organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-1-(3,3-di­methyl-2,6-di­phenyl­piperidin-1-yl)ethanone

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

(Received 24 July 2013; accepted 8 August 2013; online 14 August 2013)

In the title compound, C21H24ClNO, the piperidine ring adopts a chair conformation. The two phenyl rings are inclined to one another by 20.7 (1)°, and are inclined to the mean plane of the four planar atoms of the piperidine ring by 87.64 (10) and 70.8 (1)°. The mol­ecular structure features short intra­molecular C—H⋯Cl and C—H⋯O contacts. In the crystal, there are no significant inter­molecular inter­actions present.

Related literature

For the synthesis of the title compound, see: Venkatraj et al. (2008[Venkatraj, M., Ponnuswamy, S. & Jeyaraman, R. (2008). Indian J. Chem. Sect. B, 47, 411-426.]). For the biological activity of piperdine derivatives, see: Ramalingan et al. (2004[Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527-533.]), We­intraub et al. (2003[Weintraub, P. M., Sabol, J. S., Kane, J. M. & Borcherding, D. R. (2003). Tetrahedron, 59, 2953-2989.]); Ramachandran et al. (2011[Ramachandran, R., Rani, M., Senthan, S., Jeong, Y. T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926-1934.]). For a related structure, see: Aridoss et al. (2011[Aridoss, G., Sundaramoorthy, S., Velmurugan, D. & Jeong, Y. T. (2011). Acta Cryst. E67, o540.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24ClNO

  • Mr = 341.86

  • Triclinic, [P \overline 1]

  • a = 7.5488 (6) Å

  • b = 9.9706 (7) Å

  • c = 12.9887 (10) Å

  • α = 106.783 (4)°

  • β = 93.022 (4)°

  • γ = 102.347 (4)°

  • V = 907.45 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.958

  • 13736 measured reflections

  • 3806 independent reflections

  • 3169 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.131

  • S = 1.02

  • 3806 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cl1 0.98 2.68 3.3736 (16) 128
C13—H13⋯O1 0.98 2.27 2.732 (2) 108

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The piperidine sub-structure is a ubiquitous structural feature of many alkaloids, natural products and drug candidates (Weintraub et al., 2003). The motivation for biological trials arises as piperidine derivatives are an important class of heterocyclic compounds with potent pharmacological and biological activities (Ramalingan et al., 2004; Ramachandran et al., 2011). We report herein on the synthesis and crystal structure of a new piperidine derivative.

In the title molecule, Fig. 1, the phenyl rings are attached to the piperidine ring in the symmetric position through bonds C6—C7 [1.5252( ) Å] and C13—C14 [1.523( ) Å]. These bond distances are comparable with those in a related structure (Aridoss et al., 2011). The two phenyl rings (A = C1-C6 and B = C14-C19) are inclined to one another by 20.7 (1) °. The sum of the bond angles around the N atom of the piperidine ring (360 °) shows sp3 hybridization. The piperidine ring (C7-C10/C13/N1) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) of Q(2) = 0.0311 (16) Å, ϕ(2) = 135 (3) ° Q(3) = 0.5222 (16) Å with Puckering Amplitude (Q) = 0.5231 (16) Å, θ = 3.42 (18) °, π = 135 (3) °. The two phenyl rings (A and B) are inclined to the mean plane of the four planar atoms (N1/C13/C9/C8) of piperidine ring by 87.64 (10) and 70.8 (1) °, respectively.

The molecule is stabilized by short intramolecular C—H···Cl and C—H···O contacts (Table 1).

In the crystal, the molecules stack along the c axis direction without any specific interactions (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Venkatraj et al. (2008). For the biological activity of piperdine derivatives, see: Ramalingan et al. (2004), Weintraub et al. (2003); Ramachandran et al. (2011). For a related structure, see: Aridoss et al. (2011). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized according to the published procedure (Venkatraj et al., 2008). A mixture of piperidine (5 mmol), chloroacetylchloride (20 mmol) and triethylamine (20 mmol) in anhydrous benzene (20 ml) was stirred at rt for 7 h. The precipitated ammonium salt was washed with water (4 × 10 ml) and the benzene solution was dried and concentrated. The pasty mass was purified by crystallization from ethanol giving colourless block-like crystals [M.p. 377-379 K].

Refinement top

H atoms were positioned geometrically and treated as riding atoms: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. The dashed lines indicate the short intramolecular C-H···O and C-H···Cl contacts (see Table 1 for details).
2-Chloro-1-(3,3-dimethyl-2,6-diphenylpiperidin-1-yl)ethanone top
Crystal data top
C21H24ClNOZ = 2
Mr = 341.86F(000) = 364
Triclinic, P1Dx = 1.251 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5488 (6) ÅCell parameters from 3806 reflections
b = 9.9706 (7) Åθ = 1.7–26.7°
c = 12.9887 (10) ŵ = 0.22 mm1
α = 106.783 (4)°T = 293 K
β = 93.022 (4)°Block, colourless
γ = 102.347 (4)°0.22 × 0.20 × 0.20 mm
V = 907.45 (12) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3806 independent reflections
Radiation source: fine-focus sealed tube3169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scanθmax = 26.7°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.953, Tmax = 0.958k = 1212
13736 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.068P)2 + 0.2438P]
where P = (Fo2 + 2Fc2)/3
3806 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C21H24ClNOγ = 102.347 (4)°
Mr = 341.86V = 907.45 (12) Å3
Triclinic, P1Z = 2
a = 7.5488 (6) ÅMo Kα radiation
b = 9.9706 (7) ŵ = 0.22 mm1
c = 12.9887 (10) ÅT = 293 K
α = 106.783 (4)°0.22 × 0.20 × 0.20 mm
β = 93.022 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3806 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3169 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.958Rint = 0.026
13736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
3806 reflectionsΔρmin = 0.38 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5516 (3)0.48807 (17)0.32195 (15)0.0580 (4)
H10.53320.50090.39410.070*
C20.5903 (3)0.6061 (2)0.2849 (2)0.0786 (6)
H20.59810.69770.33220.094*
C30.6172 (3)0.5900 (2)0.1796 (2)0.0799 (7)
H30.64620.67010.15530.096*
C40.6009 (3)0.4528 (2)0.10924 (17)0.0667 (5)
H40.61640.44050.03680.080*
C50.5619 (2)0.33496 (17)0.14573 (13)0.0482 (4)
H50.55030.24320.09760.058*
C60.53966 (19)0.35088 (14)0.25340 (11)0.0391 (3)
C70.49478 (19)0.21737 (14)0.29103 (11)0.0368 (3)
H70.36590.17030.26480.044*
C80.5168 (2)0.24431 (17)0.41304 (12)0.0457 (3)
H8A0.45810.32060.44710.055*
H8B0.45530.15760.42840.055*
C90.7153 (2)0.28648 (18)0.46186 (11)0.0490 (4)
H9A0.72090.29550.53840.059*
H9B0.77280.37990.45520.059*
C100.8214 (2)0.17659 (16)0.40704 (12)0.0455 (3)
C110.7480 (3)0.0335 (2)0.43042 (16)0.0647 (5)
H11A0.82420.03150.40360.097*
H11B0.62540.00880.39510.097*
H11C0.74860.05140.50710.097*
C121.0240 (3)0.2299 (2)0.45228 (16)0.0638 (5)
H12A1.07140.32300.44390.096*
H12B1.09010.16300.41360.096*
H12C1.03740.23710.52770.096*
C130.79807 (19)0.14287 (14)0.28205 (11)0.0386 (3)
H130.83130.05040.25400.046*
C140.91734 (19)0.24389 (16)0.23129 (12)0.0424 (3)
C150.9668 (2)0.39355 (18)0.27324 (15)0.0541 (4)
H150.93220.43860.33970.065*
C161.0665 (3)0.4759 (2)0.21753 (19)0.0718 (6)
H161.09800.57590.24640.086*
C171.1192 (3)0.4109 (3)0.1199 (2)0.0850 (7)
H171.18460.46690.08200.102*
C181.0757 (3)0.2639 (3)0.07813 (18)0.0800 (7)
H181.11310.21970.01240.096*
C190.9761 (2)0.1810 (2)0.13376 (14)0.0572 (4)
H190.94790.08100.10510.069*
C200.5286 (2)0.00943 (15)0.15914 (12)0.0437 (3)
C210.3245 (2)0.05018 (19)0.12339 (14)0.0570 (4)
H21A0.29730.12660.05460.068*
H21B0.28710.03260.11290.068*
N10.60093 (15)0.11277 (11)0.24134 (9)0.0357 (3)
O10.62001 (18)0.08988 (13)0.11198 (11)0.0661 (4)
Cl10.19890 (8)0.10917 (6)0.22079 (5)0.0865 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0763 (12)0.0397 (8)0.0540 (10)0.0194 (8)0.0015 (8)0.0055 (7)
C20.1003 (17)0.0380 (9)0.0930 (16)0.0173 (9)0.0070 (12)0.0162 (9)
C30.0786 (14)0.0593 (11)0.1160 (19)0.0119 (10)0.0009 (13)0.0540 (12)
C40.0679 (12)0.0803 (13)0.0706 (12)0.0237 (10)0.0102 (9)0.0470 (10)
C50.0533 (9)0.0506 (8)0.0447 (8)0.0168 (7)0.0043 (7)0.0178 (7)
C60.0399 (7)0.0361 (7)0.0401 (7)0.0114 (6)0.0008 (6)0.0089 (5)
C70.0368 (7)0.0348 (6)0.0361 (7)0.0092 (5)0.0055 (5)0.0062 (5)
C80.0507 (9)0.0489 (8)0.0375 (7)0.0123 (7)0.0134 (6)0.0118 (6)
C90.0589 (10)0.0537 (9)0.0302 (7)0.0081 (7)0.0029 (6)0.0112 (6)
C100.0470 (8)0.0481 (8)0.0422 (8)0.0078 (6)0.0021 (6)0.0189 (6)
C110.0736 (12)0.0623 (10)0.0682 (11)0.0131 (9)0.0026 (9)0.0388 (9)
C120.0537 (10)0.0718 (11)0.0631 (11)0.0091 (9)0.0133 (8)0.0242 (9)
C130.0382 (7)0.0345 (6)0.0423 (7)0.0101 (5)0.0032 (6)0.0099 (5)
C140.0326 (7)0.0518 (8)0.0452 (8)0.0102 (6)0.0038 (6)0.0186 (6)
C150.0470 (9)0.0522 (9)0.0629 (10)0.0047 (7)0.0092 (7)0.0225 (8)
C160.0549 (11)0.0711 (12)0.0933 (15)0.0019 (9)0.0085 (10)0.0439 (11)
C170.0565 (12)0.121 (2)0.0891 (16)0.0019 (12)0.0158 (11)0.0653 (15)
C180.0545 (11)0.126 (2)0.0589 (11)0.0107 (12)0.0201 (9)0.0330 (12)
C190.0432 (9)0.0762 (11)0.0496 (9)0.0142 (8)0.0084 (7)0.0149 (8)
C200.0495 (8)0.0341 (7)0.0413 (7)0.0065 (6)0.0041 (6)0.0049 (6)
C210.0521 (10)0.0507 (9)0.0508 (9)0.0007 (7)0.0027 (7)0.0011 (7)
N10.0376 (6)0.0304 (5)0.0363 (6)0.0075 (4)0.0030 (5)0.0067 (4)
O10.0637 (8)0.0485 (6)0.0685 (8)0.0174 (6)0.0048 (6)0.0115 (6)
Cl10.0704 (4)0.0732 (4)0.1052 (5)0.0123 (3)0.0181 (3)0.0310 (3)
Geometric parameters (Å, º) top
C1—C61.381 (2)C11—H11B0.9600
C1—C21.377 (3)C11—H11C0.9600
C1—H10.9300C12—H12A0.9600
C2—C31.361 (3)C12—H12B0.9600
C2—H20.9300C12—H12C0.9600
C3—C41.384 (3)C13—N11.4896 (17)
C3—H30.9300C13—C141.523 (2)
C4—C51.371 (2)C13—H130.9800
C4—H40.9300C14—C191.384 (2)
C5—C61.385 (2)C14—C151.391 (2)
C5—H50.9300C15—C161.378 (3)
C6—C71.5252 (19)C15—H150.9300
C7—N11.4729 (17)C16—C171.369 (4)
C7—C81.5228 (19)C16—H160.9300
C7—H70.9800C17—C181.367 (4)
C8—C91.517 (2)C17—H170.9300
C8—H8A0.9700C18—C191.381 (3)
C8—H8B0.9700C18—H180.9300
C9—C101.528 (2)C19—H190.9300
C9—H9A0.9700C20—O11.2214 (19)
C9—H9B0.9700C20—N11.3510 (17)
C10—C121.531 (2)C20—C211.518 (2)
C10—C111.538 (2)C21—Cl11.779 (2)
C10—C131.552 (2)C21—H21A0.9700
C11—H11A0.9600C21—H21B0.9700
C6—C1—C2120.83 (18)C10—C11—H11C109.5
C6—C1—H1119.6H11A—C11—H11C109.5
C2—C1—H1119.6H11B—C11—H11C109.5
C3—C2—C1120.67 (18)C10—C12—H12A109.5
C3—C2—H2119.7C10—C12—H12B109.5
C1—C2—H2119.7H12A—C12—H12B109.5
C2—C3—C4119.18 (17)C10—C12—H12C109.5
C2—C3—H3120.4H12A—C12—H12C109.5
C4—C3—H3120.4H12B—C12—H12C109.5
C5—C4—C3120.35 (19)N1—C13—C14111.88 (11)
C5—C4—H4119.8N1—C13—C10109.68 (11)
C3—C4—H4119.8C14—C13—C10119.26 (12)
C4—C5—C6120.80 (16)N1—C13—H13104.9
C4—C5—H5119.6C14—C13—H13104.9
C6—C5—H5119.6C10—C13—H13104.9
C1—C6—C5118.13 (14)C19—C14—C15117.72 (16)
C1—C6—C7122.40 (14)C19—C14—C13116.89 (14)
C5—C6—C7119.42 (12)C15—C14—C13125.35 (14)
N1—C7—C8108.53 (11)C16—C15—C14120.80 (18)
N1—C7—C6111.44 (11)C16—C15—H15119.6
C8—C7—C6116.13 (11)C14—C15—H15119.6
N1—C7—H7106.7C15—C16—C17120.2 (2)
C8—C7—H7106.7C15—C16—H16119.9
C6—C7—H7106.7C17—C16—H16119.9
C9—C8—C7112.77 (12)C18—C17—C16120.09 (19)
C9—C8—H8A109.0C18—C17—H17120.0
C7—C8—H8A109.0C16—C17—H17120.0
C9—C8—H8B109.0C17—C18—C19119.9 (2)
C7—C8—H8B109.0C17—C18—H18120.1
H8A—C8—H8B107.8C19—C18—H18120.1
C8—C9—C10112.41 (12)C14—C19—C18121.28 (19)
C8—C9—H9A109.1C14—C19—H19119.4
C10—C9—H9A109.1C18—C19—H19119.4
C8—C9—H9B109.1O1—C20—N1123.03 (14)
C10—C9—H9B109.1O1—C20—C21117.96 (13)
H9A—C9—H9B107.9N1—C20—C21119.00 (13)
C12—C10—C9110.51 (14)C20—C21—Cl1111.42 (12)
C12—C10—C11107.52 (13)C20—C21—H21A109.3
C9—C10—C11109.57 (14)Cl1—C21—H21A109.3
C12—C10—C13110.43 (14)C20—C21—H21B109.3
C9—C10—C13111.76 (11)Cl1—C21—H21B109.3
C11—C10—C13106.88 (13)H21A—C21—H21B108.0
C10—C11—H11A109.5C20—N1—C7123.13 (12)
C10—C11—H11B109.5C20—N1—C13117.91 (11)
H11A—C11—H11B109.5C7—N1—C13118.95 (10)
C6—C1—C2—C30.2 (3)C10—C13—C14—C19142.88 (14)
C1—C2—C3—C41.5 (4)N1—C13—C14—C1590.66 (17)
C2—C3—C4—C51.4 (3)C10—C13—C14—C1539.2 (2)
C3—C4—C5—C60.5 (3)C19—C14—C15—C161.8 (2)
C2—C1—C6—C52.0 (3)C13—C14—C15—C16176.05 (15)
C2—C1—C6—C7179.24 (17)C14—C15—C16—C170.4 (3)
C4—C5—C6—C12.2 (2)C15—C16—C17—C181.1 (3)
C4—C5—C6—C7179.49 (15)C16—C17—C18—C191.0 (3)
C1—C6—C7—N1141.81 (15)C15—C14—C19—C181.9 (2)
C5—C6—C7—N141.02 (17)C13—C14—C19—C18176.13 (16)
C1—C6—C7—C816.9 (2)C17—C18—C19—C140.6 (3)
C5—C6—C7—C8165.97 (13)O1—C20—C21—Cl1107.89 (16)
N1—C7—C8—C952.72 (16)N1—C20—C21—Cl171.80 (17)
C6—C7—C8—C973.70 (16)O1—C20—N1—C7173.64 (14)
C7—C8—C9—C1054.77 (17)C21—C20—N1—C76.7 (2)
C8—C9—C10—C12175.17 (13)O1—C20—N1—C135.6 (2)
C8—C9—C10—C1166.52 (16)C21—C20—N1—C13174.10 (13)
C8—C9—C10—C1351.76 (17)C8—C7—N1—C20126.99 (14)
C12—C10—C13—N1171.49 (12)C6—C7—N1—C20103.91 (15)
C9—C10—C13—N148.04 (15)C8—C7—N1—C1353.80 (15)
C11—C10—C13—N171.84 (15)C6—C7—N1—C1375.29 (14)
C12—C10—C13—C1440.64 (18)C14—C13—N1—C2096.58 (15)
C9—C10—C13—C1482.81 (16)C10—C13—N1—C20128.75 (13)
C11—C10—C13—C14157.31 (13)C14—C13—N1—C782.66 (14)
N1—C13—C14—C1987.25 (15)C10—C13—N1—C752.00 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl10.982.683.3736 (16)128
C13—H13···O10.982.272.732 (2)108
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl10.982.683.3736 (16)128
C13—H13···O10.982.272.732 (2)108
 

Acknowledgements

SP and SA thank the UGC, New Delhi, for financial assistance in the form of a Major Research Project. The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data collection and computer facilities.

References

First citationAridoss, G., Sundaramoorthy, S., Velmurugan, D. & Jeong, Y. T. (2011). Acta Cryst. E67, o540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRamachandran, R., Rani, M., Senthan, S., Jeong, Y. T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926–1934.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRamalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527–533.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatraj, M., Ponnuswamy, S. & Jeyaraman, R. (2008). Indian J. Chem. Sect. B, 47, 411–426.  Google Scholar
First citationWeintraub, P. M., Sabol, J. S., Kane, J. M. & Borcherding, D. R. (2003). Tetrahedron, 59, 2953–2989.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds