organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1422-o1423

1-{2-[(E)-2-(2-Nitro­phen­yl)ethen­yl]-1-phenyl­sulfonyl-1H-indol-3-yl}ethanone

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 1 August 2013; accepted 8 August 2013; online 14 August 2013)

In the title compound, C24H18N2O5S, the S atom has a distorted tetra­hedral configuration, with bond angles varying from 105.11 (7) to 119.98 (8)°. As a result of the electron-withdrawing character of the phenyl­sulfonyl group, the N—Csp2 bond lengths [1.414 (2) and 1.413 (2) Å] are slightly longer than the reported value of 1.355 (14) Å for N atoms with a planar configuration. The indole moiety is essentially planar, with a maximum deviation of 0.0177 (14) Å for the N atom. The phenyl ring of the sulfonyl substituent makes a dihedral angle of 85.70 (7)° with the mean plane of the indole moiety. The mol­ecular structure features intra­molecular C—H⋯O hydrogen bonds, which generate S(6) and S(12) ring motifs. In the crystal, adjacent mol­ecules are linked via C—H⋯O hydrogen bonds, forming infinite C(7) chains running along the a-axis direction. The crystal packing also features C—H⋯π inter­actions, which form a three-dimensional structure.

Related literature

For the biological activity of Indole derivatives, see: Rodriguez et al. (1985[Rodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813-3823.]); Chai et al. (2006[Chai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.]); Olgen & Coban (2003[Olgen, S. & Coban, T. (2003). Biol. Pharm. Bull. 26, 736-738.]). For related crystal structures, see: Karthikeyan et al. (2011[Karthikeyan, S., Sethusankar, K., Rajeswaran, G. G. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2245-o2246.], 2012[Karthikeyan, S., Sethusankar, K., Rajeswaran, G. G. & Mohanakrishnan, A. K. (2012). Acta Cryst. E68, o9.]). For related bond distances and bond-angle geometries and distortions, see: Allen (1981[Allen, F. H. (1981). Acta Cryst. B37, 900-906.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the Thorpe–Ingold effect, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18N2O5S

  • Mr = 446.46

  • Monoclinic, P 21 /n

  • a = 8.2409 (8) Å

  • b = 16.1702 (15) Å

  • c = 15.3700 (15) Å

  • β = 95.775 (5)°

  • V = 2037.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.28 × 0.25 × 0.23 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • 18837 measured reflections

  • 4960 independent reflections

  • 3893 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.118

  • S = 1.02

  • 4960 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C17–C22, C11–C16 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.35 2.935 (2) 121
C18—H18⋯O3 0.93 2.46 3.108 (2) 127
C20—H20⋯O2i 0.93 2.68 3.319 (2) 126
C5—H5⋯Cg1ii 0.93 2.89 3.720 (2) 149
C22—H22⋯Cg2iii 0.93 2.73 3.4618 (18) 137
C24—H24BCg3iv 0.96 2.90 3.601 (3) 131
Symmetry codes: (i) x-1, y, z; (ii) -x, -y, -z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The indole ring system is present in a number of natural products, many of which are found to possess pharmacological properties like anti-microbial, anti-inflammatory and anti-implantation activities (Rodriguez et al., 1985). Indole derivatives are also known to exhibit anti-oxidant activities (Olgen & Coban, 2003) and antihepatitis B virus activities (Chai et al., 2006).

In the title compound, Fig. 1, the indole ring is essentially planar with a maximum deviation of 0.0177 (14) Å for atom N1. The indole moiety is perpendicular to the phenylsulfonyl ring with a dihedral angle 85.70 (7)°. The nitro-group is inclined at an angle of 7.59 (9)° to the benzene ring to which it is attached. The nitro-phenyl ring makes a dihedral angle of 76.41 (7)° with the indole moiety mean plane. Short intramolecular C2—H2···O1 and C18—H18···O3 hyrogen bonds result in S(6) and S(12) ring motifs (Table 1 and Fig. 1). The molecular dimensions in the title compound are in excellent agreement with those reported for a closely related compound (Karthikeyan et al., 2012).

The expansion of the ispo angles at C1, C3 and C4 [122.34 (16), 121.59 (18) and 121.13 (18)°, respectively] and contraction of the apical angles at C2, C5 and C6 [117.12 (19), 118.54 (18) and 119.28 (16)°, respectively] are caused by the fusion of the smaller pyrrole ring to the six-membered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortions (Allen, 1981). As a result of the electron withdrawing character of the phenylsulfonyl group, the N—Csp2 bond lengths, viz, N1—C1 [1.414 (2) Å] and N1—C8 [1.413 (2) Å], are longer than the mean value of 1.355 (14) Å reported for N atoms with planar configurations (Allen et al., 1987).

Atom S1 has a distorted tetrahedral configuration. The widening of the angle O2S1O1 [119.98 (8)°] and the narrowing of the angle N1—S1—C17 [105.11 (7)°] from the ideal tetrahedral value are attributed to the Thorpe-Ingold effect (Bassindale, 1984). The widening of the angles may be due to the repulsive interactions between the two short SO bonds, similar to what is observed in a related structure (Karthikeyan et al., 2011).

The crystal packing is stabilized by C—H···O hydrogen bonds (Fig. 2 and Table 1) resulting in C(7) infinite chains of molecules running along the a axis direction (Bernstein et al., 1995). The crystal packing is further stabilized by C—H···π interactions forming a three-dimensional structure (Table 1 and Fig. 3).

Related literature top

For the biological activity of Indole derivatives, see: Rodriguez et al. (1985); Chai et al. (2006); Olgen & Coban (2003). For related crystal structures, see: Karthikeyan et al. (2011, 2012). For related bond distances and bond-angle geometries and distortions, see: Allen (1981); Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995). For the Thorpe–Ingold effect, see: Bassindale (1984).

Experimental top

A solution of the ylide, 1-[1-(phenylsulfonyl)-2-[(triphenyl-$15-phosphanylidene)methyl]-1H-indol-3-yl]ethan-1-one (1 g, 1.745 mmol), and 2-nitrobenzaldehyde (0.29 g, 1.919 mmol) in dry DCM (20 ml) was refluxed for 8 h under N2. Removal of solvent in vacuo followed by trituration of the crude product with cold methanol (5 ml) afforded the title compound as a yellow solid [Yield: 0.71 g (92%); M.p. 427-429 K]. Block-like yellow crystals were obtained by slow evaporation of a solution in CHCl3.

Refinement top

The hydrogen atoms were localized from the difference electron density maps and were refined as riding atoms: C—H = 0.93 and 0.96 Å for CH(aromatic) and methyl H atoms, respectively, with Uiso(H) = 1.5 Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. The rotation angles for the methyl groups were optimized by least squares.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom labelling. Displacement ellipsoids are drawn at 30% probability level. The intramolecular C-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis, showing the formation of infinite C(7) chains. The dashed lines indicate C—H···O hydrogen bonds (see Table 1 for details).
[Figure 3] Fig. 3. The crystal packing of the title compound, showing the intermolecular C—H···π interactions as dashed lines (centroid = red sphere; see Table 1 for details).
1-{2-[(E)-2-(2-Nitrophenyl)ethenyl]-1-phenylsulfonyl-1H-indol-3-yl}ethanone top
Crystal data top
C24H18N2O5SF(000) = 928
Mr = 446.46Dx = 1.455 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 4960 reflections
a = 8.2409 (8) Åθ = 1.8–28.4°
b = 16.1702 (15) ŵ = 0.20 mm1
c = 15.3700 (15) ÅT = 296 K
β = 95.775 (5)°Block, yellow
V = 2037.8 (3) Å30.28 × 0.25 × 0.23 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3893 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 28.4°, θmin = 1.8°
ω and ϕ scansh = 107
18837 measured reflectionsk = 1721
4960 independent reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.059P)2 + 0.5665P]
where P = (Fo2 + 2Fc2)/3
4960 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C24H18N2O5SV = 2037.8 (3) Å3
Mr = 446.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2409 (8) ŵ = 0.20 mm1
b = 16.1702 (15) ÅT = 296 K
c = 15.3700 (15) Å0.28 × 0.25 × 0.23 mm
β = 95.775 (5)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3893 reflections with I > 2σ(I)
18837 measured reflectionsRint = 0.021
4960 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.02Δρmax = 0.42 e Å3
4960 reflectionsΔρmin = 0.38 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21108 (19)0.10784 (11)0.52063 (10)0.0405 (4)
C20.1313 (3)0.17176 (13)0.47358 (13)0.0570 (5)
H20.12840.22500.49630.068*
C30.0567 (2)0.15297 (15)0.39184 (13)0.0627 (5)
H30.00190.19440.35870.075*
C40.0611 (2)0.07382 (14)0.35767 (12)0.0579 (5)
H40.00890.06310.30230.070*
C50.1414 (2)0.01077 (13)0.40421 (11)0.0499 (4)
H50.14500.04210.38060.060*
C60.21746 (19)0.02793 (11)0.48764 (10)0.0395 (4)
C70.31131 (18)0.02214 (10)0.55255 (10)0.0379 (3)
C80.35638 (18)0.02700 (9)0.62314 (10)0.0356 (3)
C90.45622 (19)0.00804 (10)0.70516 (10)0.0375 (3)
H90.55620.03460.71650.045*
C100.41139 (19)0.04492 (10)0.76375 (10)0.0381 (3)
H100.30660.06680.75590.046*
C110.5202 (2)0.07076 (9)0.84085 (10)0.0386 (3)
C120.6855 (2)0.08209 (11)0.83104 (13)0.0500 (4)
H120.72290.06960.77750.060*
C130.7946 (2)0.11089 (13)0.89725 (15)0.0618 (5)
H130.90400.11720.88850.074*
C140.7415 (3)0.13056 (13)0.97719 (14)0.0652 (6)
H140.81470.15141.02180.078*
C150.5818 (3)0.11937 (12)0.99067 (12)0.0566 (5)
H150.54640.13161.04480.068*
C160.4726 (2)0.08979 (10)0.92347 (10)0.0422 (4)
C170.10318 (18)0.16933 (9)0.72059 (10)0.0339 (3)
C180.0997 (2)0.11710 (11)0.79151 (10)0.0426 (4)
H180.19370.08970.81430.051*
C190.0445 (2)0.10613 (12)0.82802 (11)0.0478 (4)
H190.04830.07110.87570.057*
C200.1833 (2)0.14712 (12)0.79391 (11)0.0460 (4)
H200.28000.14040.81950.055*
C210.1796 (2)0.19756 (12)0.72260 (12)0.0466 (4)
H210.27430.22410.69940.056*
C220.03571 (19)0.20929 (10)0.68482 (11)0.0415 (4)
H220.03280.24340.63630.050*
C230.3572 (2)0.10893 (11)0.53594 (12)0.0513 (4)
C240.4614 (3)0.15953 (12)0.59949 (13)0.0617 (5)
H24A0.39840.17810.64500.093*
H24B0.55150.12680.62450.093*
H24C0.50180.20650.57020.093*
N10.30044 (16)0.10825 (8)0.60412 (8)0.0394 (3)
N20.3042 (2)0.07812 (9)0.94350 (10)0.0501 (4)
O10.28218 (16)0.25924 (7)0.62838 (9)0.0549 (3)
O20.41828 (14)0.17130 (8)0.74404 (8)0.0498 (3)
O30.20813 (17)0.04423 (10)0.89080 (9)0.0653 (4)
O40.2671 (2)0.10333 (12)1.01319 (10)0.0862 (5)
O50.3144 (3)0.13858 (12)0.46632 (13)0.1255 (10)
S10.28946 (5)0.18452 (2)0.67705 (3)0.03893 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0387 (8)0.0493 (9)0.0345 (8)0.0064 (7)0.0078 (6)0.0042 (7)
C20.0639 (12)0.0574 (11)0.0499 (10)0.0185 (9)0.0072 (9)0.0088 (9)
C30.0602 (12)0.0790 (14)0.0479 (11)0.0200 (11)0.0012 (9)0.0180 (10)
C40.0465 (10)0.0853 (15)0.0409 (10)0.0039 (10)0.0008 (8)0.0064 (9)
C50.0443 (9)0.0639 (11)0.0414 (9)0.0026 (8)0.0030 (7)0.0025 (8)
C60.0354 (8)0.0484 (9)0.0356 (8)0.0002 (7)0.0080 (6)0.0027 (7)
C70.0364 (8)0.0411 (8)0.0367 (8)0.0010 (6)0.0060 (6)0.0015 (6)
C80.0336 (7)0.0380 (8)0.0363 (8)0.0016 (6)0.0089 (6)0.0037 (6)
C90.0354 (8)0.0392 (8)0.0378 (8)0.0019 (6)0.0028 (6)0.0007 (6)
C100.0350 (8)0.0430 (9)0.0363 (8)0.0012 (6)0.0033 (6)0.0008 (7)
C110.0429 (9)0.0342 (8)0.0376 (8)0.0022 (6)0.0006 (6)0.0016 (6)
C120.0441 (9)0.0502 (10)0.0547 (10)0.0022 (8)0.0004 (8)0.0038 (8)
C130.0457 (10)0.0613 (12)0.0743 (14)0.0011 (9)0.0142 (9)0.0001 (10)
C140.0725 (14)0.0595 (12)0.0569 (12)0.0018 (10)0.0271 (10)0.0017 (10)
C150.0834 (15)0.0468 (10)0.0369 (9)0.0011 (9)0.0081 (9)0.0002 (8)
C160.0551 (10)0.0337 (8)0.0370 (8)0.0014 (7)0.0014 (7)0.0035 (6)
C170.0335 (7)0.0331 (7)0.0347 (7)0.0002 (6)0.0020 (6)0.0054 (6)
C180.0422 (9)0.0481 (9)0.0366 (8)0.0067 (7)0.0005 (7)0.0026 (7)
C190.0499 (10)0.0556 (10)0.0382 (9)0.0001 (8)0.0066 (7)0.0065 (8)
C200.0377 (9)0.0561 (10)0.0446 (9)0.0045 (7)0.0062 (7)0.0037 (8)
C210.0349 (8)0.0533 (10)0.0506 (10)0.0052 (7)0.0008 (7)0.0015 (8)
C220.0417 (9)0.0401 (8)0.0419 (9)0.0022 (7)0.0007 (7)0.0050 (7)
C230.0586 (11)0.0445 (10)0.0495 (10)0.0001 (8)0.0006 (8)0.0066 (8)
C240.0823 (15)0.0428 (10)0.0596 (12)0.0124 (10)0.0054 (10)0.0016 (9)
N10.0437 (7)0.0401 (7)0.0349 (7)0.0076 (6)0.0060 (5)0.0013 (5)
N20.0696 (10)0.0408 (8)0.0419 (8)0.0020 (7)0.0159 (7)0.0004 (6)
O10.0575 (8)0.0386 (6)0.0708 (8)0.0015 (5)0.0165 (6)0.0090 (6)
O20.0369 (6)0.0521 (7)0.0589 (8)0.0016 (5)0.0030 (5)0.0118 (6)
O30.0606 (9)0.0722 (10)0.0661 (9)0.0154 (7)0.0206 (7)0.0209 (7)
O40.1070 (13)0.1054 (13)0.0524 (9)0.0156 (11)0.0377 (9)0.0191 (9)
O50.191 (2)0.0768 (12)0.0917 (13)0.0510 (14)0.0689 (14)0.0432 (11)
S10.0365 (2)0.0349 (2)0.0456 (2)0.00095 (15)0.00548 (16)0.00227 (16)
Geometric parameters (Å, º) top
C1—C21.389 (2)C14—H140.9300
C1—C61.391 (2)C15—C161.385 (2)
C1—N11.414 (2)C15—H150.9300
C2—C31.376 (3)C16—N21.464 (2)
C2—H20.9300C17—C221.380 (2)
C3—C41.385 (3)C17—C181.382 (2)
C3—H30.9300C17—S11.7526 (15)
C4—C51.376 (3)C18—C191.375 (2)
C4—H40.9300C18—H180.9300
C5—C61.397 (2)C19—C201.379 (2)
C5—H50.9300C19—H190.9300
C6—C71.447 (2)C20—C211.369 (3)
C7—C81.366 (2)C20—H200.9300
C7—C231.482 (2)C21—C221.385 (2)
C8—N11.413 (2)C21—H210.9300
C8—C91.467 (2)C22—H220.9300
C9—C101.322 (2)C23—O51.193 (2)
C9—H90.9300C23—C241.480 (3)
C10—C111.473 (2)C24—H24A0.9600
C10—H100.9300C24—H24B0.9600
C11—C121.397 (2)C24—H24C0.9600
C11—C161.401 (2)N1—S11.6752 (14)
C12—C131.370 (3)N2—O31.2058 (19)
C12—H120.9300N2—O41.2135 (19)
C13—C141.382 (3)O1—S11.4192 (13)
C13—H130.9300O2—S11.4187 (12)
C14—C151.365 (3)
C2—C1—C6122.34 (16)C16—C15—H15120.1
C2—C1—N1130.19 (17)C15—C16—C11122.11 (17)
C6—C1—N1107.45 (13)C15—C16—N2116.51 (16)
C3—C2—C1117.12 (19)C11—C16—N2121.38 (15)
C3—C2—H2121.4C22—C17—C18121.22 (15)
C1—C2—H2121.4C22—C17—S1120.38 (12)
C2—C3—C4121.59 (18)C18—C17—S1118.40 (12)
C2—C3—H3119.2C19—C18—C17119.23 (15)
C4—C3—H3119.2C19—C18—H18120.4
C5—C4—C3121.13 (18)C17—C18—H18120.4
C5—C4—H4119.4C18—C19—C20120.04 (16)
C3—C4—H4119.4C18—C19—H19120.0
C4—C5—C6118.54 (18)C20—C19—H19120.0
C4—C5—H5120.7C21—C20—C19120.40 (16)
C6—C5—H5120.7C21—C20—H20119.8
C1—C6—C5119.28 (16)C19—C20—H20119.8
C1—C6—C7107.80 (14)C20—C21—C22120.41 (16)
C5—C6—C7132.91 (16)C20—C21—H21119.8
C8—C7—C6107.81 (14)C22—C21—H21119.8
C8—C7—C23129.34 (15)C17—C22—C21118.68 (15)
C6—C7—C23122.62 (15)C17—C22—H22120.7
C7—C8—N1108.64 (13)C21—C22—H22120.7
C7—C8—C9130.18 (14)O5—C23—C24117.99 (18)
N1—C8—C9121.02 (14)O5—C23—C7118.50 (18)
C10—C9—C8123.36 (15)C24—C23—C7123.42 (16)
C10—C9—H9118.3C23—C24—H24A109.5
C8—C9—H9118.3C23—C24—H24B109.5
C9—C10—C11122.86 (15)H24A—C24—H24B109.5
C9—C10—H10118.6C23—C24—H24C109.5
C11—C10—H10118.6H24A—C24—H24C109.5
C12—C11—C16115.74 (15)H24B—C24—H24C109.5
C12—C11—C10118.13 (15)C8—N1—C1108.22 (13)
C16—C11—C10126.03 (15)C8—N1—S1125.77 (11)
C13—C12—C11122.58 (19)C1—N1—S1123.54 (11)
C13—C12—H12118.7O3—N2—O4122.63 (17)
C11—C12—H12118.7O3—N2—C16119.31 (14)
C12—C13—C14119.7 (2)O4—N2—C16118.06 (17)
C12—C13—H13120.1O2—S1—O1119.98 (8)
C14—C13—H13120.1O2—S1—N1106.73 (7)
C15—C14—C13120.05 (18)O1—S1—N1106.04 (8)
C15—C14—H14120.0O2—S1—C17108.79 (7)
C13—C14—H14120.0O1—S1—C17109.17 (8)
C14—C15—C16119.79 (19)N1—S1—C17105.11 (7)
C14—C15—H15120.1
C6—C1—C2—C30.3 (3)S1—C17—C18—C19178.28 (13)
N1—C1—C2—C3178.49 (17)C17—C18—C19—C200.1 (3)
C1—C2—C3—C40.2 (3)C18—C19—C20—C211.3 (3)
C2—C3—C4—C50.3 (3)C19—C20—C21—C221.2 (3)
C3—C4—C5—C60.7 (3)C18—C17—C22—C211.4 (2)
C2—C1—C6—C50.1 (3)S1—C17—C22—C21178.17 (13)
N1—C1—C6—C5178.46 (14)C20—C21—C22—C170.1 (3)
C2—C1—C6—C7179.14 (16)C8—C7—C23—O5174.0 (2)
N1—C1—C6—C70.59 (17)C6—C7—C23—O50.3 (3)
C4—C5—C6—C10.6 (2)C8—C7—C23—C242.5 (3)
C4—C5—C6—C7179.37 (18)C6—C7—C23—C24176.22 (17)
C1—C6—C7—C81.22 (17)C7—C8—N1—C12.95 (17)
C5—C6—C7—C8179.90 (17)C9—C8—N1—C1178.81 (13)
C1—C6—C7—C23173.71 (15)C7—C8—N1—S1165.52 (11)
C5—C6—C7—C235.2 (3)C9—C8—N1—S118.6 (2)
C6—C7—C8—N12.55 (17)C2—C1—N1—C8179.46 (18)
C23—C7—C8—N1171.93 (16)C6—C1—N1—C82.14 (17)
C6—C7—C8—C9177.91 (15)C2—C1—N1—S116.4 (3)
C23—C7—C8—C93.4 (3)C6—C1—N1—S1165.19 (11)
C7—C8—C9—C1065.7 (2)C15—C16—N2—O3172.02 (17)
N1—C8—C9—C10119.47 (18)C11—C16—N2—O37.1 (2)
C8—C9—C10—C11172.71 (14)C15—C16—N2—O48.0 (2)
C9—C10—C11—C1237.6 (2)C11—C16—N2—O4172.85 (17)
C9—C10—C11—C16146.09 (17)C8—N1—S1—O231.41 (15)
C16—C11—C12—C130.8 (3)C1—N1—S1—O2168.55 (12)
C10—C11—C12—C13175.90 (17)C8—N1—S1—O1160.41 (13)
C11—C12—C13—C140.6 (3)C1—N1—S1—O139.55 (15)
C12—C13—C14—C151.6 (3)C8—N1—S1—C1784.02 (14)
C13—C14—C15—C161.3 (3)C1—N1—S1—C1776.02 (14)
C14—C15—C16—C110.1 (3)C22—C17—S1—O2152.91 (13)
C14—C15—C16—N2178.97 (17)C18—C17—S1—O226.65 (14)
C12—C11—C16—C151.1 (2)C22—C17—S1—O120.30 (15)
C10—C11—C16—C15175.24 (16)C18—C17—S1—O1159.27 (12)
C12—C11—C16—N2177.94 (15)C22—C17—S1—N193.09 (13)
C10—C11—C16—N25.7 (2)C18—C17—S1—N187.35 (13)
C22—C17—C18—C191.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C17–C22, C11–C16 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.352.935 (2)121
C18—H18···O30.932.463.108 (2)127
C20—H20···O2i0.932.683.319 (2)126
C5—H5···Cg1ii0.932.893.720 (2)149
C22—H22···Cg2iii0.932.733.4618 (18)137
C24—H24B···Cg3iv0.962.903.601 (3)131
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C17–C22, C11–C16 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.352.935 (2)121
C18—H18···O30.932.463.108 (2)127
C20—H20···O2i0.932.683.319 (2)126
C5—H5···Cg1ii0.932.893.720 (2)149
C22—H22···Cg2iii0.932.733.4618 (18)137
C24—H24B···Cg3iv0.962.903.601 (3)131
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1, y, z+1.
 

Acknowledgements

The authors thank Mr T. Srinivasan and Dr D. Velmurugan, The Head, CAS in Crystallography and Biophysics, University of Madras, Chennai, India, for the data collection.

References

First citationAllen, F. H. (1981). Acta Cryst. B37, 900–906.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKarthikeyan, S., Sethusankar, K., Rajeswaran, G. G. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2245–o2246.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKarthikeyan, S., Sethusankar, K., Rajeswaran, G. G. & Mohanakrishnan, A. K. (2012). Acta Cryst. E68, o9.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOlgen, S. & Coban, T. (2003). Biol. Pharm. Bull. 26, 736-738.  CrossRef PubMed Google Scholar
First citationRodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813-3823.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1422-o1423
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds