organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1377-o1378

1,1′-Methyl­enebis[3-(2,6-diiso­propyl­phen­yl)-3,4,5,6-tetra­hydro­pyrimidin-1-ium] dibromide ethanol monosolvate monohydrate

aCollege of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: henangongda@yahoo.com

(Received 2 July 2013; accepted 28 July 2013; online 3 August 2013)

In the title methyl­ene-bridged di(tetra­hydro­pyrimidinium) salt, C33H50N42+·2Br·C2H5OH·H2O, the two tetra­hydro­pyrimidinium rings have envelope conformations with the central CH2 C atom as the flap. Their mean planes are inclined to one another by 73.31 (13)° and the attached benzene rings are inclined to one another by 67.39 (15)°. The methylene-C—N bond lengths in the tetra­hydro­pyrimidinium rings are 1.314 (3) and 1.304 (3) Å, values typical for C=N double bonds. The distances between the methyl­ene-bridge C atom and the linked tetra­hydro­pyrimidinium N atom are 1.457 (3) and 1.465 (3) Å, values typical for C—N single bonds. The mol­ecules co-crystallized with H2O and EtOH mol­ecules from the solvent. In the crystal, there is a zigzag chain along [010] of water mol­ecules linked by one of the Br anions via O—H⋯Br hydrogen bonds. The second Br anion is hydrogen bonded (O—H⋯Br) to the ethanol solvent mol­ecule. There are also a number of C—H⋯Br and C—H⋯O hydrogen bonds present, leading to the formation of a two-dimensional network lying parallel to the bc plane.

Related literature

For the synthesis of the precursor bis­(3-(2,6-diisopropyl-phen­yl)-hexa­hydro­pyrimidin­yl)methane, see: Bisceglia et al. (2004[Bisceglia, J. Á., García, M. B., Massa, R., Magri, M. L., Zani, M., Gutkind, G. O. & Orelli, L. R. (2004). J. Heterocycl. Chem. 41, 85-90.]). For metal complexes of substituted 1,4,5,6-tetra­hydro­pyrimidines, see: Mao et al. (2012[Mao, P., Yang, L., Xiao, Y., Yuan, J. & Song, M. (2012). J. Organomet. Chem. 705, 39-43.]).

[Scheme 1]

Experimental

Crystal data
  • C33H50N42+·2Br·C2H6O·H2O

  • Mr = 726.67

  • Monoclinic, P 21 /c

  • a = 13.6267 (4) Å

  • b = 10.3769 (2) Å

  • c = 26.9387 (6) Å

  • β = 91.361 (2)°

  • V = 3808.13 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.16 mm−1

  • T = 291 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.825, Tmax = 1.000

  • 20153 measured reflections

  • 7763 independent reflections

  • 5411 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.100

  • S = 1.03

  • 7763 reflections

  • 406 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯Br1 0.92 (2) 2.41 (3) 3.324 (4) 172 (10)
O2—H2B⋯Br1i 0.93 (2) 2.42 (2) 3.339 (4) 170 (5)
O1—H1⋯Br2 0.82 2.45 3.262 (3) 171
C3—H3B⋯Br1 0.97 2.83 3.660 (3) 144
C4—H4⋯Br2ii 0.93 2.85 3.733 (2) 158
C5—H5A⋯O1 0.97 2.50 3.383 (4) 151
C5—H5B⋯Br2ii 0.97 2.73 3.670 (3) 163
C6—H6B⋯Br1 0.97 2.89 3.741 (3) 147
C9—H9⋯O1 0.93 2.30 3.197 (4) 161
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Our group is interested in the development of new N-heterocyclic carbene (NHC) ligands based on substituted 1,4,5,6-tetrahydropyrimidine, and their metal complexes (Mao et al., 2012). In the course of the metallation of methylene bridged tetrahydropyrimidinium salts, we observed that the methylene linkage broke during the metallation process. In the search for possible reasons leading to the breakage of the linkage, we carried out the X-ray crystal structure analysis of the methylene bridged tetrahydropyrimidinium dibromide.

In the structure of the title compound, Fig. 1, the C—N of the tetrahydropyrimidinium ring and the linkage showed typical values of double and single bonds, respectively. The title molecule co-crystallized with H2O and EtOH molecules from the solvent. The two tetrahydropyrimidinium rings have envelope conformations with the central CH2 C atoms, C2 and C7, as the flaps. Their mean planes are inclined to one another by 73.31 (13) ° and the attached benzene rings are inclined to one another by 67.39 (15) °.

In the crystal, there is a zigzag chain along [010] of water molecules linked to one of the Br- anions via O—H···Br hydrogen bonds (Table 1). The second Br- anion is hydrogen bonded (O—H···Br) to the ethanol solvent molecule (Table 1). There are also a number of C—H···Br and C—H···O hydrogen bonds present, leading to the formation of a two-dimensional network lying parallel to the bc plane (Table 1).

Related literature top

For the synthesis of the precursor bis(3-(2,6-diisopropyl-phenyl)-hexahydropyrimidinyl)methane, see: Bisceglia et al. (2004). For metal complexes of substituted 1,4,5,6-tetrahydropyrimidines, see: Mao et al. (2012).

Experimental top

The starting product bis(3-(2,6-diisopropyl-phenyl)-hexahydropyrimidinyl)methane, was prepared by reaction of 1-(2,6-diisopropyl-phenyl)-propyl-1,3-diamine with aqueous formaldehyde in methanol, following a literature report (Bisceglia et al., 2004). Bis(3-(2,6-diisopropyl-phenyl)-hexahydropyrimidinyl)methane (1.00 g, 1.98 mmmol) was then dissolved in absolute 1,2-dimethoxy-ethane (50 mL) and treated with N-bromosuccinimide (0.705 g, 3.96 mmol). The reaction mixture was stirred at room temperature for 2 h before the volatile compounds were removed in vacuo and a brown, oily residue remained. Crystallization of the residue in EtOH afforded colourless crystals of the title compound.

Refinement top

The water H-atoms were located in a difference electron-density map and freely refined. The OH and C-bound H-atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H = 0.93, 0.97 and 0.96 Å for CH, CH2, and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for OH and CH3 H-atoms, and = 1.2 for other H-atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms and solvent molecules have been omitted for clarity.
1,1'-Methylenebis[3-(2,6-diisopropylphenyl)-3,4,5,6-tetrahydropyrimidin-1-ium] dibromide ethanol monosolvate monohydrate top
Crystal data top
C33H50N42+·2Br·C2H6O·H2OF(000) = 1528
Mr = 726.67Dx = 1.267 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 13.6267 (4) ÅCell parameters from 5778 reflections
b = 10.3769 (2) Åθ = 3.0–26.3°
c = 26.9387 (6) ŵ = 2.16 mm1
β = 91.361 (2)°T = 291 K
V = 3808.13 (16) Å3Prismatic, colourless
Z = 40.40 × 0.35 × 0.30 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
7763 independent reflections
Radiation source: Enhance (Mo) X-ray Source5411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.2312 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 1716
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1112
Tmin = 0.825, Tmax = 1.000l = 3333
20153 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0353P)2 + 1.5781P]
where P = (Fo2 + 2Fc2)/3
7763 reflections(Δ/σ)max = 0.001
406 parametersΔρmax = 0.53 e Å3
2 restraintsΔρmin = 0.40 e Å3
Crystal data top
C33H50N42+·2Br·C2H6O·H2OV = 3808.13 (16) Å3
Mr = 726.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.6267 (4) ŵ = 2.16 mm1
b = 10.3769 (2) ÅT = 291 K
c = 26.9387 (6) Å0.40 × 0.35 × 0.30 mm
β = 91.361 (2)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
7763 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
5411 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 1.000Rint = 0.037
20153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.53 e Å3
7763 reflectionsΔρmin = 0.40 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.00021 (3)0.39577 (3)0.739687 (12)0.05244 (12)
Br20.15358 (3)0.69268 (4)0.506573 (13)0.06818 (14)
O10.3004 (2)0.4779 (3)0.55638 (12)0.0927 (9)
H10.26780.53160.54090.139*
O20.1471 (3)0.6392 (4)0.77111 (16)0.1121 (12)
N10.11949 (16)0.62173 (19)0.62054 (8)0.0300 (5)
N20.01884 (16)0.50715 (19)0.59859 (7)0.0278 (5)
N30.08481 (16)0.29232 (19)0.60165 (8)0.0288 (5)
N40.20292 (16)0.17986 (19)0.64720 (8)0.0314 (5)
C10.0641 (2)0.6922 (3)0.65980 (10)0.0350 (7)
H1A0.06630.64480.69080.042*
H1B0.09360.77620.66490.042*
C20.0408 (2)0.7081 (2)0.64459 (10)0.0371 (7)
H2C0.07860.74850.67130.045*
H2D0.04340.76360.61570.045*
C30.0852 (2)0.5776 (2)0.63261 (10)0.0340 (6)
H3A0.14830.58950.61740.041*
H3B0.09540.52860.66290.041*
C40.0745 (2)0.5337 (2)0.59437 (9)0.0297 (6)
H40.11190.48720.57130.036*
C50.0609 (2)0.4029 (2)0.56977 (9)0.0313 (6)
H5A0.11990.43300.55400.038*
H5B0.01440.37660.54390.038*
C60.0022 (2)0.2149 (3)0.61961 (11)0.0388 (7)
H6A0.04660.20390.59320.047*
H6B0.02840.25900.64700.047*
C70.0398 (2)0.0843 (3)0.63669 (12)0.0422 (7)
H7A0.01180.03840.65340.051*
H7B0.05880.03380.60820.051*
C80.1273 (2)0.1014 (3)0.67170 (11)0.0404 (7)
H8A0.10700.14380.70180.049*
H8B0.15430.01780.68060.049*
C90.1756 (2)0.2702 (2)0.61571 (9)0.0296 (6)
H90.22420.32200.60250.036*
C100.3050 (2)0.1641 (3)0.66192 (10)0.0347 (7)
C110.3474 (2)0.2525 (3)0.69526 (11)0.0392 (7)
C120.4457 (2)0.2335 (3)0.70865 (12)0.0499 (8)
H120.47650.29080.73050.060*
C130.4980 (3)0.1318 (3)0.69028 (13)0.0566 (9)
H130.56370.12150.69960.068*
C140.4540 (2)0.0454 (3)0.65826 (13)0.0523 (8)
H140.49030.02370.64650.063*
C150.3567 (2)0.0587 (3)0.64302 (11)0.0408 (7)
C160.3111 (2)0.0400 (3)0.60767 (12)0.0514 (8)
H160.24490.01050.59840.062*
C170.3022 (3)0.1712 (3)0.63334 (15)0.0695 (11)
H17A0.27250.23200.61070.104*
H17B0.26220.16270.66200.104*
H17C0.36630.20120.64340.104*
C180.3695 (3)0.0539 (4)0.56023 (13)0.0683 (10)
H18A0.43340.08790.56830.103*
H18B0.37600.02890.54480.103*
H18C0.33560.11150.53780.103*
C190.2922 (2)0.3655 (3)0.71713 (11)0.0430 (7)
H190.22320.35820.70640.052*
C200.2963 (3)0.3628 (3)0.77382 (12)0.0651 (10)
H20A0.26910.28310.78530.098*
H20B0.25910.43360.78650.098*
H20C0.36330.36990.78530.098*
C210.3311 (3)0.4933 (3)0.69788 (13)0.0615 (10)
H21A0.39850.50330.70830.092*
H21B0.29300.56280.71090.092*
H21C0.32630.49430.66230.092*
C220.2241 (2)0.6421 (3)0.61480 (10)0.0348 (7)
C230.2563 (2)0.7541 (3)0.59017 (11)0.0419 (7)
C240.3565 (3)0.7721 (3)0.58588 (13)0.0589 (9)
H240.38060.84530.56980.071*
C250.4211 (3)0.6851 (4)0.60466 (15)0.0653 (10)
H250.48830.69890.60060.078*
C260.3876 (2)0.5773 (3)0.62942 (13)0.0566 (9)
H260.43260.51950.64220.068*
C270.2878 (2)0.5531 (3)0.63568 (11)0.0413 (7)
C280.2532 (2)0.4340 (3)0.66426 (11)0.0464 (8)
H280.18150.43830.66780.056*
C290.2952 (3)0.4302 (4)0.71605 (13)0.0721 (11)
H29A0.36540.42460.71350.108*
H29B0.27680.50720.73370.108*
H29C0.26980.35640.73360.108*
C300.2795 (3)0.3113 (3)0.63574 (14)0.0677 (11)
H30A0.34950.30550.63140.101*
H30B0.25590.23770.65400.101*
H30C0.24980.31330.60380.101*
C310.1854 (3)0.8498 (3)0.56818 (12)0.0502 (8)
H310.12100.83510.58410.060*
C320.2133 (3)0.9887 (3)0.57786 (16)0.0871 (14)
H32A0.16671.04490.56270.131*
H32B0.21331.00400.61300.131*
H32C0.27761.00520.56400.131*
C330.1749 (4)0.8245 (4)0.51276 (15)0.0951 (15)
H33A0.15610.73640.50770.143*
H33B0.12560.88050.49980.143*
H33C0.23650.84070.49580.143*
C340.3869 (3)0.4560 (5)0.53238 (17)0.0906 (14)
H34A0.42930.53060.53640.109*
H34B0.37300.44450.49720.109*
C350.4385 (4)0.3408 (5)0.55190 (18)0.1017 (16)
H35A0.49310.32140.53130.153*
H35B0.39410.26900.55180.153*
H35C0.46170.35720.58520.153*
H2A0.112 (7)0.567 (7)0.761 (4)0.38 (7)*
H2B0.105 (4)0.709 (4)0.772 (2)0.16 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0687 (3)0.04436 (19)0.04453 (19)0.00286 (16)0.00722 (16)0.00699 (14)
Br20.0827 (3)0.0748 (3)0.0463 (2)0.0282 (2)0.01361 (19)0.01094 (17)
O10.074 (2)0.109 (2)0.096 (2)0.0035 (17)0.0389 (18)0.0350 (17)
O20.092 (3)0.087 (2)0.158 (3)0.014 (2)0.008 (2)0.031 (2)
N10.0276 (13)0.0288 (12)0.0336 (12)0.0041 (10)0.0011 (10)0.0034 (9)
N20.0264 (13)0.0276 (11)0.0296 (11)0.0009 (10)0.0028 (9)0.0006 (9)
N30.0259 (13)0.0287 (11)0.0319 (12)0.0018 (10)0.0015 (10)0.0008 (9)
N40.0288 (14)0.0286 (12)0.0367 (13)0.0006 (10)0.0018 (10)0.0047 (10)
C10.0376 (18)0.0340 (15)0.0333 (15)0.0006 (13)0.0009 (12)0.0060 (12)
C20.0390 (18)0.0334 (15)0.0390 (16)0.0062 (13)0.0005 (13)0.0070 (12)
C30.0285 (16)0.0408 (16)0.0326 (14)0.0026 (13)0.0007 (12)0.0011 (12)
C40.0321 (17)0.0278 (14)0.0292 (14)0.0001 (13)0.0003 (12)0.0019 (11)
C50.0342 (16)0.0327 (14)0.0270 (14)0.0053 (13)0.0038 (12)0.0007 (11)
C60.0272 (17)0.0403 (16)0.0488 (18)0.0052 (13)0.0017 (13)0.0033 (13)
C70.0360 (18)0.0333 (16)0.0574 (19)0.0053 (14)0.0015 (15)0.0080 (13)
C80.0361 (18)0.0373 (15)0.0480 (17)0.0010 (14)0.0045 (14)0.0119 (13)
C90.0303 (17)0.0264 (14)0.0325 (14)0.0001 (12)0.0069 (12)0.0022 (11)
C100.0275 (16)0.0352 (15)0.0414 (16)0.0001 (13)0.0019 (13)0.0093 (12)
C110.0348 (18)0.0391 (16)0.0437 (17)0.0030 (14)0.0010 (14)0.0094 (13)
C120.043 (2)0.0499 (19)0.057 (2)0.0084 (17)0.0092 (16)0.0024 (15)
C130.0298 (19)0.060 (2)0.079 (3)0.0037 (17)0.0086 (17)0.0130 (18)
C140.036 (2)0.0485 (19)0.072 (2)0.0095 (16)0.0011 (17)0.0019 (17)
C150.0340 (18)0.0368 (16)0.0517 (18)0.0053 (14)0.0012 (14)0.0052 (13)
C160.040 (2)0.0454 (18)0.069 (2)0.0103 (16)0.0023 (17)0.0065 (16)
C170.070 (3)0.050 (2)0.089 (3)0.0072 (19)0.010 (2)0.0083 (19)
C180.074 (3)0.066 (2)0.065 (2)0.013 (2)0.004 (2)0.0034 (19)
C190.0421 (19)0.0441 (17)0.0426 (18)0.0052 (15)0.0012 (14)0.0012 (13)
C200.080 (3)0.067 (2)0.049 (2)0.003 (2)0.0071 (19)0.0005 (17)
C210.077 (3)0.0452 (19)0.062 (2)0.0038 (19)0.0043 (19)0.0010 (16)
C220.0320 (17)0.0333 (15)0.0389 (16)0.0067 (13)0.0016 (13)0.0103 (12)
C230.045 (2)0.0382 (16)0.0427 (17)0.0098 (15)0.0017 (14)0.0107 (13)
C240.051 (2)0.052 (2)0.073 (2)0.0231 (19)0.0071 (19)0.0043 (17)
C250.031 (2)0.073 (3)0.092 (3)0.0170 (19)0.0035 (19)0.014 (2)
C260.034 (2)0.057 (2)0.079 (2)0.0004 (17)0.0082 (17)0.0083 (18)
C270.0316 (18)0.0418 (16)0.0505 (18)0.0033 (14)0.0016 (14)0.0108 (14)
C280.0377 (19)0.0449 (17)0.057 (2)0.0037 (15)0.0092 (15)0.0022 (15)
C290.075 (3)0.077 (3)0.065 (2)0.002 (2)0.012 (2)0.0046 (19)
C300.078 (3)0.049 (2)0.077 (3)0.0000 (19)0.012 (2)0.0043 (18)
C310.059 (2)0.0399 (17)0.052 (2)0.0096 (16)0.0053 (17)0.0034 (14)
C320.116 (4)0.045 (2)0.101 (3)0.000 (2)0.001 (3)0.002 (2)
C330.134 (5)0.091 (3)0.062 (3)0.013 (3)0.027 (3)0.007 (2)
C340.078 (3)0.099 (3)0.096 (3)0.014 (3)0.030 (3)0.014 (3)
C350.080 (4)0.109 (4)0.117 (4)0.003 (3)0.024 (3)0.016 (3)
Geometric parameters (Å, º) top
O1—H10.8200C17—H17A0.9600
O1—C341.376 (5)C17—H17B0.9600
O2—H2A0.92 (2)C17—H17C0.9600
O2—H2B0.928 (19)C18—H18A0.9600
N1—C11.478 (3)C18—H18B0.9600
N1—C41.314 (3)C18—H18C0.9600
N1—C221.446 (3)C19—H190.9800
N2—C31.467 (3)C19—C201.527 (4)
N2—C41.304 (3)C19—C211.523 (4)
N2—C51.457 (3)C20—H20A0.9600
N3—C51.465 (3)C20—H20B0.9600
N3—C61.474 (3)C20—H20C0.9600
N3—C91.305 (3)C21—H21A0.9600
N4—C81.481 (3)C21—H21B0.9600
N4—C91.312 (3)C21—H21C0.9600
N4—C101.446 (3)C22—C231.403 (4)
C1—H1A0.9700C22—C271.395 (4)
C1—H1B0.9700C23—C241.381 (4)
C1—C21.506 (4)C23—C311.516 (4)
C2—H2C0.9700C24—H240.9300
C2—H2D0.9700C24—C251.367 (5)
C2—C31.521 (4)C25—H250.9300
C3—H3A0.9700C25—C261.374 (5)
C3—H3B0.9700C26—H260.9300
C4—H40.9300C26—C271.389 (4)
C5—H5A0.9700C27—C281.525 (4)
C5—H5B0.9700C28—H280.9800
C6—H6A0.9700C28—C291.521 (4)
C6—H6B0.9700C28—C301.526 (4)
C6—C71.517 (4)C29—H29A0.9600
C7—H7A0.9700C29—H29B0.9600
C7—H7B0.9700C29—H29C0.9600
C7—C81.512 (4)C30—H30A0.9600
C8—H8A0.9700C30—H30B0.9600
C8—H8B0.9700C30—H30C0.9600
C9—H90.9300C31—H310.9800
C10—C111.399 (4)C31—C321.515 (4)
C10—C151.404 (4)C31—C331.526 (5)
C11—C121.393 (4)C32—H32A0.9600
C11—C191.519 (4)C32—H32B0.9600
C12—H120.9300C32—H32C0.9600
C12—C131.372 (4)C33—H33A0.9600
C13—H130.9300C33—H33B0.9600
C13—C141.373 (5)C33—H33C0.9600
C14—H140.9300C34—H34A0.9700
C14—C151.385 (4)C34—H34B0.9700
C15—C161.521 (4)C34—C351.477 (6)
C16—H160.9800C35—H35A0.9600
C16—C171.534 (4)C35—H35B0.9600
C16—C181.528 (4)C35—H35C0.9600
C34—O1—H1109.5H17B—C17—H17C109.5
H2A—O2—H2B109 (8)C16—C18—H18A109.5
C4—N1—C1119.4 (2)C16—C18—H18B109.5
C4—N1—C22121.0 (2)C16—C18—H18C109.5
C22—N1—C1119.3 (2)H18A—C18—H18B109.5
C4—N2—C3122.3 (2)H18A—C18—H18C109.5
C4—N2—C5120.4 (2)H18B—C18—H18C109.5
C5—N2—C3117.3 (2)C11—C19—H19107.8
C5—N3—C6117.3 (2)C11—C19—C20111.5 (3)
C9—N3—C5120.3 (2)C11—C19—C21111.1 (3)
C9—N3—C6122.3 (2)C20—C19—H19107.8
C9—N4—C8119.4 (2)C21—C19—H19107.8
C9—N4—C10120.9 (2)C21—C19—C20110.6 (3)
C10—N4—C8119.4 (2)C19—C20—H20A109.5
N1—C1—H1A109.8C19—C20—H20B109.5
N1—C1—H1B109.8C19—C20—H20C109.5
N1—C1—C2109.3 (2)H20A—C20—H20B109.5
H1A—C1—H1B108.3H20A—C20—H20C109.5
C2—C1—H1A109.8H20B—C20—H20C109.5
C2—C1—H1B109.8C19—C21—H21A109.5
C1—C2—H2C109.6C19—C21—H21B109.5
C1—C2—H2D109.6C19—C21—H21C109.5
C1—C2—C3110.2 (2)H21A—C21—H21B109.5
H2C—C2—H2D108.1H21A—C21—H21C109.5
C3—C2—H2C109.6H21B—C21—H21C109.5
C3—C2—H2D109.6C23—C22—N1117.9 (3)
N2—C3—C2109.5 (2)C27—C22—N1118.8 (2)
N2—C3—H3A109.8C27—C22—C23123.3 (3)
N2—C3—H3B109.8C22—C23—C31122.2 (3)
C2—C3—H3A109.8C24—C23—C22116.7 (3)
C2—C3—H3B109.8C24—C23—C31121.1 (3)
H3A—C3—H3B108.2C23—C24—H24119.2
N1—C4—H4117.7C25—C24—C23121.6 (3)
N2—C4—N1124.5 (3)C25—C24—H24119.2
N2—C4—H4117.7C24—C25—H25119.7
N2—C5—N3110.73 (19)C24—C25—C26120.5 (3)
N2—C5—H5A109.5C26—C25—H25119.7
N2—C5—H5B109.5C25—C26—H26119.4
N3—C5—H5A109.5C25—C26—C27121.3 (3)
N3—C5—H5B109.5C27—C26—H26119.4
H5A—C5—H5B108.1C22—C27—C28123.5 (3)
N3—C6—H6A109.8C26—C27—C22116.6 (3)
N3—C6—H6B109.8C26—C27—C28119.9 (3)
N3—C6—C7109.3 (2)C27—C28—H28107.9
H6A—C6—H6B108.3C27—C28—C30110.9 (3)
C7—C6—H6A109.8C29—C28—C27111.4 (3)
C7—C6—H6B109.8C29—C28—H28107.9
C6—C7—H7A109.7C29—C28—C30110.6 (3)
C6—C7—H7B109.7C30—C28—H28107.9
H7A—C7—H7B108.2C28—C29—H29A109.5
C8—C7—C6109.9 (2)C28—C29—H29B109.5
C8—C7—H7A109.7C28—C29—H29C109.5
C8—C7—H7B109.7H29A—C29—H29B109.5
N4—C8—C7109.4 (2)H29A—C29—H29C109.5
N4—C8—H8A109.8H29B—C29—H29C109.5
N4—C8—H8B109.8C28—C30—H30A109.5
C7—C8—H8A109.8C28—C30—H30B109.5
C7—C8—H8B109.8C28—C30—H30C109.5
H8A—C8—H8B108.2H30A—C30—H30B109.5
N3—C9—N4124.5 (2)H30A—C30—H30C109.5
N3—C9—H9117.8H30B—C30—H30C109.5
N4—C9—H9117.8C23—C31—H31107.4
C11—C10—N4118.8 (2)C23—C31—C33110.2 (3)
C11—C10—C15122.7 (3)C32—C31—C23113.0 (3)
C15—C10—N4118.5 (3)C32—C31—H31107.4
C10—C11—C19123.7 (3)C32—C31—C33111.2 (3)
C12—C11—C10116.9 (3)C33—C31—H31107.4
C12—C11—C19119.4 (3)C31—C32—H32A109.5
C11—C12—H12119.3C31—C32—H32B109.5
C13—C12—C11121.4 (3)C31—C32—H32C109.5
C13—C12—H12119.3H32A—C32—H32B109.5
C12—C13—H13119.8H32A—C32—H32C109.5
C12—C13—C14120.4 (3)H32B—C32—H32C109.5
C14—C13—H13119.8C31—C33—H33A109.5
C13—C14—H14119.3C31—C33—H33B109.5
C13—C14—C15121.5 (3)C31—C33—H33C109.5
C15—C14—H14119.3H33A—C33—H33B109.5
C10—C15—C16123.4 (3)H33A—C33—H33C109.5
C14—C15—C10117.1 (3)H33B—C33—H33C109.5
C14—C15—C16119.5 (3)O1—C34—H34A109.2
C15—C16—H16108.1O1—C34—H34B109.2
C15—C16—C17110.5 (3)O1—C34—C35111.9 (4)
C15—C16—C18112.0 (3)H34A—C34—H34B107.9
C17—C16—H16108.1C35—C34—H34A109.2
C18—C16—H16108.1C35—C34—H34B109.2
C18—C16—C17110.0 (3)C34—C35—H35A109.5
C16—C17—H17A109.5C34—C35—H35B109.5
C16—C17—H17B109.5C34—C35—H35C109.5
C16—C17—H17C109.5H35A—C35—H35B109.5
H17A—C17—H17B109.5H35A—C35—H35C109.5
H17A—C17—H17C109.5H35B—C35—H35C109.5
N1—C1—C2—C355.0 (3)C10—C11—C12—C130.6 (4)
N1—C22—C23—C24179.0 (3)C10—C11—C19—C20123.8 (3)
N1—C22—C23—C312.3 (4)C10—C11—C19—C21112.3 (3)
N1—C22—C27—C26179.6 (3)C10—C15—C16—C17111.7 (3)
N1—C22—C27—C280.3 (4)C10—C15—C16—C18125.3 (3)
N3—C6—C7—C850.2 (3)C11—C10—C15—C140.9 (4)
N4—C10—C11—C12179.7 (2)C11—C10—C15—C16178.6 (3)
N4—C10—C11—C190.1 (4)C11—C12—C13—C140.5 (5)
N4—C10—C15—C14179.2 (3)C12—C11—C19—C2056.0 (4)
N4—C10—C15—C160.2 (4)C12—C11—C19—C2167.9 (4)
C1—N1—C4—N23.7 (4)C12—C13—C14—C150.9 (5)
C1—N1—C22—C2378.6 (3)C13—C14—C15—C100.3 (5)
C1—N1—C22—C2798.7 (3)C13—C14—C15—C16179.7 (3)
C1—C2—C3—N249.4 (3)C14—C15—C16—C1767.7 (4)
C3—N2—C4—N12.2 (4)C14—C15—C16—C1855.3 (4)
C3—N2—C5—N371.5 (3)C15—C10—C11—C121.3 (4)
C4—N1—C1—C232.8 (3)C15—C10—C11—C19178.5 (3)
C4—N1—C22—C23107.3 (3)C19—C11—C12—C13179.2 (3)
C4—N1—C22—C2775.4 (3)C22—N1—C1—C2153.0 (2)
C4—N2—C3—C221.6 (3)C22—N1—C4—N2177.8 (2)
C4—N2—C5—N3107.3 (3)C22—C23—C24—C250.1 (5)
C5—N2—C3—C2159.5 (2)C22—C23—C31—C32137.6 (3)
C5—N2—C4—N1176.6 (2)C22—C23—C31—C3397.3 (4)
C5—N3—C6—C7161.4 (2)C22—C27—C28—C29124.2 (3)
C5—N3—C9—N4174.5 (2)C22—C27—C28—C30112.2 (3)
C6—N3—C5—N272.8 (3)C23—C22—C27—C262.4 (4)
C6—N3—C9—N41.0 (4)C23—C22—C27—C28177.5 (3)
C6—C7—C8—N455.2 (3)C23—C24—C25—C261.3 (6)
C8—N4—C9—N34.2 (4)C24—C23—C31—C3243.8 (4)
C8—N4—C10—C1199.0 (3)C24—C23—C31—C3381.3 (4)
C8—N4—C10—C1579.5 (3)C24—C25—C26—C270.6 (5)
C9—N3—C5—N2102.8 (3)C25—C26—C27—C221.2 (5)
C9—N3—C6—C723.1 (4)C25—C26—C27—C28178.8 (3)
C9—N4—C8—C732.8 (3)C26—C27—C28—C2955.7 (4)
C9—N4—C10—C1175.0 (3)C26—C27—C28—C3067.9 (4)
C9—N4—C10—C15106.5 (3)C27—C22—C23—C241.8 (4)
C10—N4—C8—C7153.1 (2)C27—C22—C23—C31179.5 (3)
C10—N4—C9—N3178.2 (2)C31—C23—C24—C25178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Br10.92 (2)2.41 (3)3.324 (4)172 (10)
O2—H2B···Br1i0.93 (2)2.42 (2)3.339 (4)170 (5)
O1—H1···Br20.822.453.262 (3)171
C3—H3B···Br10.972.833.660 (3)144
C4—H4···Br2ii0.932.853.733 (2)158
C5—H5A···O10.972.503.383 (4)151
C5—H5B···Br2ii0.972.733.670 (3)163
C6—H6B···Br10.972.893.741 (3)147
C9—H9···O10.932.303.197 (4)161
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Br10.92 (2)2.41 (3)3.324 (4)172 (10)
O2—H2B···Br1i0.93 (2)2.42 (2)3.339 (4)170 (5)
O1—H1···Br20.822.453.262 (3)170.7
C3—H3B···Br10.972.833.660 (3)144
C4—H4···Br2ii0.932.853.733 (2)158
C5—H5A···O10.972.503.383 (4)151
C5—H5B···Br2ii0.972.733.670 (3)163
C6—H6B···Br10.972.893.741 (3)147
C9—H9···O10.932.303.197 (4)161
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank Ms Y. Zhu for technical assistance. This research was supported by the National Nature Science Foundation of P. R. China (No. 21172055) and the High-Level Talents Foundation of Henan University of Technology.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationBisceglia, J. Á., García, M. B., Massa, R., Magri, M. L., Zani, M., Gutkind, G. O. & Orelli, L. R. (2004). J. Heterocycl. Chem. 41, 85–90.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMao, P., Yang, L., Xiao, Y., Yuan, J. & Song, M. (2012). J. Organomet. Chem. 705, 39–43.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1377-o1378
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds