMed CAS Google Scholar
Obolskiy, D., Pischel, I., Siriwatanametanon, N. & Heinrich, M. (2009). Phytother. Res. 23, 1047–1065. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Xanthones are reported to exhibit various biological and pharmacological properties (Obolskiy et al., 2009) such as antibacterial (Boonnak, Karalai et al., 2010), antifungal (Gopalakrishnan et al., 1997), anti-inflammatory (Boonnak, Khamthip et al., 2010) and anti-cancer (Ho et al., 2002) activities. We have previously reported several isolated xanthones and their biological activities (Boonnak, Karalai et al., 2010; Boonnak, Khamthip et al., 2010). Among these compounds, the title xanthone (I), which is also known as pruniflorone N, showed antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) with a MIC value of 9.37 µg mL-1. Compound (I) crystallized out in the centrosymmetric Pbca space group indicating that the extracted material was a racemate, Figure 1.
Compound (I) has a xanthone nucleus with a pyran ring fused to it in an angular fashion which is rarely found. It crystallized out in a monohydrate form, C18H16O6.H2O (Fig. 2). The 2'-hydroxy-4',4'-dimethylpyran ring is disordered over two positions with 0.798 (3):0.202 (3) site occupancies in which the 2'-hydroxy group or the hydroxy groups at atom C12 of the major A and minor B components were attached in opposite directions. The three ring systems of the xanthone nucleus [C1–C11/C15/C16/O2] are essentially co-planar with an r.m.s. deviation of 0.0270 (1) Å from the plane through all the fourteen non-hydrogen atoms. The O1 and O4 atoms of the two hydroxy substituents also lie close to this plane with deviations of -0.019 (1) and -0.070 (1) Å, respectively. The pyran ring (C11–C15/O5) is in a half-chair conformation with the puckering parameters Q = 0.406 (2) Å, θ = 43.7 (2)° and ϕ = 250.7 (3)° (Cremer & Pople, 1975) with the puckered C12A and C13A atoms having the deviation of -0.228 (2) and 0.282 (2) Å, respectively for the major component A [the corresponding values for the minor component B are 0.555 (9) Å, 123.8 (7)° and 33.7 (8)°, and the values for the puckering C12B and C13B atoms are 0.365 (7) and -0.352 (11) Å, respectively]. An intramolecular O4—H1O4···O3 hydrogen bond (Table 1) generates an S(6) ring motif (Bernstein, et al., 1995). The bond distances in (I) are normal (Allen et al., 1987) and comparable to those found in related structures (Boonnak et al., 2006 and Boonnak, Chantrapromma et al., 2010).
The crystal packing of (I) is stabilized by intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). The xanthone and water molecules are linked into a three dimensional network by these interactions (Fig. 3). π–π interaction with the distances of Cg1···Cg3v = 3.6081 (7) Å, Cg1···Cg4iv = 3.6456 (7) Å and Cg3···Cg4iv = 3.5982 (7) Å were observed [symmetry code (v) = -1/2+x, y, 1/2-z]; Cg1, Cg3 and Cg4 are the centroids of the C1/C6–C8/C16/O2, C1–C6 and C8–C11/C15/C16 rings, respectively.