organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1420-o1421

2-(4-Chloro-2-nitro­phen­yl)-9-phenyl­sulfonyl-9H-carbazole-3-carbaldehyde

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 1 August 2013; accepted 8 August 2013; online 14 August 2013)

In the title compound, C25H15ClN2O6S, the carbazole ring system is essentially planar, with a maximum deviation of 0.152 (3) Å for the C atom to which the 4-chloro-2-nitro­phenyl ring is attached. Its mean plane is almost orthogonal to the phenyl­sulfonyl and nitro­phenyl rings, making dihedral angles of 82.64 (14) and 79.89 (13)°, respectively. The N atom of the nitro group deviates by 0.032 (3) Å from the benzene ring to which it is attached. The mol­ecular structure features intra­molecular O—H⋯O and C—H⋯O hydrogen bonds, which generate three S(6) ring motifs. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, which generate C(6) and C(9) chains running in the [100] and [010] directions, respectively, forming a two-dimensional network lying parallel to (001). There are also R43(28) supra­molecular graph-set ring motifs enclosed within these networks.

Related literature

For the biological activity and uses of carbazole derivatives, see: Itoigawa et al. (2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]); Ramsewak et al. (1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]). For their electronic properties and applications, see: Friend et al. (1999[Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121-127.]); Zhang et al. (2004[Zhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895-900.]). For related structures, see: Chakkaravarthi et al. (2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o1667-o1668.]). For bond-length distortions, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1-19.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the Thorpe–Ingold effect, see: Bassindale et al. (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]).

[Scheme 1]

Experimental

Crystal data
  • C25H15ClN2O6S

  • Mr = 506.91

  • Monoclinic, P 21 /c

  • a = 8.1947 (15) Å

  • b = 14.384 (3) Å

  • c = 18.795 (3) Å

  • β = 90.963 (9)°

  • V = 2215.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.910, Tmax = 0.939

  • 16586 measured reflections

  • 3893 independent reflections

  • 2809 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.172

  • S = 1.05

  • 3893 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.91 2.629 (4) 146
C2—H2⋯O3 0.93 2.36 2.949 (5) 121
C9—H9⋯O4 0.93 2.31 2.910 (4) 122
C13—H13⋯O4i 0.93 2.56 3.411 (4) 153
C18—H18⋯O4ii 0.93 2.53 3.287 (4) 139
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbazole and its derivative have become quite attractive compounds owing to their applications in pharmacy and molecular electronics. It has been reported that carbazole derivatives exhibit various biological activities such as antitumor and antioxidative (Itoigawa et al., 2000), and anti-inflammatory and antimutagenic (Ramsewak et al., 1999). They also exhibit electroactivity and luminenscence and are considered to be potential candidates for electronic applications such as colour displays, organic, semiconductors, laser and solar cells (Friend et al., 1999; Zhang et al., 2004).

The title compound, Fig. 1, comprises a carbazole ring system which is attached to a phenyl-sulfonyl ring, a chloro substituted nitro-phenyl ring, a carbaldehyde group and a hydroxyl group. The carbazole ring system is essentially planar with maximum deviation of -0.152 (3) Å for atom C10 to which is attached the 4-chloro-2-nitro-phenyl ring. Atom O1 significantly deviates from the carbazole ring mean plane by -0.1921 (24) Å. The carbazole ring system is almost orthogonal to the phenyl ring attached to sulfonyl group and to the 4-chloro-2-nitro-phenyl ring with dihedral angles of 82.64 (14)° and 79.89 (13)°, respectively.

As a result of electron-withdrawing character of the phenylsulfonyl group the bond lengths N1–C1 = 1.429 (4) Å and N1–C8 = 1.408 (4) Å are longer than the mean value of 1.355 (14) Å (Allen et al., 1987). Atom S1 has a distorted tetrahedral configuration. The widening of angle O3—S1—O4 [120.14 (14) °] and the narrowing of angle N1—S1—C11 [103.36 (13)°] from the ideal tetrahedral value are attributed to the Thorpe-Ingold effect (Bassindale et al., 1984).

The sum of the bond angles around atom N1 [355.1°] indicate sp2 hybridization. Atom N2 and chlorine atom Cl1 deviate significantly, by 0.0319 (31) Å and -0.0240 (13) Å, respectively, from the phenyl ring.

The molecular structure is stabilized by O-H···O and C-H···O hydrogen bonds (Table 1 and Fig. 1), which generate three S(6) ring motifs (Bernstein et al., 1995).

In the crystal, molecules are linked by C-H···O hydrogen bonds, which generate C(6) and C(9) chains running in directions [100] and [010], respectively (Table 1 and Fig. 2), and forming a two-dimensional network lying parallel to (001). There are also R34(28) supramolecular graph-set ring motifs enclosed within these networks.

Related literature top

For the biological activity and uses of carbazole derivatives, see: Itoigawa et al. (2000); Ramsewak et al. (1999). For their electronic properties and applications, see: Friend et al. (1999); Zhang et al. (2004). For related structures, see: Chakkaravarthi et al. (2008). For bond-length distortions, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995). For the Thorpe–Ingold effect, see: Bassindale et al. (1984).

Experimental top

The enamine, (2E)-1-[1-(phenylsulfonyl)-2-[(E)-2-(4-cholro-2-nitrophenyl)ethenyl]-2,3 -dihydro-1H-indol-3-yl]-3-dimethylamino)prop-2-en-1-one (0.500 g, 0.93 mmol), with CuBr2 (0.209 g, 0.93 mmol) in dry DMF (20 ml) was refluxed under N2 for 1 h. The mixture was then poured over crushed ice (50 g) containing conc. HCl (1 ml). The crude product was filtered and dried. It was then purified by flash column chromatography on silica gel (230–420 mesh, n-hexane/ethyl acetate, 7:3) to afford the title compound as a pale yellow solid [Yield= 91%]. Yellow block-like crystal were obtained by slow evaporation of a solution in CHCl3.

Refinement top

The positions of all the H atoms were located in difference electron density maps. They were refined as riding atoms: O—H = = 0.82 Å and C-H = 0.93 Å with Uiso(H) = 1.5Ueq(O-hydroxyl) and = 1.2Ueq(C-aromatic).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at 30% probability level. The intramolecular O-H···O and C-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis. The dashed lines indicate C—H···O hydrogen bonds [see Table 1 for details; symmetry codes: (i) x+1, y, z; (ii) -x, y-1/2, -z+1/2].
2-(4-Chloro-2-nitrophenyl)-9-phenylsulfonyl-9H-carbazole-3-carbaldehyde top
Crystal data top
C25H15ClN2O6SF(000) = 1040
Mr = 506.91Dx = 1.520 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3893 reflections
a = 8.1947 (15) Åθ = 1.8–25.0°
b = 14.384 (3) ŵ = 0.31 mm1
c = 18.795 (3) ÅT = 296 K
β = 90.963 (9)°Block, yellow
V = 2215.2 (7) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3893 independent reflections
Radiation source: fine-focus sealed tube2809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω & ϕ scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.910, Tmax = 0.939k = 1715
16586 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0933P)2 + 0.9326P]
where P = (Fo2 + 2Fc2)/3
3893 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C25H15ClN2O6SV = 2215.2 (7) Å3
Mr = 506.91Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1947 (15) ŵ = 0.31 mm1
b = 14.384 (3) ÅT = 296 K
c = 18.795 (3) Å0.30 × 0.25 × 0.20 mm
β = 90.963 (9)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3893 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2809 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.939Rint = 0.056
16586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.05Δρmax = 0.42 e Å3
3893 reflectionsΔρmin = 0.40 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2551 (3)0.6180 (2)0.50926 (15)0.0528 (8)
C20.3370 (4)0.6615 (3)0.56478 (17)0.0671 (9)
H20.33740.72590.56940.081*
C30.4184 (4)0.6050 (4)0.61323 (19)0.0788 (12)
H30.47720.63230.65050.095*
C40.4150 (5)0.5097 (4)0.60796 (19)0.0780 (11)
H40.47170.47400.64140.094*
C50.3290 (4)0.4662 (3)0.55391 (19)0.0685 (9)
H50.32410.40170.55120.082*
C60.2497 (3)0.5214 (2)0.50362 (16)0.0536 (8)
C70.1606 (3)0.4993 (2)0.43898 (16)0.0505 (7)
C80.1173 (3)0.5826 (2)0.40603 (16)0.0469 (7)
C90.0421 (3)0.5859 (2)0.33864 (16)0.0494 (7)
H90.01320.64210.31750.059*
C100.0132 (3)0.5029 (2)0.30519 (16)0.0501 (7)
C110.0462 (4)0.4168 (2)0.33792 (18)0.0561 (8)
C120.1204 (4)0.4155 (2)0.40598 (18)0.0569 (8)
C130.0128 (5)0.3305 (3)0.3022 (2)0.0770 (11)
H130.03180.33420.25650.092*
C140.3698 (3)0.7616 (2)0.37430 (17)0.0493 (7)
C150.3674 (4)0.7328 (2)0.3047 (2)0.0622 (9)
H150.26900.72010.28130.075*
C160.5117 (5)0.7232 (3)0.2703 (2)0.0809 (11)
H160.51250.70350.22320.097*
C170.6562 (5)0.7428 (3)0.3057 (3)0.0918 (14)
H170.75460.73550.28240.110*
C180.6566 (5)0.7726 (3)0.3743 (3)0.0935 (14)
H180.75490.78700.39710.112*
C190.5137 (4)0.7815 (3)0.4098 (2)0.0722 (10)
H190.51350.80070.45710.087*
C200.0564 (3)0.5080 (2)0.23145 (16)0.0503 (7)
C210.2215 (4)0.5008 (3)0.21838 (19)0.0681 (9)
H210.28920.48550.25580.082*
C220.2902 (4)0.5152 (3)0.1522 (2)0.0718 (10)
H220.40230.50920.14510.086*
C230.1919 (4)0.5385 (3)0.09668 (19)0.0658 (9)
C240.0268 (4)0.5468 (2)0.10637 (17)0.0592 (8)
H240.03990.56350.06890.071*
C250.0376 (3)0.5298 (2)0.17300 (16)0.0519 (7)
Cl10.27788 (15)0.55884 (9)0.01388 (6)0.1018 (4)
N10.1664 (3)0.65682 (17)0.45026 (13)0.0503 (6)
N20.2158 (3)0.5375 (2)0.18092 (15)0.0664 (8)
O10.1583 (3)0.33589 (17)0.43974 (14)0.0784 (7)
H10.12860.29160.41530.118*
O20.0370 (5)0.25321 (19)0.32590 (17)0.1032 (10)
O30.2092 (3)0.82164 (17)0.48325 (13)0.0717 (7)
O40.0573 (2)0.78288 (15)0.37344 (12)0.0569 (6)
O50.2857 (3)0.4869 (2)0.22158 (17)0.0960 (9)
O60.2834 (3)0.5962 (3)0.14560 (17)0.1149 (12)
S10.18862 (9)0.76577 (5)0.42149 (4)0.0504 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0501 (15)0.063 (2)0.0456 (16)0.0008 (13)0.0061 (13)0.0019 (15)
C20.071 (2)0.081 (3)0.0489 (19)0.0099 (18)0.0001 (16)0.0027 (17)
C30.071 (2)0.116 (4)0.049 (2)0.006 (2)0.0034 (17)0.004 (2)
C40.076 (2)0.108 (4)0.051 (2)0.013 (2)0.0055 (18)0.022 (2)
C50.073 (2)0.077 (2)0.057 (2)0.0105 (18)0.0189 (17)0.0186 (19)
C60.0520 (16)0.065 (2)0.0445 (16)0.0013 (14)0.0122 (13)0.0055 (15)
C70.0482 (15)0.0523 (19)0.0514 (17)0.0029 (13)0.0147 (13)0.0056 (15)
C80.0425 (13)0.0495 (18)0.0490 (16)0.0033 (12)0.0080 (12)0.0036 (14)
C90.0498 (15)0.0492 (18)0.0492 (17)0.0020 (13)0.0025 (13)0.0023 (14)
C100.0496 (15)0.0516 (19)0.0494 (17)0.0076 (13)0.0112 (13)0.0078 (15)
C110.0650 (18)0.0476 (19)0.0564 (19)0.0101 (14)0.0183 (15)0.0057 (15)
C120.0645 (18)0.048 (2)0.0587 (19)0.0016 (14)0.0212 (15)0.0053 (16)
C130.106 (3)0.059 (2)0.068 (2)0.011 (2)0.024 (2)0.0087 (19)
C140.0473 (15)0.0424 (17)0.0580 (18)0.0019 (12)0.0019 (13)0.0068 (14)
C150.0558 (17)0.062 (2)0.069 (2)0.0010 (15)0.0040 (16)0.0054 (17)
C160.080 (3)0.083 (3)0.080 (3)0.008 (2)0.025 (2)0.015 (2)
C170.059 (2)0.099 (3)0.118 (4)0.007 (2)0.030 (2)0.031 (3)
C180.051 (2)0.109 (4)0.121 (4)0.011 (2)0.002 (2)0.025 (3)
C190.0564 (18)0.077 (3)0.083 (3)0.0145 (16)0.0066 (17)0.010 (2)
C200.0544 (15)0.0457 (18)0.0511 (17)0.0051 (13)0.0080 (13)0.0111 (14)
C210.0545 (17)0.083 (3)0.068 (2)0.0100 (16)0.0110 (16)0.0126 (19)
C220.0532 (18)0.084 (3)0.078 (3)0.0019 (16)0.0033 (18)0.017 (2)
C230.070 (2)0.060 (2)0.067 (2)0.0141 (16)0.0138 (18)0.0133 (18)
C240.0674 (19)0.058 (2)0.0519 (19)0.0037 (15)0.0072 (15)0.0045 (15)
C250.0532 (16)0.0508 (19)0.0519 (18)0.0011 (13)0.0042 (14)0.0087 (14)
Cl10.1052 (8)0.1192 (10)0.0800 (7)0.0313 (7)0.0284 (6)0.0017 (6)
N10.0544 (13)0.0517 (16)0.0449 (13)0.0047 (11)0.0020 (11)0.0015 (12)
N20.0553 (15)0.093 (2)0.0514 (16)0.0074 (15)0.0070 (13)0.0066 (16)
O10.1124 (19)0.0498 (15)0.0736 (16)0.0026 (13)0.0212 (14)0.0123 (12)
O20.174 (3)0.0460 (17)0.091 (2)0.0101 (17)0.026 (2)0.0035 (15)
O30.0860 (15)0.0605 (15)0.0685 (15)0.0006 (12)0.0026 (12)0.0224 (12)
O40.0465 (10)0.0543 (14)0.0696 (14)0.0067 (9)0.0036 (10)0.0058 (11)
O50.0603 (14)0.134 (3)0.093 (2)0.0160 (15)0.0053 (14)0.0219 (19)
O60.0769 (17)0.171 (3)0.097 (2)0.045 (2)0.0073 (16)0.041 (2)
S10.0506 (4)0.0452 (5)0.0552 (5)0.0003 (3)0.0015 (3)0.0074 (3)
Geometric parameters (Å, º) top
C1—C21.381 (4)C14—S11.743 (3)
C1—C61.394 (5)C15—C161.364 (5)
C1—N11.429 (4)C15—H150.9300
C2—C31.384 (5)C16—C171.378 (6)
C2—H20.9300C16—H160.9300
C3—C41.375 (6)C17—C181.359 (7)
C3—H30.9300C17—H170.9300
C4—C51.377 (5)C18—C191.364 (6)
C4—H40.9300C18—H180.9300
C5—C61.388 (5)C19—H190.9300
C5—H50.9300C20—C211.374 (4)
C6—C71.442 (4)C20—C251.388 (4)
C7—C121.392 (5)C21—C221.373 (5)
C7—C81.392 (4)C21—H210.9300
C8—C91.400 (4)C22—C231.370 (5)
C8—N11.408 (4)C22—H220.9300
C9—C101.369 (4)C23—C241.367 (5)
C9—H90.9300C23—Cl11.723 (4)
C10—C111.406 (4)C24—C251.373 (4)
C10—C201.492 (4)C24—H240.9300
C11—C121.407 (5)C25—N21.469 (4)
C11—C131.435 (5)N1—S11.669 (3)
C12—O11.343 (4)N2—O51.196 (4)
C13—O21.213 (5)N2—O61.213 (4)
C13—H130.9300O1—H10.8200
C14—C151.372 (5)O3—S11.420 (2)
C14—C191.375 (4)O4—S11.415 (2)
C2—C1—C6121.6 (3)C14—C15—H15120.5
C2—C1—N1130.1 (3)C15—C16—C17119.7 (4)
C6—C1—N1108.4 (3)C15—C16—H16120.2
C1—C2—C3117.0 (4)C17—C16—H16120.2
C1—C2—H2121.5C18—C17—C16120.7 (4)
C3—C2—H2121.5C18—C17—H17119.6
C4—C3—C2122.0 (4)C16—C17—H17119.6
C4—C3—H3119.0C17—C18—C19120.4 (4)
C2—C3—H3119.0C17—C18—H18119.8
C3—C4—C5121.0 (4)C19—C18—H18119.8
C3—C4—H4119.5C18—C19—C14118.6 (4)
C5—C4—H4119.5C18—C19—H19120.7
C4—C5—C6118.0 (4)C14—C19—H19120.7
C4—C5—H5121.0C21—C20—C25115.7 (3)
C6—C5—H5121.0C21—C20—C10121.5 (3)
C5—C6—C1120.3 (3)C25—C20—C10122.5 (3)
C5—C6—C7132.2 (3)C22—C21—C20122.6 (3)
C1—C6—C7107.4 (3)C22—C21—H21118.7
C12—C7—C8119.3 (3)C20—C21—H21118.7
C12—C7—C6132.8 (3)C23—C22—C21119.3 (3)
C8—C7—C6107.8 (3)C23—C22—H22120.4
C7—C8—C9122.5 (3)C21—C22—H22120.4
C7—C8—N1108.8 (3)C24—C23—C22120.9 (3)
C9—C8—N1128.7 (3)C24—C23—Cl1119.6 (3)
C10—C9—C8117.1 (3)C22—C23—Cl1119.5 (3)
C10—C9—H9121.4C23—C24—C25118.1 (3)
C8—C9—H9121.4C23—C24—H24121.0
C9—C10—C11122.4 (3)C25—C24—H24121.0
C9—C10—C20116.4 (3)C24—C25—C20123.5 (3)
C11—C10—C20121.2 (3)C24—C25—N2116.5 (3)
C10—C11—C12119.1 (3)C20—C25—N2120.1 (3)
C10—C11—C13121.5 (3)C8—N1—C1107.4 (2)
C12—C11—C13119.3 (3)C8—N1—S1123.5 (2)
O1—C12—C7118.5 (3)C1—N1—S1124.1 (2)
O1—C12—C11122.2 (3)O5—N2—O6123.7 (3)
C7—C12—C11119.3 (3)O5—N2—C25118.9 (3)
O2—C13—C11126.4 (4)O6—N2—C25117.4 (3)
O2—C13—H13116.8C12—O1—H1109.5
C11—C13—H13116.8O4—S1—O3120.14 (14)
C15—C14—C19121.6 (3)O4—S1—N1106.50 (13)
C15—C14—S1119.8 (2)O3—S1—N1106.18 (14)
C19—C14—S1118.5 (3)O4—S1—C14109.06 (14)
C16—C15—C14119.0 (3)O3—S1—C14110.19 (15)
C16—C15—H15120.5N1—S1—C14103.37 (13)
C6—C1—C2—C32.3 (5)C15—C14—C19—C180.3 (5)
N1—C1—C2—C3177.4 (3)S1—C14—C19—C18175.9 (3)
C1—C2—C3—C41.8 (5)C9—C10—C20—C2195.9 (4)
C2—C3—C4—C50.3 (6)C11—C10—C20—C2183.9 (4)
C3—C4—C5—C61.9 (5)C9—C10—C20—C2577.3 (4)
C4—C5—C6—C11.4 (5)C11—C10—C20—C25102.9 (4)
C4—C5—C6—C7175.0 (3)C25—C20—C21—C220.8 (5)
C2—C1—C6—C50.7 (4)C10—C20—C21—C22172.9 (3)
N1—C1—C6—C5179.0 (3)C20—C21—C22—C230.6 (6)
C2—C1—C6—C7177.9 (3)C21—C22—C23—C240.5 (6)
N1—C1—C6—C71.8 (3)C21—C22—C23—Cl1178.7 (3)
C5—C6—C7—C121.8 (5)C22—C23—C24—C250.9 (5)
C1—C6—C7—C12178.6 (3)Cl1—C23—C24—C25179.8 (3)
C5—C6—C7—C8175.4 (3)C23—C24—C25—C202.5 (5)
C1—C6—C7—C81.4 (3)C23—C24—C25—N2178.8 (3)
C12—C7—C8—C93.6 (4)C21—C20—C25—C242.4 (5)
C6—C7—C8—C9174.1 (2)C10—C20—C25—C24171.2 (3)
C12—C7—C8—N1178.3 (2)C21—C20—C25—N2178.9 (3)
C6—C7—C8—N14.0 (3)C10—C20—C25—N27.5 (5)
C7—C8—C9—C100.5 (4)C7—C8—N1—C15.1 (3)
N1—C8—C9—C10177.2 (2)C9—C8—N1—C1172.9 (3)
C8—C9—C10—C114.2 (4)C7—C8—N1—S1161.01 (19)
C8—C9—C10—C20175.9 (2)C9—C8—N1—S116.9 (4)
C9—C10—C11—C123.7 (4)C2—C1—N1—C8175.5 (3)
C20—C10—C11—C12176.4 (3)C6—C1—N1—C84.2 (3)
C9—C10—C11—C13179.1 (3)C2—C1—N1—S119.7 (4)
C20—C10—C11—C130.7 (4)C6—C1—N1—S1160.0 (2)
C8—C7—C12—O1177.8 (3)C24—C25—N2—O5145.9 (3)
C6—C7—C12—O15.2 (5)C20—C25—N2—O535.2 (5)
C8—C7—C12—C114.0 (4)C24—C25—N2—O634.5 (5)
C6—C7—C12—C11173.0 (3)C20—C25—N2—O6144.3 (3)
C10—C11—C12—O1178.7 (3)C8—N1—S1—O440.4 (2)
C13—C11—C12—O11.5 (5)C1—N1—S1—O4167.7 (2)
C10—C11—C12—C70.5 (4)C8—N1—S1—O3169.5 (2)
C13—C11—C12—C7176.7 (3)C1—N1—S1—O338.5 (3)
C10—C11—C13—O2179.9 (4)C8—N1—S1—C1474.5 (2)
C12—C11—C13—O22.8 (6)C1—N1—S1—C1477.5 (2)
C19—C14—C15—C160.5 (5)C15—C14—S1—O429.1 (3)
S1—C14—C15—C16175.0 (3)C19—C14—S1—O4155.3 (3)
C14—C15—C16—C170.3 (6)C15—C14—S1—O3162.9 (3)
C15—C16—C17—C180.7 (6)C19—C14—S1—O321.4 (3)
C16—C17—C18—C191.6 (7)C15—C14—S1—N184.0 (3)
C17—C18—C19—C141.3 (6)C19—C14—S1—N191.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.912.629 (4)146
C2—H2···O30.932.362.949 (5)121
C9—H9···O40.932.312.910 (4)122
C13—H13···O4i0.932.563.411 (4)153
C18—H18···O4ii0.932.533.287 (4)139
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.912.629 (4)146
C2—H2···O30.932.362.949 (5)121
C9—H9···O40.932.312.910 (4)122
C13—H13···O4i0.932.563.411 (4)153
C18—H18···O4ii0.932.533.287 (4)139
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors thank Mr T. Srinivasan and Dr D. Velmurugan the Technology Business Incubator (TBI), CAS in Crystallography and Biophysics, University of Madras, Maraimalai Campus, Chennai, and the Department of Science and Technology (DST) for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o1667–o1668.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFriend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121–127.  Web of Science CrossRef CAS Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895–900.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1420-o1421
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds