organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-hy­dr­oxy­eth­yl)ammonium picrate

aDepartment of Physics, Anna University, Chennai 600 025, India
*Correspondence e-mail: krgkrishnan@annauniv.edu

(Received 8 July 2013; accepted 3 August 2013; online 21 August 2013)

The asymmetric unit of the title salt, C4H12NO2+·C6H2N3O7, contain two bis­(2-hy­droxy­eth­yl)ammonium cations and two picrate anions. An intra­molecular N—H⋯O hydrogen bond occurs in each cation. In the crystal, mol­ecules are linked via O—H⋯O and N—H⋯O hydrogen bonds, which generate two R21(6), an R22(10) and an R22(13) graph-set ring motifs. There are also a number of C—H⋯O hydrogen bonds present. The sum of these inter­actions leads to the formation a three-dimensional structure.

Related literature

For general background to picrate complexes, see: In et al. (1997[In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367-369.]); Zaderenko et al. 1997[Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961-967.]); Ashwell et al. (1995[Ashwell, G. J., Jefferies, G., Hamilton, D. G., Lynch, D. E., Roberts, M. P. S., Bahra, G. S. & Brown, C. R. (1995). Nature (London), 375, 385-388.]); Owen & White (1976[Owen, J. R. & White, E. A. D. (1976). J. Mater. Sci. 11, 2165-2169.]); Shakir et al. (2009[Shakir, M., Kushwaha, S. K., Maurya, K. K., Arora, M. & Bhagavannarayana, G. (2009). J. Cryst. Growth, 311, 3871-3875.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12NO2+·C6H2N3O7

  • Mr = 334.25

  • Monoclinic, P 21 /c

  • a = 24.9396 (6) Å

  • b = 6.9158 (2) Å

  • c = 16.2974 (5) Å

  • β = 94.608 (1)°

  • V = 2801.85 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.882, Tmax = 0.966

  • 31581 measured reflections

  • 7194 independent reflections

  • 5200 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.03

  • 7194 reflections

  • 436 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7A⋯O15 0.91 (1) 2.48 (2) 2.8235 (19) 103 (1)
N7—H7A⋯O17i 0.91 (1) 2.43 (2) 2.9853 (18) 120 (1)
N7—H7A⋯O18ii 0.91 (1) 2.21 (1) 2.9272 (18) 136 (2)
N7—H7B⋯O8i 0.91 (2) 1.97 (2) 2.8359 (18) 157 (2)
N7—H7B⋯O14i 0.91 (2) 2.36 (2) 2.969 (2) 125 (1)
N8—H8A⋯O15iii 0.91 (2) 2.05 (2) 2.9076 (18) 157 (1)
N8—H8B⋯O18 0.91 (2) 2.56 (2) 2.898 (2) 103 (1)
N8—H8B⋯O16iv 0.91 (2) 1.96 (2) 2.8523 (18) 170 (2)
O15—H15⋯O1 0.82 2.12 2.7891 (16) 139
O15—H15⋯O2 0.82 2.41 3.138 (2) 149
O16—H16⋯O17i 0.82 2.24 2.9822 (18) 150
O17—H17⋯O8 0.82 2.00 2.7323 (14) 148
O17—H17⋯O9 0.82 2.27 2.9079 (19) 134
O18—H18⋯O1iv 0.82 1.96 2.7453 (18) 161
C3—H3⋯O7iv 0.93 2.59 3.502 (2) 167
C9—H9⋯O13i 0.93 2.50 3.425 (2) 176
C17—H17A⋯O12v 0.97 2.50 3.359 (2) 147
C19—H19A⋯O7iii 0.97 2.45 3.319 (3) 148
C19—H19B⋯O5vi 0.97 2.44 3.224 (2) 138
C21—H21B⋯O1iii 0.97 2.33 3.195 (2) 148
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) -x, -y+1, -z+1; (vi) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

It is well known that picric acid forms charge transfer molecular complexes with a number of aromatic compounds such as aromatic hydrocarbons and amines, through electrostatic or hydrogen bonding interactions (In et al., 1997; Zaderenko et al., 1997). The bonding of donor-acceptor picric acid complexes strongly depends on the nature of partners. Some of the picric acid complexes crystallize in centrosymmetric space groups but have non-linear optical properties (NLO) [Shakir et al., 2009]. This is due to the aggregation of the donor-acceptor molecules in a non-centrosymmetric manner which contributes to the bulk susceptibility from intermolecular charge transfer (Ashwell et al., 1995; Owen & White, 1976). We report herein on the crystal structure of the title salt.

The asymmetric unit of the title salt, Fig. 1, contains two picrate anions and two bis(2-hydroxyethyl)ammonium cations. The amine molecule exists as ammonium ion due to protonation. The picric acid exists as a picrate anion since the proton is transferred to the amine.

The picrate benzene rings (C1-C6 and C7-C12) are inclined to one another by 39.47 (7) °.

In the crystal, molecules are linked via O—H···O and N—H···O hydrogen bonds, which generate two R21(6), an R22(10) and an R22(13) graph-set ring motifs (Bernstein et al., 1995), forming a three-dimensional structure (Table 1 and Fig. 2). There are also C-H···O hydrogen bonds present (Table 1).

Related literature top

For general background to picrate complexes, see: In et al. (1997); Zaderenko et al. 1997); Ashwell et al. (1995); Owen & White (1976); Shakir et al. (2009). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

An equimolar mixture of 2,2'-azanediylbis(ethan-1-ol) (1.05 mmol) and picric acid (2.29 mmol) in an ethanol solution was stirred over 4 h to attain a saturated homogeneous mixture. The light yellow coloured solution turned a dark yellow and product formation was confirmed using TLC. The saturated solution was filtered into a clean beaker and kept in a constant temperature bath at 303 K. Yellow coloured prism-like crystals suitable for X-ray diffraction analysis were harvested in 2 days.

Refinement top

The N-bound H atoms were located in a difference Fourier map and refined with distance restraints: N-H = 0.91 (1) Å. C-bound H atoms were positioned geometrically (C–H = 0.93 - 0.97 Å) and allowed to ride on their parent atom, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details). H-atoms not involved in hydrogen bonding have been omitted for clarity.
Bis(2-hydroxyethyl)ammonium picrate top
Crystal data top
C4H12NO2+·C6H2N3O7F(000) = 1392
Mr = 334.25Dx = 1.585 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8443 reflections
a = 24.9396 (6) Åθ = 2.5–28.2°
b = 6.9158 (2) ŵ = 0.14 mm1
c = 16.2974 (5) ÅT = 293 K
β = 94.608 (1)°Block, yellow
V = 2801.85 (14) Å30.35 × 0.30 × 0.25 mm
Z = 8
Data collection top
Bruker SMART APEXII area-detector
diffractometer
7194 independent reflections
Radiation source: fine-focus sealed tube5200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scansθmax = 28.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3333
Tmin = 0.882, Tmax = 0.966k = 89
31581 measured reflectionsl = 2120
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.8326P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
7194 reflectionsΔρmax = 0.52 e Å3
436 parametersΔρmin = 0.33 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (5)
Crystal data top
C4H12NO2+·C6H2N3O7V = 2801.85 (14) Å3
Mr = 334.25Z = 8
Monoclinic, P21/cMo Kα radiation
a = 24.9396 (6) ŵ = 0.14 mm1
b = 6.9158 (2) ÅT = 293 K
c = 16.2974 (5) Å0.35 × 0.30 × 0.25 mm
β = 94.608 (1)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
7194 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5200 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.966Rint = 0.032
31581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0454 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.52 e Å3
7194 reflectionsΔρmin = 0.33 e Å3
436 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36588 (4)0.55080 (17)0.35068 (7)0.0376 (4)
O20.31475 (5)0.6612 (3)0.48109 (9)0.0732 (6)
O30.36173 (6)0.6189 (3)0.59420 (9)0.0770 (7)
O40.54463 (5)0.8458 (2)0.60986 (8)0.0524 (5)
O50.58962 (5)0.8254 (2)0.50363 (8)0.0539 (5)
O60.50603 (8)0.4989 (3)0.26298 (10)0.0854 (7)
O70.42846 (7)0.6218 (3)0.22486 (8)0.0879 (8)
N10.35824 (6)0.6443 (2)0.52065 (9)0.0414 (5)
N20.54771 (5)0.81045 (19)0.53708 (8)0.0343 (4)
N30.46430 (7)0.5815 (3)0.27694 (9)0.0492 (5)
C10.40616 (6)0.6139 (2)0.39305 (9)0.0286 (4)
C20.40723 (6)0.6641 (2)0.47915 (9)0.0301 (4)
C30.45221 (6)0.7261 (2)0.52603 (9)0.0298 (4)
C40.49989 (6)0.7465 (2)0.48898 (9)0.0287 (4)
C50.50313 (6)0.6991 (2)0.40681 (9)0.0314 (4)
C60.45820 (6)0.6370 (2)0.36189 (9)0.0311 (4)
O80.14146 (4)0.04467 (19)0.63223 (7)0.0408 (4)
O90.17482 (5)0.1133 (3)0.48253 (9)0.0708 (6)
O100.11402 (5)0.0955 (2)0.38420 (8)0.0597 (5)
O110.05810 (5)0.3536 (2)0.41733 (7)0.0477 (4)
O120.09095 (5)0.3430 (2)0.53515 (8)0.0551 (5)
O130.02107 (7)0.1656 (3)0.77418 (9)0.0919 (8)
O140.08393 (6)0.0338 (3)0.76020 (9)0.0722 (6)
N40.12787 (5)0.1159 (2)0.45685 (8)0.0371 (4)
N50.05404 (5)0.3196 (2)0.49110 (8)0.0335 (4)
N60.05233 (6)0.0868 (3)0.73232 (8)0.0467 (5)
C70.09722 (6)0.1020 (2)0.59992 (9)0.0286 (4)
C80.08651 (6)0.1477 (2)0.51350 (9)0.0280 (4)
C90.03840 (6)0.2168 (2)0.47875 (9)0.0286 (4)
C100.00312 (6)0.2474 (2)0.52799 (9)0.0282 (4)
C110.00245 (6)0.2070 (2)0.61143 (9)0.0321 (4)
C120.05015 (6)0.1339 (2)0.64497 (9)0.0316 (4)
O150.25842 (5)0.43596 (19)0.33076 (8)0.0432 (4)
O160.23692 (4)0.95252 (18)0.11889 (8)0.0398 (4)
N70.19095 (5)0.7158 (2)0.24951 (8)0.0332 (4)
C150.17130 (7)0.9075 (3)0.21928 (11)0.0423 (6)
C160.18137 (6)0.9372 (3)0.13031 (11)0.0394 (5)
C170.19148 (7)0.6884 (3)0.34013 (10)0.0407 (5)
C180.20910 (7)0.4870 (3)0.36335 (11)0.0456 (6)
O170.24822 (4)0.02326 (19)0.61782 (8)0.0424 (4)
O180.30269 (5)0.6577 (2)0.78140 (10)0.0560 (5)
N80.30854 (5)0.2811 (2)0.70463 (8)0.0318 (4)
C190.32980 (6)0.1541 (3)0.64123 (11)0.0396 (5)
C200.28589 (7)0.0922 (3)0.57860 (10)0.0396 (5)
C210.35099 (7)0.3627 (3)0.76446 (11)0.0409 (5)
C220.32629 (8)0.4956 (3)0.82332 (12)0.0505 (6)
H30.450600.753800.581600.0360*
H50.535600.709800.382800.0380*
H90.033900.242700.422600.0340*
H110.025800.229300.644100.0390*
H7A0.2259 (4)0.703 (3)0.2383 (12)0.048 (5)*
H7B0.1700 (6)0.623 (2)0.2236 (11)0.045 (5)*
H150.283500.486100.358600.0650*
H15A0.189401.008300.252400.0510*
H15B0.133000.917600.225400.0510*
H160.248500.846400.106500.0600*
H16A0.166300.829400.098100.0470*
H16B0.163201.054000.110200.0470*
H17A0.155800.711300.357600.0490*
H17B0.215900.781000.368000.0490*
H18A0.213300.476500.422900.0550*
H18B0.181400.396500.343200.0550*
H8A0.2849 (6)0.214 (2)0.7332 (10)0.041 (5)*
H8B0.2887 (7)0.377 (2)0.6794 (11)0.045 (5)*
H170.217600.013300.603600.0640*
H180.321900.752800.790600.0840*
H19A0.346300.040700.667600.0480*
H19B0.357200.223000.614000.0480*
H20A0.268000.205000.553900.0470*
H20B0.301000.018400.535400.0470*
H21A0.377100.433100.735000.0490*
H21B0.369600.258500.794700.0490*
H22A0.299000.426500.850900.0610*
H22B0.353700.539000.864800.0610*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0327 (6)0.0383 (7)0.0405 (6)0.0014 (5)0.0049 (5)0.0058 (5)
O20.0330 (7)0.1269 (15)0.0599 (9)0.0037 (8)0.0055 (6)0.0091 (9)
O30.0550 (9)0.1382 (16)0.0394 (8)0.0213 (10)0.0137 (6)0.0033 (9)
O40.0448 (7)0.0731 (10)0.0374 (7)0.0020 (7)0.0075 (5)0.0136 (6)
O50.0322 (6)0.0742 (10)0.0553 (8)0.0116 (6)0.0039 (5)0.0109 (7)
O60.1145 (14)0.0906 (13)0.0560 (10)0.0195 (12)0.0371 (10)0.0135 (9)
O70.0681 (10)0.1635 (19)0.0303 (7)0.0470 (11)0.0073 (7)0.0040 (9)
N10.0341 (7)0.0495 (9)0.0412 (8)0.0036 (6)0.0071 (6)0.0049 (7)
N20.0324 (7)0.0306 (7)0.0388 (7)0.0015 (5)0.0041 (5)0.0019 (6)
N30.0614 (10)0.0577 (10)0.0291 (7)0.0219 (8)0.0074 (7)0.0032 (7)
C10.0299 (7)0.0227 (7)0.0322 (7)0.0029 (6)0.0031 (6)0.0021 (6)
C20.0301 (7)0.0285 (8)0.0319 (7)0.0031 (6)0.0032 (6)0.0016 (6)
C30.0351 (8)0.0270 (8)0.0269 (7)0.0037 (6)0.0005 (6)0.0002 (6)
C40.0305 (7)0.0251 (8)0.0298 (7)0.0018 (6)0.0026 (6)0.0016 (6)
C50.0303 (7)0.0315 (8)0.0326 (8)0.0014 (6)0.0041 (6)0.0011 (6)
C60.0370 (8)0.0310 (8)0.0251 (7)0.0019 (6)0.0015 (6)0.0014 (6)
O80.0284 (5)0.0552 (8)0.0391 (6)0.0067 (5)0.0040 (4)0.0128 (5)
O90.0300 (7)0.1358 (16)0.0478 (8)0.0092 (8)0.0099 (6)0.0189 (9)
O100.0523 (8)0.0944 (12)0.0335 (7)0.0120 (8)0.0109 (6)0.0077 (7)
O110.0392 (6)0.0665 (9)0.0364 (7)0.0055 (6)0.0039 (5)0.0083 (6)
O120.0319 (6)0.0845 (11)0.0499 (8)0.0147 (7)0.0087 (5)0.0086 (7)
O130.0803 (11)0.164 (2)0.0331 (7)0.0529 (12)0.0147 (7)0.0004 (10)
O140.0509 (8)0.1207 (15)0.0461 (8)0.0241 (9)0.0109 (6)0.0377 (9)
N40.0325 (7)0.0452 (8)0.0347 (7)0.0036 (6)0.0090 (5)0.0046 (6)
N50.0285 (6)0.0351 (8)0.0362 (7)0.0009 (5)0.0008 (5)0.0006 (6)
N60.0336 (7)0.0782 (12)0.0285 (7)0.0044 (8)0.0030 (6)0.0045 (7)
C70.0268 (7)0.0283 (8)0.0306 (7)0.0015 (6)0.0019 (5)0.0008 (6)
C80.0274 (7)0.0281 (8)0.0292 (7)0.0020 (6)0.0063 (5)0.0004 (6)
C90.0311 (7)0.0284 (8)0.0261 (7)0.0036 (6)0.0014 (5)0.0004 (6)
C100.0252 (7)0.0285 (8)0.0304 (7)0.0011 (6)0.0003 (5)0.0015 (6)
C110.0272 (7)0.0384 (9)0.0309 (7)0.0013 (6)0.0037 (6)0.0041 (6)
C120.0310 (7)0.0390 (9)0.0249 (7)0.0014 (6)0.0025 (6)0.0009 (6)
O150.0363 (6)0.0448 (7)0.0475 (7)0.0010 (5)0.0023 (5)0.0025 (6)
O160.0305 (6)0.0399 (7)0.0488 (7)0.0030 (5)0.0021 (5)0.0031 (6)
N70.0286 (6)0.0364 (8)0.0349 (7)0.0015 (6)0.0044 (5)0.0043 (6)
C150.0371 (9)0.0378 (10)0.0528 (10)0.0087 (7)0.0083 (7)0.0007 (8)
C160.0281 (8)0.0405 (10)0.0484 (10)0.0033 (7)0.0036 (7)0.0052 (8)
C170.0384 (9)0.0521 (11)0.0324 (8)0.0010 (8)0.0077 (7)0.0044 (7)
C180.0436 (10)0.0525 (11)0.0413 (9)0.0077 (8)0.0078 (7)0.0075 (8)
O170.0297 (6)0.0469 (7)0.0504 (7)0.0026 (5)0.0015 (5)0.0081 (6)
O180.0441 (7)0.0416 (8)0.0780 (10)0.0070 (6)0.0221 (7)0.0157 (7)
N80.0267 (6)0.0302 (7)0.0381 (7)0.0011 (5)0.0001 (5)0.0000 (6)
C190.0273 (7)0.0413 (10)0.0512 (10)0.0021 (7)0.0092 (7)0.0068 (8)
C200.0393 (9)0.0429 (10)0.0374 (9)0.0037 (7)0.0086 (7)0.0053 (7)
C210.0363 (8)0.0320 (9)0.0515 (10)0.0001 (7)0.0134 (7)0.0015 (7)
C220.0609 (12)0.0408 (11)0.0476 (10)0.0075 (9)0.0098 (9)0.0069 (8)
Geometric parameters (Å, º) top
O1—C11.2510 (18)C1—C21.444 (2)
O2—N11.222 (2)C1—C61.440 (2)
O3—N11.208 (2)C2—C31.374 (2)
O4—N21.2195 (18)C3—C41.383 (2)
O5—N21.2214 (18)C4—C51.387 (2)
O6—N31.224 (3)C5—C61.358 (2)
O7—N31.215 (2)C3—H30.9300
O8—C71.2484 (18)C5—H50.9300
O9—N41.2115 (18)C7—C81.447 (2)
O10—N41.2147 (18)C7—C121.451 (2)
O11—N51.2212 (17)C8—C91.371 (2)
O12—N51.2228 (18)C9—C101.376 (2)
O13—N61.207 (2)C10—C111.384 (2)
O14—N61.211 (3)C11—C121.366 (2)
O15—C181.423 (2)C9—H90.9300
O16—C161.4166 (18)C11—H110.9300
O15—H150.8200C15—C161.505 (3)
O16—H160.8200C17—C181.500 (3)
O17—C201.423 (2)C15—H15A0.9700
O18—C221.416 (2)C15—H15B0.9700
O17—H170.8200C16—H16A0.9700
O18—H180.8200C16—H16B0.9700
N1—C21.450 (2)C17—H17B0.9700
N2—C41.443 (2)C17—H17A0.9700
N3—C61.456 (2)C18—H18A0.9700
N4—C81.455 (2)C18—H18B0.9700
N5—C101.449 (2)C19—C201.498 (2)
N6—C121.457 (2)C21—C221.497 (3)
N7—C151.484 (2)C19—H19A0.9700
N7—C171.488 (2)C19—H19B0.9700
N7—H7A0.909 (11)C20—H20A0.9700
N7—H7B0.910 (15)C20—H20B0.9700
N8—C211.491 (2)C21—H21A0.9700
N8—C191.486 (2)C21—H21B0.9700
N8—H8B0.906 (16)C22—H22A0.9700
N8—H8A0.908 (15)C22—H22B0.9700
C18—O15—H15109.00N5—C10—C9119.09 (13)
C16—O16—H16109.00C9—C10—C11121.39 (14)
C20—O17—H17109.00N5—C10—C11119.50 (13)
C22—O18—H18109.00C10—C11—C12118.90 (14)
O3—N1—C2118.72 (14)N6—C12—C7119.49 (13)
O2—N1—C2119.37 (14)N6—C12—C11115.90 (13)
O2—N1—O3121.85 (16)C7—C12—C11124.61 (13)
O4—N2—C4118.42 (13)C10—C9—H9120.00
O5—N2—C4118.88 (13)C8—C9—H9120.00
O4—N2—O5122.69 (13)C12—C11—H11121.00
O6—N3—O7124.47 (17)C10—C11—H11121.00
O6—N3—C6117.06 (15)N7—C15—C16111.44 (15)
O7—N3—C6118.47 (17)O16—C16—C15112.17 (14)
O9—N4—C8119.85 (13)N7—C17—C18110.35 (15)
O9—N4—O10121.75 (14)O15—C18—C17112.38 (15)
O10—N4—C8118.39 (12)C16—C15—H15A109.00
O11—N5—O12123.07 (14)N7—C15—H15B109.00
O11—N5—C10118.38 (13)C16—C15—H15B109.00
O12—N5—C10118.55 (13)H15A—C15—H15B108.00
O13—N6—O14121.99 (15)N7—C15—H15A109.00
O14—N6—C12119.52 (15)O16—C16—H16B109.00
O13—N6—C12118.45 (16)C15—C16—H16A109.00
C15—N7—C17114.82 (14)C15—C16—H16B109.00
H7A—N7—H7B111.2 (16)H16A—C16—H16B108.00
C17—N7—H7B109.3 (11)O16—C16—H16A109.00
C15—N7—H7B108.3 (10)N7—C17—H17A110.00
C17—N7—H7A104.8 (12)N7—C17—H17B110.00
C15—N7—H7A108.5 (13)C18—C17—H17B110.00
C19—N8—C21113.83 (12)H17A—C17—H17B108.00
H8A—N8—H8B104.7 (14)C18—C17—H17A110.00
C21—N8—H8B110.7 (10)C17—C18—H18A109.00
C19—N8—H8A109.7 (9)O15—C18—H18A109.00
C19—N8—H8B109.2 (11)C17—C18—H18B109.00
C21—N8—H8A108.3 (10)H18A—C18—H18B108.00
O1—C1—C2124.87 (14)O15—C18—H18B109.00
C2—C1—C6111.67 (13)N8—C19—C20111.13 (13)
O1—C1—C6123.41 (13)O17—C20—C19109.09 (14)
C1—C2—C3124.47 (14)N8—C21—C22110.14 (14)
N1—C2—C1118.70 (13)O18—C22—C21110.70 (16)
N1—C2—C3116.81 (13)N8—C19—H19A109.00
C2—C3—C4118.76 (14)N8—C19—H19B109.00
N2—C4—C3119.74 (13)C20—C19—H19A109.00
N2—C4—C5119.15 (13)C20—C19—H19B109.00
C3—C4—C5121.06 (14)H19A—C19—H19B108.00
C4—C5—C6119.05 (14)O17—C20—H20A110.00
N3—C6—C5116.82 (14)O17—C20—H20B110.00
N3—C6—C1118.16 (13)C19—C20—H20A110.00
C1—C6—C5124.96 (14)C19—C20—H20B110.00
C2—C3—H3121.00H20A—C20—H20B108.00
C4—C3—H3121.00N8—C21—H21A110.00
C6—C5—H5120.00N8—C21—H21B110.00
C4—C5—H5120.00C22—C21—H21A110.00
O8—C7—C8124.58 (14)C22—C21—H21B110.00
C8—C7—C12111.45 (13)H21A—C21—H21B108.00
O8—C7—C12123.96 (13)O18—C22—H22A109.00
N4—C8—C9115.60 (13)O18—C22—H22B109.00
C7—C8—C9124.41 (14)C21—C22—H22A110.00
N4—C8—C7119.97 (13)C21—C22—H22B109.00
C8—C9—C10119.16 (14)H22A—C22—H22B108.00
O2—N1—C2—C3152.93 (17)C6—C1—C2—C30.1 (2)
O2—N1—C2—C128.5 (2)O1—C1—C6—C5177.78 (14)
O3—N1—C2—C1154.31 (17)C2—C1—C6—C50.3 (2)
O3—N1—C2—C324.2 (2)C6—C1—C2—N1178.52 (12)
O5—N2—C4—C3179.11 (14)C1—C2—C3—C41.4 (2)
O4—N2—C4—C30.3 (2)N1—C2—C3—C4179.82 (13)
O4—N2—C4—C5177.73 (14)C2—C3—C4—C52.3 (2)
O5—N2—C4—C51.6 (2)C2—C3—C4—N2179.68 (13)
O6—N3—C6—C537.1 (2)N2—C4—C5—C6179.31 (13)
O7—N3—C6—C140.8 (3)C3—C4—C5—C61.9 (2)
O7—N3—C6—C5141.99 (19)C4—C5—C6—N3177.52 (14)
O6—N3—C6—C1140.14 (18)C4—C5—C6—C10.5 (2)
O9—N4—C8—C724.1 (2)C8—C7—C12—C113.1 (2)
O9—N4—C8—C9157.43 (17)C12—C7—C8—C91.4 (2)
O10—N4—C8—C921.5 (2)O8—C7—C8—N44.0 (2)
O10—N4—C8—C7157.01 (14)C8—C7—C12—N6177.03 (14)
O11—N5—C10—C11179.74 (14)O8—C7—C12—N63.8 (2)
O12—N5—C10—C9178.72 (14)C12—C7—C8—N4176.87 (12)
O12—N5—C10—C110.0 (2)O8—C7—C12—C11176.07 (15)
O11—N5—C10—C91.0 (2)O8—C7—C8—C9177.71 (15)
O14—N6—C12—C11155.08 (17)N4—C8—C9—C10178.84 (13)
O14—N6—C12—C725.0 (2)C7—C8—C9—C100.5 (2)
O13—N6—C12—C1122.5 (2)C8—C9—C10—N5179.71 (13)
O13—N6—C12—C7157.36 (17)C8—C9—C10—C111.0 (2)
C17—N7—C15—C16169.65 (14)C9—C10—C11—C120.5 (2)
C15—N7—C17—C18176.94 (14)N5—C10—C11—C12178.17 (13)
C21—N8—C19—C20174.64 (15)C10—C11—C12—C72.8 (2)
C19—N8—C21—C22177.33 (15)C10—C11—C12—N6177.37 (14)
C2—C1—C6—N3176.61 (14)N7—C15—C16—O1667.6 (2)
O1—C1—C2—C3177.31 (14)N7—C17—C18—O1552.13 (19)
O1—C1—C6—N30.8 (2)N8—C19—C20—O1764.2 (2)
O1—C1—C2—N11.1 (2)N8—C21—C22—O1864.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···O150.91 (1)2.48 (2)2.8235 (19)103 (1)
N7—H7A···O17i0.91 (1)2.43 (2)2.9853 (18)120 (1)
N7—H7A···O18ii0.91 (1)2.21 (1)2.9272 (18)136 (2)
N7—H7B···O8i0.91 (2)1.97 (2)2.8359 (18)157 (2)
N7—H7B···O14i0.91 (2)2.36 (2)2.969 (2)125 (1)
N8—H8A···O15iii0.91 (2)2.05 (2)2.9076 (18)157 (1)
N8—H8B···O180.91 (2)2.56 (2)2.898 (2)103 (1)
N8—H8B···O16iv0.91 (2)1.96 (2)2.8523 (18)170 (2)
O15—H15···O10.822.122.7891 (16)139
O15—H15···O20.822.413.138 (2)149
O16—H16···O17i0.822.242.9822 (18)150
O17—H17···O80.822.002.7323 (14)148
O17—H17···O90.822.272.9079 (19)134
O18—H18···O1iv0.821.962.7453 (18)161
C3—H3···O7iv0.932.593.502 (2)167
C9—H9···O13i0.932.503.425 (2)176
C17—H17A···O12v0.972.503.359 (2)147
C19—H19A···O7iii0.972.453.319 (3)148
C19—H19B···O5vi0.972.443.224 (2)138
C21—H21B···O1iii0.972.333.195 (2)148
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1, z+1; (vi) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···O150.909 (11)2.48 (2)2.8235 (19)102.9 (14)
N7—H7A···O17i0.909 (11)2.426 (19)2.9853 (18)119.9 (14)
N7—H7A···O18ii0.909 (11)2.208 (14)2.9272 (18)135.6 (17)
N7—H7B···O8i0.910 (15)1.974 (16)2.8359 (18)157.4 (15)
N7—H7B···O14i0.910 (15)2.356 (15)2.969 (2)124.6 (13)
N8—H8A···O15iii0.908 (15)2.051 (16)2.9076 (18)156.8 (14)
N8—H8B···O180.906 (16)2.561 (16)2.898 (2)102.7 (12)
N8—H8B···O16iv0.906 (16)1.956 (16)2.8523 (18)169.9 (15)
O15—H15···O10.822.122.7891 (16)139
O15—H15···O20.822.413.138 (2)149
O16—H16···O17i0.822.242.9822 (18)150
O17—H17···O80.822.002.7323 (14)148
O17—H17···O90.822.272.9079 (19)134
O18—H18···O1iv0.821.962.7453 (18)161
C3—H3···O7iv0.932.593.502 (2)167
C9—H9···O13i0.932.503.425 (2)176
C17—H17A···O12v0.972.503.359 (2)147
C19—H19A···O7iii0.972.453.319 (3)148
C19—H19B···O5vi0.972.443.224 (2)138
C21—H21B···O1iii0.972.333.195 (2)148
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1, z+1; (vi) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the data collection and acknowledge the Council of Scientific and Industrial research (CSIR) Government of India, for funding this project [No. 03 (115)/10/EMR-II].

References

First citationAshwell, G. J., Jefferies, G., Hamilton, D. G., Lynch, D. E., Roberts, M. P. S., Bahra, G. S. & Brown, C. R. (1995). Nature (London), 375, 385–388.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIn, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367–369.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOwen, J. R. & White, E. A. D. (1976). J. Mater. Sci. 11, 2165–2169.  CrossRef CAS Web of Science Google Scholar
First citationShakir, M., Kushwaha, S. K., Maurya, K. K., Arora, M. & Bhagavannarayana, G. (2009). J. Cryst. Growth, 311, 3871–3875.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds