organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-1-(2-Hy­dr­oxy­phen­yl)ethyl­­idene]pyrazine-2-carbohydrazide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, bMedicinal Botanic Centre, PCSIR Laboratories Complex, Peshawar, Pakistan, cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and dDepartment of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 7 August 2013; accepted 7 August 2013; online 14 August 2013)

The title compound, C13H12N4O2, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. Mol­ecule B is planar to within 0.044 (3) Å for all non-H atoms, while mol­ecule A is slightly twisted, with a dihedral angle of 6.29 (4)° between the mean planes of the pyrazine-2-carbohydrazide and 1-(2-hy­droxy­phen­yl)ethanone moieties (r.m.s. deviations = 0.0348 and 0.0428 Å, respectively). S(5) and S(6) ring motifs are formed in both mol­ecules due to the presence of intra­molecular O—H⋯N and N—H⋯N hydrogen bonds. In the crystal, mol­ecules A and B are linked by a C—H⋯O hydrogen bond. They stack along the a-axis direction, forming columns with ππ inter­actions involving inversion-related pyrazine and benzene rings [centroid–centroid distances = 3.5489 (13)–3.8513 (16) Å].

Related literature

For a related crystal structure and other studies, see: Hameed et al. (2013[Hameed, S., Ahmad, M., Tahir, M. N., Shah, M. A. & Shad, H. A. (2013). Acta Cryst. E69, o1141.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N4O2

  • Mr = 256.27

  • Triclinic, [P \overline 1]

  • a = 7.1767 (7) Å

  • b = 10.1743 (10) Å

  • c = 17.1150 (17) Å

  • α = 86.172 (3)°

  • β = 85.275 (2)°

  • γ = 80.963 (4)°

  • V = 1228.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.28 × 0.23 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.981

  • 19042 measured reflections

  • 4821 independent reflections

  • 2608 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.138

  • S = 1.00

  • 4821 reflections

  • 361 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.82 2.537 (2) 145
N2—H2A⋯N3 0.80 (2) 2.26 (2) 2.654 (3) 111.5 (17)
O3—H3A⋯N5 0.82 1.82 2.534 (3) 145
N6—H6⋯N7 0.80 (3) 2.21 (3) 2.628 (3) 113 (3)
C3—H3⋯O3i 0.93 2.59 3.403 (3) 146
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was prepared in continuation of our interest in the synthesis of compounds containing the moiety pyrazine-2-carbohydrazide (Hameed et al., 2013).

The title compound crystallized with two independent molecules (A and B) in the asymmetric unit, Fig. 1. In molecule A, the 1-(2-hydroxyphenyl)ethanone (C1—C8/O1) moiety and the pyrazine-2-carbohydrazide moiety (C9–C13/N1–N4/O2) are almost planar with r.m.s. deviations of 0.0348 Å and 0.0428 Å, respectively. They are inclined to one another by 6.289 (44)°. In molecule B, similar groups (C14—C21/O3) and (C22—C26/N5—N8/O4) are planar with r.m.s. deviations of 0.0111 and 0.019 Å, respectively, and are inclined to one another by only 0.305 (21)° i.e. almost coplanar.

There exist strong intramolecular N—H···N and O—H···N hydrogen bonds in each molecule (Table 1 and Fig. 1) forming S(5) and S(6) ring motifs (Bernstein et al., 1995).

In the crystal, molecules A and B are linked by a C—H···O hydrogen bond (Table 1 and Fig. 2). They stack along the a axis direction forming columns with ππ interactions involving inversion related pyrazine and benzene rings. The centroid-to-centroid distances are 3.5489 (13) Å [Cg1—Cg2i], 3.6289 (13) Å [Cg1—Cg2ii], 3.7738 (16) Å [Cg3—Cg4iii], and 3.8513 (16) Å [Cg3—Cg4iv], where Cg1, Cg2, Cg3 and Cg4 are the centroids of rings (C10/N3/C11/C12/N4/C13), (C1—C6), (C23/N7/C24/C25/N8/C26) and (C14—C19), respectively [symmetry codes: (i) = -x, - y, -z; (ii) = - x+1, - y, -z; (iii) = -x, - y+1, - z+1; (iv) = - x+1, - y+1, - z+1].

Related literature top

For a related crystal structure and other studies, see: Hameed et al. (2013). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by the condensation of an equimolar ratio of pyrazine-2-carbohydrazide (0.50 g, 3.6 mmol) and 1-(2-hydroxyphenyl)ethanone (0.45 ml, 3.6 mmol) in methanol by stirring well and then refluxing of 5 h. The resulting reaction mixture was allowed to cool over night. The precipitated solid was filtered, washed with petroleum ether and recrystallized from chloroform in petroleum ether and then dried under reduced pressure over CaCl2 to give colourless prisms.

Refinement top

The H-atom of the amide and one of the methyl groups were refined with Uiso(H) = 1.2Ueq(N) and = 1.5Ueq(C-methyl). The other H-atoms were positioned geometrically (C–H = 0.93 - 0.96 Å, O–H = 0.82 Å) and refined as riding with Uiso(H) = x × Ueq(C,N,O), where x = 1.5 for hydroxy and methyl H atoms and = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. The crystal packing diagram of the title compound, viewed along the a axis. The various hydrogen bonds are shown as dashed lines (see Table 1 for details).
N'-[(E)-1-(2-Hydroxyphenyl)ethylidene]pyrazine-2-carbohydrazide top
Crystal data top
C13H12N4O2Z = 4
Mr = 256.27F(000) = 536
Triclinic, P1Dx = 1.386 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1767 (7) ÅCell parameters from 2608 reflections
b = 10.1743 (10) Åθ = 1.2–26.0°
c = 17.1150 (17) ŵ = 0.10 mm1
α = 86.172 (3)°T = 296 K
β = 85.275 (2)°Prism, colourless
γ = 80.963 (4)°0.28 × 0.23 × 0.20 mm
V = 1228.2 (2) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4821 independent reflections
Radiation source: fine-focus sealed tube2608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 1.2°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1212
Tmin = 0.973, Tmax = 0.981l = 2121
19042 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2363P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4821 reflectionsΔρmax = 0.23 e Å3
361 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0083 (12)
Crystal data top
C13H12N4O2γ = 80.963 (4)°
Mr = 256.27V = 1228.2 (2) Å3
Triclinic, P1Z = 4
a = 7.1767 (7) ÅMo Kα radiation
b = 10.1743 (10) ŵ = 0.10 mm1
c = 17.1150 (17) ÅT = 296 K
α = 86.172 (3)°0.28 × 0.23 × 0.20 mm
β = 85.275 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4821 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2608 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.981Rint = 0.048
19042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.23 e Å3
4821 reflectionsΔρmin = 0.16 e Å3
361 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4150 (3)0.07549 (16)0.16151 (9)0.0602 (7)
O20.2080 (2)0.19271 (16)0.05633 (10)0.0582 (6)
N10.2781 (2)0.04641 (18)0.02111 (10)0.0372 (6)
N20.2155 (3)0.04221 (18)0.03446 (11)0.0398 (7)
N30.0878 (2)0.20255 (18)0.14825 (12)0.0456 (7)
N40.0423 (3)0.46305 (19)0.11955 (14)0.0545 (8)
C10.4198 (3)0.2026 (2)0.14404 (14)0.0421 (8)
C20.4732 (3)0.2888 (3)0.20396 (15)0.0561 (10)
C30.4803 (3)0.4192 (3)0.19149 (17)0.0604 (11)
C40.4368 (3)0.4658 (2)0.11752 (17)0.0560 (10)
C50.3875 (3)0.3803 (2)0.05687 (14)0.0448 (8)
C60.3735 (3)0.2475 (2)0.06741 (13)0.0358 (7)
C70.3094 (3)0.1610 (2)0.00190 (12)0.0352 (7)
C80.2827 (3)0.2063 (2)0.08019 (13)0.0515 (9)
C90.1834 (3)0.1606 (2)0.01156 (14)0.0382 (8)
C100.1186 (3)0.2501 (2)0.07671 (13)0.0371 (8)
C110.0343 (3)0.2871 (3)0.20495 (16)0.0561 (10)
C120.0136 (3)0.4158 (3)0.19042 (17)0.0573 (10)
C130.0928 (3)0.3772 (2)0.06276 (15)0.0469 (9)
O30.2432 (3)0.48626 (18)0.34993 (10)0.0754 (8)
O40.1729 (3)0.7739 (2)0.48091 (12)0.0870 (9)
N50.2460 (3)0.5031 (2)0.49687 (11)0.0491 (7)
N60.2206 (3)0.5847 (2)0.55841 (12)0.0557 (8)
N70.1834 (3)0.7165 (2)0.68710 (12)0.0550 (8)
N80.0968 (3)0.9941 (2)0.68391 (16)0.0754 (10)
C140.2858 (3)0.3535 (3)0.36491 (14)0.0500 (9)
C150.3115 (4)0.2738 (3)0.30127 (15)0.0617 (11)
C160.3510 (4)0.1389 (3)0.31072 (17)0.0671 (11)
C170.3662 (4)0.0795 (3)0.38440 (19)0.0747 (11)
C180.3421 (4)0.1569 (3)0.44851 (16)0.0682 (11)
C190.3018 (3)0.2958 (2)0.44095 (13)0.0454 (8)
C200.2773 (3)0.3760 (3)0.51033 (13)0.0496 (9)
C210.2897 (7)0.3111 (4)0.5907 (2)0.104 (2)
C220.1843 (4)0.7184 (3)0.54528 (16)0.0556 (10)
C230.1605 (3)0.7897 (3)0.62001 (15)0.0502 (9)
C240.1623 (4)0.7838 (3)0.75194 (15)0.0633 (10)
C250.1216 (4)0.9200 (3)0.74989 (18)0.0689 (11)
C260.1158 (4)0.9267 (3)0.61878 (17)0.0693 (11)
H10.368900.035500.123400.0900*
H20.505200.257800.253900.0670*
H2A0.202 (3)0.031 (2)0.0805 (13)0.0480*
H30.514500.476500.233000.0720*
H40.440800.554500.108800.0670*
H50.362500.411900.006800.0540*
H8A0.272200.131100.116400.0770*
H8B0.169500.270200.085700.0770*
H8C0.389400.246600.091100.0770*
H110.010000.258900.255900.0670*
H120.022000.471800.232300.0690*
H130.111500.404200.011500.0560*
H3A0.236900.524400.391000.1130*
H60.234 (4)0.557 (3)0.6029 (15)0.0670*
H150.301400.313400.250900.0740*
H160.367600.087200.267200.0810*
H170.392800.012800.391200.0900*
H180.353000.115400.498400.0820*
H21A0.250 (6)0.367 (4)0.628 (3)0.1560*
H21B0.409 (6)0.269 (4)0.598 (2)0.1560*
H21C0.210 (6)0.246 (4)0.597 (2)0.1560*
H240.175700.737000.800200.0760*
H250.111000.962300.796900.0820*
H260.098300.973800.570800.0830*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0827 (13)0.0529 (11)0.0456 (11)0.0117 (9)0.0008 (9)0.0108 (9)
O20.0818 (12)0.0506 (10)0.0459 (11)0.0196 (9)0.0032 (9)0.0089 (9)
N10.0369 (10)0.0324 (10)0.0419 (11)0.0046 (8)0.0035 (8)0.0004 (9)
N20.0458 (11)0.0354 (11)0.0388 (12)0.0082 (8)0.0029 (9)0.0019 (10)
N30.0471 (11)0.0425 (12)0.0472 (13)0.0096 (9)0.0004 (9)0.0001 (10)
N40.0479 (12)0.0366 (12)0.0775 (17)0.0067 (9)0.0032 (11)0.0063 (12)
C10.0404 (13)0.0423 (14)0.0440 (15)0.0061 (10)0.0073 (10)0.0003 (12)
C20.0533 (16)0.0713 (19)0.0426 (16)0.0109 (13)0.0040 (12)0.0079 (14)
C30.0508 (16)0.066 (2)0.066 (2)0.0227 (13)0.0113 (14)0.0253 (16)
C40.0527 (15)0.0438 (15)0.075 (2)0.0178 (12)0.0159 (14)0.0102 (15)
C50.0430 (13)0.0397 (14)0.0530 (16)0.0082 (10)0.0080 (11)0.0020 (12)
C60.0310 (11)0.0341 (13)0.0418 (14)0.0024 (9)0.0072 (9)0.0012 (10)
C70.0321 (11)0.0322 (13)0.0409 (14)0.0008 (9)0.0061 (9)0.0049 (10)
C80.0696 (16)0.0409 (14)0.0450 (15)0.0124 (12)0.0007 (12)0.0045 (12)
C90.0372 (12)0.0332 (13)0.0449 (15)0.0032 (10)0.0080 (10)0.0054 (11)
C100.0305 (11)0.0331 (13)0.0468 (15)0.0021 (9)0.0048 (10)0.0005 (11)
C110.0584 (16)0.0580 (17)0.0517 (17)0.0135 (13)0.0022 (12)0.0015 (14)
C120.0470 (15)0.0517 (17)0.071 (2)0.0116 (12)0.0003 (13)0.0166 (15)
C130.0451 (14)0.0353 (14)0.0600 (17)0.0040 (11)0.0044 (12)0.0044 (13)
O30.1333 (18)0.0556 (12)0.0381 (11)0.0212 (11)0.0008 (11)0.0001 (9)
O40.148 (2)0.0666 (13)0.0462 (13)0.0209 (13)0.0017 (12)0.0016 (11)
N50.0622 (13)0.0506 (13)0.0357 (12)0.0122 (10)0.0009 (9)0.0085 (10)
N60.0763 (15)0.0575 (15)0.0338 (12)0.0110 (11)0.0004 (11)0.0090 (12)
N70.0584 (13)0.0605 (14)0.0467 (14)0.0059 (10)0.0033 (10)0.0146 (12)
N80.0934 (19)0.0602 (16)0.0776 (19)0.0186 (13)0.0074 (15)0.0238 (15)
C140.0542 (15)0.0568 (17)0.0399 (15)0.0139 (12)0.0040 (11)0.0066 (13)
C150.0750 (19)0.071 (2)0.0413 (16)0.0182 (15)0.0036 (13)0.0133 (14)
C160.0650 (18)0.080 (2)0.058 (2)0.0068 (15)0.0027 (14)0.0279 (17)
C170.092 (2)0.0533 (17)0.077 (2)0.0073 (15)0.0161 (17)0.0223 (17)
C180.087 (2)0.0600 (19)0.0557 (18)0.0001 (15)0.0147 (15)0.0041 (15)
C190.0470 (14)0.0497 (15)0.0397 (15)0.0068 (11)0.0023 (11)0.0055 (12)
C200.0567 (15)0.0554 (17)0.0361 (14)0.0074 (12)0.0025 (11)0.0026 (12)
C210.194 (5)0.072 (3)0.0387 (19)0.002 (3)0.011 (2)0.0014 (17)
C220.0675 (17)0.0532 (18)0.0481 (18)0.0152 (13)0.0005 (13)0.0078 (14)
C230.0532 (15)0.0532 (16)0.0468 (17)0.0140 (12)0.0013 (12)0.0101 (13)
C240.0668 (17)0.075 (2)0.0491 (17)0.0044 (14)0.0086 (13)0.0206 (15)
C250.0684 (19)0.076 (2)0.066 (2)0.0119 (16)0.0047 (15)0.0304 (18)
C260.091 (2)0.0570 (19)0.063 (2)0.0200 (15)0.0050 (15)0.0071 (16)
Geometric parameters (Å, º) top
O1—C11.353 (3)C11—C121.382 (4)
O2—C91.219 (3)C2—H20.9300
O1—H10.8200C3—H30.9300
O3—C141.349 (3)C4—H40.9300
O4—C221.207 (3)C5—H50.9300
O3—H3A0.8200C8—H8B0.9600
N1—N21.364 (3)C8—H8C0.9600
N1—C71.290 (3)C8—H8A0.9600
N2—C91.350 (3)C11—H110.9300
N3—C111.327 (3)C12—H120.9300
N3—C101.335 (3)C13—H130.9300
N4—C131.329 (3)C14—C151.384 (4)
N4—C121.323 (4)C14—C191.398 (3)
N2—H2A0.80 (2)C15—C161.359 (4)
N5—N61.367 (3)C16—C171.367 (4)
N5—C201.286 (4)C17—C181.377 (4)
N6—C221.351 (4)C18—C191.397 (4)
N7—C241.328 (3)C19—C201.469 (3)
N7—C231.334 (3)C20—C211.489 (4)
N8—C251.324 (4)C22—C231.497 (4)
N8—C261.334 (4)C23—C261.380 (4)
N6—H60.80 (3)C24—C251.369 (4)
C1—C61.414 (3)C15—H150.9300
C1—C21.374 (4)C16—H160.9300
C2—C31.367 (4)C17—H170.9300
C3—C41.376 (4)C18—H180.9300
C4—C51.369 (3)C21—H21A0.88 (5)
C5—C61.395 (3)C21—H21B0.91 (4)
C6—C71.468 (3)C21—H21C0.94 (4)
C7—C81.496 (3)C24—H240.9300
C9—C101.484 (3)C25—H250.9300
C10—C131.374 (3)C26—H260.9300
C1—O1—H1109.00C7—C8—H8A109.00
C14—O3—H3A110.00N3—C11—H11119.00
N2—N1—C7120.53 (18)C12—C11—H11119.00
N1—N2—C9118.47 (18)N4—C12—H12118.00
C10—N3—C11115.5 (2)C11—C12—H12119.00
C12—N4—C13115.0 (2)C10—C13—H13119.00
C9—N2—H2A116.9 (15)N4—C13—H13119.00
N1—N2—H2A124.6 (15)C15—C14—C19120.1 (3)
N6—N5—C20119.58 (19)O3—C14—C15117.3 (2)
N5—N6—C22120.3 (2)O3—C14—C19122.6 (2)
C23—N7—C24115.9 (2)C14—C15—C16121.5 (3)
C25—N8—C26115.2 (2)C15—C16—C17119.8 (3)
C22—N6—H6117 (2)C16—C17—C18119.7 (3)
N5—N6—H6123 (2)C17—C18—C19122.0 (3)
O1—C1—C2117.5 (2)C18—C19—C20120.9 (2)
C2—C1—C6120.1 (2)C14—C19—C18116.9 (2)
O1—C1—C6122.37 (19)C14—C19—C20122.2 (2)
C1—C2—C3121.3 (2)N5—C20—C21123.2 (3)
C2—C3—C4120.0 (3)N5—C20—C19116.0 (2)
C3—C4—C5119.4 (2)C19—C20—C21120.8 (3)
C4—C5—C6122.5 (2)O4—C22—N6124.0 (3)
C1—C6—C5116.7 (2)O4—C22—C23123.9 (3)
C1—C6—C7122.37 (18)N6—C22—C23112.0 (2)
C5—C6—C7120.9 (2)C22—C23—C26120.6 (2)
N1—C7—C6115.00 (18)N7—C23—C22117.8 (3)
C6—C7—C8121.04 (18)N7—C23—C26121.6 (2)
N1—C7—C8123.96 (19)N7—C24—C25122.0 (3)
O2—C9—N2123.4 (2)N8—C25—C24122.9 (3)
O2—C9—C10122.60 (19)N8—C26—C23122.4 (3)
N2—C9—C10114.0 (2)C14—C15—H15119.00
N3—C10—C13122.1 (2)C16—C15—H15119.00
C9—C10—C13120.3 (2)C15—C16—H16120.00
N3—C10—C9117.61 (18)C17—C16—H16120.00
N3—C11—C12121.8 (3)C16—C17—H17120.00
N4—C12—C11122.9 (3)C18—C17—H17120.00
N4—C13—C10122.7 (2)C17—C18—H18119.00
C3—C2—H2119.00C19—C18—H18119.00
C1—C2—H2119.00C20—C21—H21A113 (3)
C2—C3—H3120.00C20—C21—H21B111 (2)
C4—C3—H3120.00C20—C21—H21C109 (2)
C3—C4—H4120.00H21A—C21—H21B111 (4)
C5—C4—H4120.00H21A—C21—H21C106 (4)
C4—C5—H5119.00H21B—C21—H21C107 (4)
C6—C5—H5119.00N7—C24—H24119.00
H8A—C8—H8B110.00C25—C24—H24119.00
H8A—C8—H8C109.00N8—C25—H25119.00
C7—C8—H8C109.00C24—C25—H25119.00
C7—C8—H8B109.00N8—C26—H26119.00
H8B—C8—H8C110.00C23—C26—H26119.00
C7—N1—N2—C9179.6 (2)C1—C6—C7—N17.5 (3)
N2—N1—C7—C6179.11 (18)C1—C6—C7—C8173.0 (2)
N2—N1—C7—C80.5 (3)C5—C6—C7—C88.5 (3)
N1—N2—C9—O20.2 (3)N2—C9—C10—N34.2 (3)
N1—N2—C9—C10179.11 (18)N2—C9—C10—C13175.6 (2)
C11—N3—C10—C9178.49 (19)O2—C9—C10—N3177.0 (2)
C11—N3—C10—C131.2 (3)O2—C9—C10—C133.3 (3)
C10—N3—C11—C120.5 (3)N3—C10—C13—N42.5 (3)
C13—N4—C12—C110.0 (3)C9—C10—C13—N4177.2 (2)
C12—N4—C13—C101.8 (3)N3—C11—C12—N41.1 (4)
C20—N5—N6—C22178.8 (2)O3—C14—C15—C16178.7 (3)
N6—N5—C20—C19179.7 (2)C19—C14—C15—C160.5 (4)
N6—N5—C20—C210.7 (4)O3—C14—C19—C18178.5 (2)
N5—N6—C22—O40.4 (4)O3—C14—C19—C201.3 (3)
N5—N6—C22—C23179.8 (2)C15—C14—C19—C180.6 (3)
C24—N7—C23—C22179.6 (2)C15—C14—C19—C20179.5 (2)
C24—N7—C23—C260.6 (4)C14—C15—C16—C170.1 (4)
C23—N7—C24—C250.7 (4)C15—C16—C17—C180.3 (4)
C26—N8—C25—C240.5 (4)C16—C17—C18—C190.1 (4)
C25—N8—C26—C230.8 (4)C17—C18—C19—C140.3 (4)
O1—C1—C6—C5178.8 (2)C17—C18—C19—C20179.8 (2)
O1—C1—C6—C72.6 (3)C14—C19—C20—N52.1 (3)
C2—C1—C6—C7177.9 (2)C14—C19—C20—C21178.2 (3)
O1—C1—C2—C3179.5 (2)C18—C19—C20—N5178.1 (2)
C2—C1—C6—C50.8 (3)C18—C19—C20—C211.7 (4)
C6—C1—C2—C30.9 (3)O4—C22—C23—N7177.6 (3)
C1—C2—C3—C41.2 (4)O4—C22—C23—C262.6 (4)
C2—C3—C4—C50.3 (3)N6—C22—C23—N72.2 (3)
C3—C4—C5—C62.1 (3)N6—C22—C23—C26177.6 (2)
C4—C5—C6—C7176.4 (2)N7—C23—C26—N81.4 (4)
C4—C5—C6—C12.3 (3)C22—C23—C26—N8178.8 (2)
C5—C6—C7—N1171.1 (2)N7—C24—C25—N81.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.822.537 (2)145
N2—H2A···N30.80 (2)2.26 (2)2.654 (3)111.5 (17)
O3—H3A···N50.821.822.534 (3)145
N6—H6···N70.80 (3)2.21 (3)2.628 (3)113 (3)
C3—H3···O3i0.932.593.403 (3)146
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.822.537 (2)145
N2—H2A···N30.80 (2)2.26 (2)2.654 (3)111.5 (17)
O3—H3A···N50.821.822.534 (3)145
N6—H6···N70.80 (3)2.21 (3)2.628 (3)113 (3)
C3—H3···O3i0.932.593.403 (3)146
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan, and also thank the Higher Education Commission (HEC) of Pakistan for financial support. MA is grateful to the Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories of Pakistan for financial support through out his study leave.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHameed, S., Ahmad, M., Tahir, M. N., Shah, M. A. & Shad, H. A. (2013). Acta Cryst. E69, o1141.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds