organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1435-o1436

A second polymorph of bis­­(tri­phenyl-λ5-phosphanyl­­idene)ammonium chloride–boric acid adduct

aFachbereich C - Anorganische Chemie, Bergische Universität Wuppertal, Gausssstrasse 20, 42119 Wuppertal, Germany
*Correspondence e-mail: carsten.jenne@uni-wuppertal.de

(Received 24 July 2013; accepted 26 July 2013; online 17 August 2013)

The title crystal structure is a new triclinic polymorph of [(Ph3P)2N]Cl·(B(OH)3) or C36H30NP2+·Cl·BH3O3. The crystal structure of the ortho­rhom­bic polymorph was reported by [Andrews et al. (1983[Andrews, S. J., Robb, D. A. & Welch, A. J. (1983). Acta Cryst. C39, 880-882.]). Acta Cryst. C39, 880–882]. In the crystal, the [(Ph3P)2N]+ cations have no significant contacts to the chloride ions nor to the boric acid mol­ecules. This is indicated by the P—N—P angle of 137.28 (8)°, which is in the expected range for a free [(Ph3P)2N]+ cation. The boric acid mol­ecules form inversion dimers via pairs of O—H⋯O hydrogen bonds, and each boric acid mol­ecule forms two additional O—H⋯Cl hydrogen bonds to one chloride anion. These entities fill channels, created by the [(Ph3P)2N]+ cations, along the c-axis direction.

Related literature

For the ortho­rhom­bic polymorph of the title compound, see: Andrews et al. (1983[Andrews, S. J., Robb, D. A. & Welch, A. J. (1983). Acta Cryst. C39, 880-882.]). Other bis­(tri­phenyl­phosphine)iminium halide structures include [(Ph3P)2N]Cl (Knapp & Uzun, 2010a[Knapp, C. & Uzun, R. (2010a). Acta Cryst. E66, o3185.]), [(Ph3P)2N]Br·CH3CN (Knapp & Uzun, 2010b[Knapp, C. & Uzun, R. (2010b). Acta Cryst. E66, o3186.]), [(Ph3P)2N]I (Beckett et al., 2010[Beckett, M. A., Horton, P. N., Hursthouse, M. B. & Timmis, J. L. (2010). Acta Cryst. E66, o319.]) and [(Ph3P)2N][ClHCl] (Gellhaar & Knapp, 2011[Gellhaar, J. & Knapp, C. (2011). Acta Cryst. E67, o2546.]). For a discussion of the [(Ph3P)2N]+ cation, see: Lewis & Dance (2000[Lewis, G. R. & Dance, I. (2000). J. Chem. Soc. Dalton Trans. pp. 299-306.]). For a theoretical study on boric acid dimers, see: Larkin et al. (2006[Larkin, J. D., Bhat, K. L., Markham, G. D., Brooks, B. R., Schaefer, H. F. & Bock, C. W. (2006). J. Phys. Chem. A, 110, 10633-10642.]). For an overview of the different polymorphs of boric acid, see: Shuvalov & Burns (2003[Shuvalov, R. R. & Burns, P. C. (2003). Acta Cryst. C59, i47-i49.]).

[Scheme 1]

Experimental

Crystal data
  • C36H30NP2+·Cl·BH3O3

  • Mr = 635.83

  • Triclinic, [P \overline 1]

  • a = 10.7720 (2) Å

  • b = 11.4243 (3) Å

  • c = 14.3507 (4) Å

  • α = 107.244 (2)°

  • β = 105.648 (2)°

  • γ = 93.2742 (19)°

  • V = 1605.99 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 150 K

  • 0.18 × 0.14 × 0.10 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.256, Tmax = 1.000

  • 14941 measured reflections

  • 8731 independent reflections

  • 6913 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.098

  • S = 1.04

  • 8731 reflections

  • 409 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2i 0.86 (3) 1.90 (3) 2.7585 (19) 180 (3)
O2—H2O⋯Cl1 0.79 (3) 2.30 (3) 3.0595 (14) 161 (3)
O1—H1O⋯Cl1 0.77 (3) 2.42 (3) 3.1757 (17) 166 (3)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg et al., 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

Often the [(Ph3P)2N]+ cation is partnered by a bulky anion, while crystal structures containing small anions and especially halides are rare. Only very recently, the crystal structures of the solvate-free halides [(Ph3P)2N]I (Beckett et al., 2010) and [(Ph3P)2N]Cl (Knapp & Uzun, 2010a) and the acetonitrile solvate [(Ph3P)2N]Br.CH3CN (Knapp & Uzun, 2010b) and the dichloride [(Ph3P)2N][ClHCl] (Gellhaar & Knapp, 2011) were published.

In the course of our investigations on the crystal structures of [(Ph3P)2N]+ salts with small counter anions, colourless single crystals of [(Ph3P)2N]Cl.(B(OH)3) were isolated from an acetonitrile/diethyl ether solution. This compound is formed by hydrolysis of [(Ph3P)2N][BCl4]. The dichloride [(Ph3P)2N][ClHCl] (Gellhaar & Knapp, 2011) was identified as a by-product of this hydrolysis reaction by single-crystal X-ray diffraction.

Surprisingly, the determined crystal structure of [(Ph3P)2N]Cl.(B(OH)3), Fig. 1, is distinctly different from the crystal structure (orthorhombic, Pbca, a = 19.010 (3), b= 18.869 (4), c= 18.432 (6) Å), which was reported previously for this compound (Andrews et al., 1983) and thus represents a second polymorph. It can be assumed that different crystallization conditions, dichloromethane/n-hexane (Andrews et al., 1983) versus acetonitrile/diethyl ether (this work), caused the crystallization of different polymorphs. The two polymorphs show different orientations of the phenyl groups of the [(Ph3P)2N]+ cation and a different orientation of the anionic and cationic parts relative to each other in the crystal lattice. The herein reported polymorph has a higher density (1.315 Mg m-3, T =150 K) than the structure reported by Andrews et al. (1.277 Mg m-3, T=291 k).

The bis(triphenyl-λ5-phosphanylidene)ammonium cation shows bond angles (P—N—P angle [137.28 (8)°]) and bond lengths (P—N (1.5836 (12) and 1.5839 (12) Å) and P—C distances (1.7951 (15)–1.8004 (16) Å) in the expected range (Lewis & Dance, 2000).

In the crystal, the boric acid molecules form inversion dimers via a pair of O—H···O hydrogen bonds (Fig. 2 and Table 1). Each boric acid molecule forms two additional O—H···Cl hydrogen bonds to one chloride ion (Fig. 2 and Table 1). This part of the crystal structure is very similar to the boric acid dimer in the orthorhombic polymorph.

Related literature top

For the orthorhombic polymorph of the title compound, see: Andrews et al. (1983). Other bis(triphenylphosphine)iminium halide structures include [(Ph3P)2N]Cl (Knapp & Uzun, 2010a), [(Ph3P)2N]Br.CH3CN (Knapp & Uzun, 2010b), [(Ph3P)2N]I (Beckett et al., 2010) and [(Ph3P)2N][ClHCl] (Gellhaar & Knapp, 2011). For a discussion of the [(Ph3P)2N]+ cation, see: Lewis & Dance (2000). For a theoretical study on boric acid dimers, see: Larkin et al. (2006). For an overview of the different polymorphs of boric acid, see: Shuvalov & Burns (2003).

Experimental top

Single crystals of the title compound, suitable for X-ray diffraction, were obtained as an hydrolysis product of [(Ph3P)2N][BCl4] by layering an acetonitrile solution with diethyl ether.

Refinement top

All hydrogen atoms attached to the aromatic rings were placed in calculated positions (C—H = 0.93 Å) and refined as riding atoms, with Uiso(H) = 1.2 Ueq(C). The oxygen-bonded H atoms were located in a difference Fourier map and freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg et al., 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The O-H···Cl hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. View of the dimeric moiety consisting of two chloride anions and two boric acid molecules, which is linked by O—H···O and O—H···Cl hydrogen bonds [dashed lines; see Table 1 for details; symmetry code: (i) -x, -y + 1, -z + 1].
Bis(triphenyl-λ5-phosphanylidene)ammonium chloride–boric acid (1/1) top
Crystal data top
C36H30NP2+·Cl·BH3O3Z = 2
Mr = 635.83F(000) = 664
Triclinic, P1Dx = 1.315 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7720 (2) ÅCell parameters from 6049 reflections
b = 11.4243 (3) Åθ = 30.0–1.9°
c = 14.3507 (4) ŵ = 0.26 mm1
α = 107.244 (2)°T = 150 K
β = 105.648 (2)°Block, colourless
γ = 93.2742 (19)°0.18 × 0.14 × 0.10 mm
V = 1605.99 (7) Å3
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
8731 independent reflections
Radiation source: fine-focus sealed tube6913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.2705 pixels mm-1θmax = 30.9°, θmin = 1.9°
ω scansh = 1410
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1415
Tmin = 0.256, Tmax = 1.000l = 2020
14941 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.4455P]
where P = (Fo2 + 2Fc2)/3
8731 reflections(Δ/σ)max = 0.001
409 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C36H30NP2+·Cl·BH3O3γ = 93.2742 (19)°
Mr = 635.83V = 1605.99 (7) Å3
Triclinic, P1Z = 2
a = 10.7720 (2) ÅMo Kα radiation
b = 11.4243 (3) ŵ = 0.26 mm1
c = 14.3507 (4) ÅT = 150 K
α = 107.244 (2)°0.18 × 0.14 × 0.10 mm
β = 105.648 (2)°
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
8731 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
6913 reflections with I > 2σ(I)
Tmin = 0.256, Tmax = 1.000Rint = 0.023
14941 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.50 e Å3
8731 reflectionsΔρmin = 0.35 e Å3
409 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All hydrogen atoms attached to the aromatic rings were placed in calculated positions (C—H = 0.93 Å) and refined as riding atoms, with Uiso(H) = 1.2 Ueq(C). The oxygen-bonded hydrogen atoms were taken from the Fourier map and were refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P20.64033 (4)0.84597 (3)0.28032 (3)0.01673 (9)
P10.49238 (4)0.60975 (3)0.26011 (3)0.01533 (8)
N10.61330 (12)0.70542 (11)0.27330 (10)0.0187 (3)
C70.34257 (14)0.61496 (13)0.16954 (11)0.0171 (3)
C190.73612 (14)0.85848 (13)0.19766 (11)0.0177 (3)
C250.73552 (15)0.94085 (14)0.40702 (11)0.0206 (3)
C10.53257 (14)0.45674 (13)0.21385 (11)0.0173 (3)
C130.45827 (14)0.62377 (13)0.37872 (11)0.0178 (3)
C60.43562 (16)0.35398 (14)0.17729 (12)0.0229 (3)
H60.34780.36490.17340.027*
C210.86818 (16)0.98473 (16)0.14146 (13)0.0263 (3)
H210.91091.06340.14860.032*
C100.11519 (16)0.62679 (15)0.02598 (12)0.0253 (3)
H100.03780.63130.02300.030*
C80.32793 (15)0.56684 (14)0.06508 (12)0.0217 (3)
H80.39620.53030.04270.026*
C240.74587 (15)0.75343 (14)0.12204 (12)0.0225 (3)
H240.70520.67430.11570.027*
C200.79778 (15)0.97397 (14)0.20726 (12)0.0219 (3)
H200.79161.04570.25920.026*
C260.82218 (15)0.88565 (15)0.46632 (12)0.0237 (3)
H260.82550.79940.44120.028*
C120.24218 (15)0.66948 (15)0.20093 (12)0.0225 (3)
H120.25130.70330.27180.027*
C30.69251 (16)0.32136 (15)0.18846 (13)0.0265 (3)
H30.78010.30980.19180.032*
C140.35051 (15)0.55110 (15)0.38051 (12)0.0242 (3)
H140.29240.49590.31860.029*
C40.59580 (17)0.21979 (14)0.15264 (13)0.0275 (4)
H40.61740.13850.13200.033*
C320.43908 (15)0.89028 (15)0.13559 (13)0.0252 (3)
H320.48430.85320.08870.030*
C20.66115 (15)0.44051 (14)0.21962 (12)0.0212 (3)
H20.72730.51050.24470.025*
C180.54362 (17)0.70184 (14)0.46993 (12)0.0261 (3)
H180.61750.75080.46930.031*
C160.41352 (17)0.63913 (15)0.56316 (13)0.0271 (3)
H160.39730.64570.62620.033*
C110.12891 (16)0.67475 (16)0.12927 (13)0.0274 (3)
H110.06040.71150.15120.033*
C150.32914 (16)0.56022 (16)0.47325 (13)0.0275 (3)
H150.25560.51150.47470.033*
C230.81557 (15)0.76481 (16)0.05559 (12)0.0261 (3)
H230.82170.69330.00340.031*
C310.49389 (15)0.90944 (13)0.23950 (12)0.0211 (3)
C360.42608 (17)0.96328 (15)0.30771 (14)0.0295 (4)
H360.46090.97430.37850.035*
C90.21448 (16)0.57221 (15)0.00586 (12)0.0255 (3)
H90.20460.53820.07690.031*
C220.87572 (15)0.87948 (16)0.06513 (13)0.0266 (3)
H220.92260.88650.01920.032*
C290.81699 (19)1.13927 (16)0.53898 (14)0.0339 (4)
H290.81651.22610.56370.041*
C280.90074 (18)1.08346 (18)0.59779 (14)0.0364 (4)
H280.95691.13200.66330.044*
C50.46804 (17)0.23583 (14)0.14666 (13)0.0277 (4)
H50.40220.16560.12140.033*
C270.90334 (17)0.95721 (18)0.56189 (13)0.0320 (4)
H270.96100.91950.60300.038*
C300.73351 (17)1.06866 (14)0.44378 (13)0.0267 (3)
H300.67521.10690.40360.032*
C170.52151 (19)0.70874 (15)0.56217 (13)0.0310 (4)
H170.58090.76150.62460.037*
C350.30674 (18)1.00078 (16)0.27085 (18)0.0386 (5)
H350.26151.03970.31730.046*
C340.25385 (17)0.98210 (16)0.16809 (17)0.0383 (5)
H340.17271.00840.14390.046*
C330.31852 (17)0.92524 (17)0.10030 (16)0.0337 (4)
H330.28050.90990.02910.040*
Cl10.08761 (5)0.28422 (4)0.19113 (3)0.03497 (11)
O20.01672 (13)0.41861 (12)0.38407 (10)0.0308 (3)
O30.04705 (13)0.61727 (12)0.42973 (11)0.0362 (3)
O10.00992 (14)0.54155 (15)0.27226 (11)0.0380 (3)
B10.01301 (18)0.52440 (19)0.36165 (15)0.0277 (4)
H2O0.036 (2)0.370 (2)0.340 (2)0.063 (8)*
H1O0.009 (3)0.481 (3)0.243 (2)0.065 (9)*
H3O0.038 (2)0.606 (2)0.487 (2)0.066 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P20.01776 (18)0.01352 (17)0.02030 (19)0.00226 (13)0.00854 (15)0.00497 (14)
P10.01602 (18)0.01386 (16)0.01754 (18)0.00255 (13)0.00670 (14)0.00562 (13)
N10.0181 (6)0.0151 (6)0.0242 (6)0.0017 (5)0.0081 (5)0.0069 (5)
C70.0170 (7)0.0149 (6)0.0208 (7)0.0015 (5)0.0064 (6)0.0076 (5)
C190.0159 (7)0.0189 (7)0.0203 (7)0.0039 (5)0.0065 (6)0.0080 (6)
C250.0227 (8)0.0183 (7)0.0215 (7)0.0009 (6)0.0119 (6)0.0033 (6)
C10.0201 (7)0.0158 (6)0.0176 (7)0.0029 (5)0.0069 (6)0.0065 (5)
C130.0197 (7)0.0173 (7)0.0198 (7)0.0060 (5)0.0081 (6)0.0086 (6)
C60.0221 (8)0.0191 (7)0.0272 (8)0.0013 (6)0.0073 (6)0.0075 (6)
C210.0246 (8)0.0280 (8)0.0301 (9)0.0000 (6)0.0090 (7)0.0149 (7)
C100.0215 (8)0.0283 (8)0.0256 (8)0.0030 (6)0.0031 (7)0.0118 (7)
C80.0243 (8)0.0222 (7)0.0212 (7)0.0064 (6)0.0105 (6)0.0071 (6)
C240.0208 (7)0.0211 (7)0.0250 (8)0.0024 (6)0.0095 (6)0.0044 (6)
C200.0231 (8)0.0198 (7)0.0243 (8)0.0021 (6)0.0081 (6)0.0086 (6)
C260.0226 (8)0.0237 (8)0.0248 (8)0.0003 (6)0.0108 (6)0.0051 (6)
C120.0221 (8)0.0272 (8)0.0206 (7)0.0071 (6)0.0089 (6)0.0084 (6)
C30.0264 (8)0.0263 (8)0.0317 (9)0.0113 (7)0.0141 (7)0.0104 (7)
C140.0195 (7)0.0304 (8)0.0240 (8)0.0008 (6)0.0067 (6)0.0109 (7)
C40.0391 (10)0.0159 (7)0.0297 (9)0.0104 (7)0.0134 (8)0.0066 (6)
C320.0217 (8)0.0224 (7)0.0354 (9)0.0054 (6)0.0098 (7)0.0138 (7)
C20.0205 (7)0.0198 (7)0.0247 (8)0.0032 (6)0.0088 (6)0.0073 (6)
C180.0329 (9)0.0198 (7)0.0246 (8)0.0035 (6)0.0090 (7)0.0067 (6)
C160.0387 (10)0.0288 (8)0.0242 (8)0.0148 (7)0.0174 (7)0.0146 (7)
C110.0217 (8)0.0353 (9)0.0290 (9)0.0107 (7)0.0097 (7)0.0126 (7)
C150.0235 (8)0.0371 (9)0.0307 (9)0.0070 (7)0.0129 (7)0.0190 (7)
C230.0217 (8)0.0320 (8)0.0251 (8)0.0071 (7)0.0111 (7)0.0058 (7)
C310.0203 (7)0.0145 (6)0.0319 (8)0.0035 (5)0.0122 (7)0.0080 (6)
C360.0273 (9)0.0231 (8)0.0404 (10)0.0021 (7)0.0186 (8)0.0064 (7)
C90.0313 (9)0.0259 (8)0.0196 (8)0.0051 (7)0.0074 (7)0.0077 (6)
C220.0201 (8)0.0396 (9)0.0264 (8)0.0059 (7)0.0109 (7)0.0160 (7)
C290.0424 (11)0.0232 (8)0.0322 (9)0.0050 (7)0.0223 (8)0.0050 (7)
C280.0334 (10)0.0421 (10)0.0231 (9)0.0109 (8)0.0128 (8)0.0055 (8)
C50.0313 (9)0.0164 (7)0.0326 (9)0.0011 (6)0.0086 (7)0.0058 (6)
C270.0265 (9)0.0433 (10)0.0245 (8)0.0006 (7)0.0084 (7)0.0088 (7)
C300.0313 (9)0.0202 (7)0.0301 (9)0.0017 (6)0.0165 (7)0.0042 (6)
C170.0456 (11)0.0235 (8)0.0199 (8)0.0004 (7)0.0083 (8)0.0040 (6)
C350.0281 (9)0.0234 (8)0.0701 (14)0.0062 (7)0.0302 (10)0.0091 (9)
C340.0204 (8)0.0271 (9)0.0725 (15)0.0071 (7)0.0147 (9)0.0223 (9)
C330.0240 (8)0.0301 (9)0.0498 (11)0.0045 (7)0.0061 (8)0.0213 (8)
Cl10.0384 (2)0.0343 (2)0.0308 (2)0.00153 (18)0.01415 (19)0.00595 (18)
O20.0378 (7)0.0278 (6)0.0289 (7)0.0064 (5)0.0132 (6)0.0089 (5)
O30.0450 (8)0.0345 (7)0.0383 (8)0.0161 (6)0.0178 (6)0.0185 (6)
O10.0394 (8)0.0480 (9)0.0370 (8)0.0125 (7)0.0168 (6)0.0230 (7)
B10.0202 (9)0.0330 (10)0.0306 (10)0.0019 (7)0.0061 (8)0.0132 (8)
Geometric parameters (Å, º) top
P1—N11.5839 (12)C4—C51.382 (2)
P2—N11.5836 (12)C32—H320.9500
P2—C191.7990 (15)C32—C311.392 (2)
P2—C251.7976 (16)C32—C331.388 (2)
P2—C311.8004 (16)C2—H20.9500
P1—C71.7951 (15)C18—H180.9500
P1—C11.7993 (14)C18—C171.388 (2)
P1—C131.8001 (14)C16—H160.9500
C7—C81.396 (2)C16—C151.374 (2)
C7—C121.391 (2)C16—C171.377 (2)
C19—C241.390 (2)C11—H110.9500
C19—C201.394 (2)C15—H150.9500
C25—C261.396 (2)C23—H230.9500
C25—C301.401 (2)C23—C221.380 (2)
C1—C61.394 (2)C31—C361.396 (2)
C1—C21.391 (2)C36—H360.9500
C13—C141.399 (2)C36—C351.395 (3)
C13—C181.385 (2)C9—H90.9500
C6—H60.9500C22—H220.9500
C6—C51.386 (2)C29—H290.9500
C21—H210.9500C29—C281.381 (3)
C21—C201.388 (2)C29—C301.388 (2)
C21—C221.389 (2)C28—H280.9500
C10—H100.9500C28—C271.385 (3)
C10—C111.382 (2)C5—H50.9500
C10—C91.383 (2)C27—H270.9500
C8—H80.9500C30—H300.9500
C8—C91.381 (2)C17—H170.9500
C24—H240.9500C35—H350.9500
C24—C231.392 (2)C35—C341.375 (3)
C20—H200.9500C34—H340.9500
C26—H260.9500C34—C331.377 (3)
C26—C271.386 (2)C33—H330.9500
C12—H120.9500Cl1—H2O2.30 (3)
C12—C111.385 (2)Cl1—H1O2.42 (3)
C3—H30.9500O1—B11.362 (2)
C3—C41.384 (2)O2—B11.373 (2)
C3—C21.393 (2)O2—H2O0.79 (3)
C14—H140.9500O3—B11.356 (2)
C14—C151.386 (2)O3—H3O0.86 (3)
C4—H40.9500O1—H1O0.77 (3)
N1—P2—C19109.24 (7)C1—C2—C3119.79 (14)
N1—P2—C25111.46 (7)C1—C2—H2120.1
N1—P2—C31113.23 (7)C3—C2—H2120.1
C19—P2—C31106.52 (7)C13—C18—H18119.9
C25—P2—C19105.98 (7)C13—C18—C17120.21 (15)
C25—P2—C31110.02 (7)C17—C18—H18119.9
N1—P1—C7115.63 (7)C15—C16—H16119.9
N1—P1—C1107.25 (7)C15—C16—C17120.25 (15)
N1—P1—C13112.91 (7)C17—C16—H16119.9
C7—P1—C1106.21 (7)C10—C11—C12120.26 (15)
C7—P1—C13107.10 (7)C10—C11—H11119.9
C1—P1—C13107.25 (6)C12—C11—H11119.9
P1—N1—P2137.28 (8)C14—C15—H15119.7
C8—C7—P1119.31 (11)C16—C15—C14120.51 (15)
C12—C7—P1121.57 (11)C16—C15—H15119.7
C12—C7—C8119.08 (14)C24—C23—H23119.9
C24—C19—P2120.08 (11)C22—C23—C24120.30 (15)
C24—C19—C20119.75 (13)C22—C23—H23119.9
C20—C19—P2120.15 (11)C32—C31—P2118.76 (12)
C26—C25—P2117.86 (11)C32—C31—C36119.40 (15)
C26—C25—C30119.66 (15)C36—C31—P2121.35 (13)
C30—C25—P2122.24 (13)C31—C36—H36120.3
C6—C1—P1119.74 (11)C35—C36—C31119.35 (18)
C2—C1—P1120.12 (11)C35—C36—H36120.3
C2—C1—C6120.05 (14)C10—C9—H9119.8
C14—C13—P1120.66 (12)C8—C9—C10120.32 (15)
C18—C13—P1119.79 (11)C8—C9—H9119.8
C18—C13—C14119.44 (14)C21—C22—H22119.8
C1—C6—H6120.2C23—C22—C21120.45 (14)
C5—C6—C1119.65 (15)C23—C22—H22119.8
C5—C6—H6120.2C28—C29—H29120.0
C20—C21—H21120.3C28—C29—C30120.07 (16)
C20—C21—C22119.44 (15)C30—C29—H29120.0
C22—C21—H21120.3C29—C28—H28119.8
C11—C10—H10120.1C29—C28—C27120.40 (17)
C11—C10—C9119.81 (15)C27—C28—H28119.8
C9—C10—H10120.1C6—C5—H5119.9
C7—C8—H8119.9C4—C5—C6120.27 (15)
C9—C8—C7120.24 (14)C4—C5—H5119.9
C9—C8—H8119.9C26—C27—H27119.9
C19—C24—H24120.2C28—C27—C26120.29 (18)
C19—C24—C23119.66 (14)C28—C27—H27119.9
C23—C24—H24120.2C25—C30—H30120.1
C19—C20—H20119.8C29—C30—C25119.83 (17)
C21—C20—C19120.40 (14)C29—C30—H30120.1
C21—C20—H20119.8C18—C17—H17120.0
C25—C26—H26120.1C16—C17—C18120.01 (16)
C27—C26—C25119.73 (16)C16—C17—H17120.0
C27—C26—H26120.1C36—C35—H35119.6
C7—C12—H12119.9C34—C35—C36120.74 (17)
C11—C12—C7120.28 (14)C34—C35—H35119.6
C11—C12—H12119.9C35—C34—H34120.0
C4—C3—H3120.1C35—C34—C33119.96 (17)
C4—C3—C2119.82 (15)C33—C34—H34120.0
C2—C3—H3120.1C32—C33—H33119.9
C13—C14—H14120.2C34—C33—C32120.27 (18)
C15—C14—C13119.55 (15)C34—C33—H33119.9
C15—C14—H14120.2H2O—Cl1—H1O53.1 (9)
C3—C4—H4119.8B1—O2—H2O112.3 (19)
C5—C4—C3120.42 (14)B1—O3—H3O113.2 (17)
C5—C4—H4119.8B1—O1—H1O103 (2)
C31—C32—H32119.9O3—B1—O2120.11 (16)
C33—C32—H32119.9O3—B1—O1117.20 (17)
C33—C32—C31120.22 (16)O1—B1—O2122.69 (17)
P2—C19—C24—C23177.23 (12)C1—P1—C13—C1465.54 (14)
P2—C19—C20—C21177.83 (12)C1—P1—C13—C18110.61 (13)
P2—C25—C26—C27175.93 (12)C1—C6—C5—C40.3 (2)
P2—C25—C30—C29174.63 (12)C13—P1—N1—P282.61 (13)
P2—C31—C36—C35174.05 (12)C13—P1—C7—C8159.22 (11)
P1—C7—C8—C9178.67 (12)C13—P1—C7—C1222.92 (14)
P1—C7—C12—C11178.46 (12)C13—P1—C1—C670.30 (13)
P1—C1—C6—C5176.66 (12)C13—P1—C1—C2106.26 (13)
P1—C1—C2—C3176.75 (12)C13—C14—C15—C160.6 (2)
P1—C13—C14—C15177.56 (12)C13—C18—C17—C160.9 (3)
P1—C13—C18—C17176.87 (13)C6—C1—C2—C30.2 (2)
N1—P2—C19—C2416.53 (15)C8—C7—C12—C110.6 (2)
N1—P2—C19—C20165.31 (12)C24—C19—C20—C210.3 (2)
N1—P2—C25—C2629.30 (14)C24—C23—C22—C210.4 (3)
N1—P2—C25—C30156.36 (12)C20—C19—C24—C230.9 (2)
N1—P2—C31—C3284.03 (13)C20—C21—C22—C231.0 (2)
N1—P2—C31—C3687.85 (14)C26—C25—C30—C290.4 (2)
N1—P1—C7—C873.96 (13)C12—C7—C8—C90.8 (2)
N1—P1—C7—C12103.90 (13)C3—C4—C5—C60.5 (3)
N1—P1—C1—C6168.15 (12)C14—C13—C18—C170.7 (2)
N1—P1—C1—C215.29 (14)C4—C3—C2—C10.5 (2)
N1—P1—C13—C14176.53 (12)C32—C31—C36—C352.2 (2)
N1—P1—C13—C187.31 (15)C2—C1—C6—C50.1 (2)
C7—P1—N1—P241.23 (15)C2—C3—C4—C50.6 (2)
C7—P1—C1—C643.96 (13)C18—C13—C14—C151.4 (2)
C7—P1—C1—C2139.48 (12)C11—C10—C9—C80.8 (2)
C7—P1—C13—C1448.12 (14)C15—C16—C17—C181.7 (3)
C7—P1—C13—C18135.73 (13)C31—P2—N1—P114.74 (15)
C7—C8—C9—C100.9 (2)C31—P2—C19—C24106.11 (13)
C7—C12—C11—C100.6 (2)C31—P2—C19—C2072.05 (14)
C19—P2—N1—P1133.27 (12)C31—P2—C25—C26155.77 (12)
C19—P2—C25—C2689.45 (13)C31—P2—C25—C3029.89 (15)
C19—P2—C25—C3084.89 (14)C31—C32—C33—C341.7 (2)
C19—P2—C31—C3236.06 (14)C31—C36—C35—C341.8 (3)
C19—P2—C31—C36152.05 (12)C36—C35—C34—C330.3 (3)
C19—C24—C23—C220.6 (2)C9—C10—C11—C120.7 (3)
C25—P2—N1—P1109.95 (13)C22—C21—C20—C190.6 (2)
C25—P2—C19—C24136.73 (13)C29—C28—C27—C260.2 (3)
C25—P2—C19—C2045.10 (14)C28—C29—C30—C250.7 (2)
C25—P2—C31—C32150.50 (12)C30—C25—C26—C271.4 (2)
C25—P2—C31—C3637.61 (14)C30—C29—C28—C270.8 (3)
C25—C26—C27—C281.4 (2)C17—C16—C15—C141.0 (3)
C1—P1—N1—P2159.47 (11)C35—C34—C33—C322.1 (3)
C1—P1—C7—C844.85 (13)C33—C32—C31—P2172.50 (12)
C1—P1—C7—C12137.28 (12)C33—C32—C31—C360.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.86 (3)1.90 (3)2.7585 (19)180 (3)
O2—H2O···Cl10.79 (3)2.30 (3)3.0595 (14)161 (3)
O1—H1O···Cl10.77 (3)2.42 (3)3.1757 (17)166 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.86 (3)1.90 (3)2.7585 (19)180 (3)
O2—H2O···Cl10.79 (3)2.30 (3)3.0595 (14)161 (3)
O1—H1O···Cl10.77 (3)2.42 (3)3.1757 (17)166 (3)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft (DFG) and the Fonds der chemischen Industrie (FCI) is gratefully acknowledged.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAndrews, S. J., Robb, D. A. & Welch, A. J. (1983). Acta Cryst. C39, 880–882.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBeckett, M. A., Horton, P. N., Hursthouse, M. B. & Timmis, J. L. (2010). Acta Cryst. E66, o319.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGellhaar, J. & Knapp, C. (2011). Acta Cryst. E67, o2546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKnapp, C. & Uzun, R. (2010a). Acta Cryst. E66, o3185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKnapp, C. & Uzun, R. (2010b). Acta Cryst. E66, o3186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLarkin, J. D., Bhat, K. L., Markham, G. D., Brooks, B. R., Schaefer, H. F. & Bock, C. W. (2006). J. Phys. Chem. A, 110, 10633–10642.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLewis, G. R. & Dance, I. (2000). J. Chem. Soc. Dalton Trans. pp. 299–306.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShuvalov, R. R. & Burns, P. C. (2003). Acta Cryst. C59, i47–i49.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1435-o1436
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds