organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Cyclo­hexyl-3-ethyl­sulfinyl-2-(3-fluoro­phen­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 13 August 2013; accepted 18 August 2013; online 23 August 2013)

In the title compound, C22H23FO2S, the cyclo­hexyl ring adopts a chair conformation. The dihedral angle between the mean plane [r.m.s. deviation = 0.013 (2) Å] of the benzo­furan ring system and the mean plane [r.m.s. deviation = 0.009 (2) Å] of the 3-fluoro­phenyl ring is 24.80 (4)°. In the crystal, mol­ecules are connected by C—H⋯O hydrogen bonds, forming chains along [10-1]. These chains are linked via C—H⋯F hydrogen bonds, forming a three-dimensional structure. There are also inter­planar inter­actions present involving the furan ring of the benzo­furan ring system and the 3-fluoro­phenyl ring [centroid–centroid distance = 3.728 (2) Å].

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2011[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o470.], 2012[Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o944.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23FO2S

  • Mr = 370.46

  • Monoclinic, C c

  • a = 15.1363 (5) Å

  • b = 15.9252 (6) Å

  • c = 10.6440 (6) Å

  • β = 133.053 (1)°

  • V = 1874.83 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.40 × 0.29 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.634, Tmax = 0.746

  • 8392 measured reflections

  • 3085 independent reflections

  • 2842 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.074

  • S = 1.04

  • 3085 reflections

  • 237 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1045 (51%) Friedel pairs

  • Absolute structure parameter: 0.05 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O2i 0.95 2.54 3.291 (3) 136
C3—H3⋯F1ii 0.95 2.54 3.438 (3) 159
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z-1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing study of 5-cyclohexyl-1-benzofuran derivatives containing [2-(4-fluorophenyl)-3-methylsulfinyl] (Choi et al., 2011) and [2-(3-fluorophenyl)-3-methylsulfinyl] (Choi et al., 2012) substituents, we report herein on the crystal structure of the title compound.

The title compound crystallizes in the non-centrosymmetric space group Cc in spite of having no asymmetric C atoms.

In the title molecule, Fig. 1, the cyclohexyl ring adopts a chair conformation. The benzofuran ring system is essentially planar, with a mean deviation of 0.013 (2) Å from the mean plane defined by the nine non-H atoms. The 3-fluorophenyl ring is essentially planar, with a mean deviation of 0.009 (2) Å from the mean plane defined by the six non-H atoms. The dihedral angle formed by the benzofuran ring system and the 3-fluorophenyl ring is 24.80 (4)°.

In the crystal structure, molecules are connected by weak C—H···O hydrogen bonds (Table 1), forming chains along the [10-1] direction.

In the crystal, molecules are connected by C—H···O hydrogen bonds forming chains along the [10-1] direction (Table 1). These chains are linked via C-H···F hydrogen bonds forming a three-dimensional structure (Table 1). There are also inter-planar interactions present involving the furan ring of the benzofuran ring system and the 3-fluorophenyl ring [Cg1–Cg2i = 3.728 (2) Å; Cg1 and Cg2 are the centroids of rings O1/C1/C2/C7/C8 and C15–C20, respectively; symmetry code: (i) x, -y+1, z-1/2].

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2011, 2012).

Experimental top

3-Chloroperoxybenzoic acid (77%, 202 mg, 0.9 mmol) was added in small portions to a stirred solution of 5-cyclohexyl-3-ethylsulfanyl-2-(3-fluorophenyl)-1-benzofuran (283 mg, 0.8 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colourless solid [yield 70%, m.p. 417–418 K; Rf = 0.68 (hexane-ethyl acetate, 2:1 v/v)]. Colourless block-like crystals, suitable for X-ray diffraction analysis, were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

The reported Flack parameter was obtained using the TWIN/BASF procedure in SHELXL (Sheldrick, 2008). All H atoms were positioned geometrically and refined using a riding model: C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
5-Cyclohexyl-3-ethylsulfinyl-2-(3-fluorophenyl)-1-benzofuran top
Crystal data top
C22H23FO2SF(000) = 784
Mr = 370.46Dx = 1.312 Mg m3
Monoclinic, CcMelting point = 417–418 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 15.1363 (5) ÅCell parameters from 3291 reflections
b = 15.9252 (6) Åθ = 2.2–27.2°
c = 10.6440 (6) ŵ = 0.20 mm1
β = 133.053 (1)°T = 173 K
V = 1874.83 (14) Å3Block, colourless
Z = 40.40 × 0.29 × 0.19 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3085 independent reflections
Radiation source: rotating anode2842 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.2°
ϕ and ω scansh = 1719
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2020
Tmin = 0.634, Tmax = 0.746l = 1213
8392 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.634P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3085 reflectionsΔρmax = 0.17 e Å3
237 parametersΔρmin = 0.22 e Å3
2 restraintsAbsolute structure: Flack (1983), 1045 (51%) Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (7)
Crystal data top
C22H23FO2SV = 1874.83 (14) Å3
Mr = 370.46Z = 4
Monoclinic, CcMo Kα radiation
a = 15.1363 (5) ŵ = 0.20 mm1
b = 15.9252 (6) ÅT = 173 K
c = 10.6440 (6) Å0.40 × 0.29 × 0.19 mm
β = 133.053 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3085 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2842 reflections with I > 2σ(I)
Tmin = 0.634, Tmax = 0.746Rint = 0.030
8392 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.17 e Å3
S = 1.04Δρmin = 0.22 e Å3
3085 reflectionsAbsolute structure: Flack (1983), 1045 (51%) Friedel pairs
237 parametersAbsolute structure parameter: 0.05 (7)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58145 (5)0.71011 (3)0.55769 (7)0.02664 (12)
F10.83575 (15)0.34959 (9)1.0261 (2)0.0578 (4)
O10.60897 (13)0.48023 (8)0.44611 (19)0.0295 (3)
O20.45182 (14)0.73581 (10)0.4371 (2)0.0398 (4)
C10.58675 (18)0.61762 (12)0.4704 (3)0.0256 (4)
C20.50850 (19)0.59876 (12)0.2895 (3)0.0264 (4)
C30.42931 (19)0.64416 (13)0.1364 (3)0.0272 (4)
H30.41630.70230.13830.033*
C40.36966 (19)0.60334 (14)0.0189 (3)0.0312 (5)
C50.3890 (2)0.51695 (14)0.0187 (3)0.0333 (5)
H50.34760.48940.12540.040*
C60.4665 (2)0.47071 (14)0.1317 (3)0.0318 (5)
H60.47840.41220.13060.038*
C70.52538 (18)0.51362 (13)0.2826 (3)0.0280 (5)
C80.64494 (19)0.54532 (13)0.5576 (3)0.0276 (4)
C90.2871 (2)0.65312 (15)0.1847 (3)0.0336 (5)
H90.28120.71120.15530.040*
C100.1585 (2)0.61773 (18)0.3167 (3)0.0428 (6)
H10A0.12360.61480.26510.051*
H10B0.16110.56010.34880.051*
C110.0782 (2)0.6728 (2)0.4780 (3)0.0504 (7)
H11A0.00300.64710.56360.061*
H11B0.06880.72880.44770.061*
C120.1316 (2)0.68312 (19)0.5568 (3)0.0516 (7)
H12A0.08100.72270.65480.062*
H12B0.13050.62820.60150.062*
C130.2609 (2)0.71598 (18)0.4262 (3)0.0489 (7)
H13A0.26100.77410.39310.059*
H13B0.29520.71720.47880.059*
C140.3392 (2)0.66032 (16)0.2663 (3)0.0399 (6)
H14A0.34520.60360.29810.048*
H14B0.42180.68410.18140.048*
C150.73455 (18)0.52553 (13)0.7407 (3)0.0284 (4)
C160.8090 (2)0.58784 (14)0.8612 (3)0.0367 (5)
H160.80540.64300.82400.044*
C170.8882 (2)0.57015 (16)1.0350 (3)0.0449 (6)
H170.93670.61381.11600.054*
C180.8980 (2)0.49001 (16)1.0925 (3)0.0430 (6)
H180.95240.47751.21180.052*
C190.8258 (2)0.42899 (14)0.9703 (3)0.0388 (6)
C200.7442 (2)0.44338 (14)0.7971 (3)0.0335 (5)
H200.69570.39920.71740.040*
C210.6568 (2)0.78020 (13)0.5232 (3)0.0344 (5)
H21A0.74110.76130.59180.041*
H21B0.61490.77960.40030.041*
C220.6564 (3)0.86840 (15)0.5760 (4)0.0450 (6)
H22A0.69820.86870.69770.067*
H22B0.57280.88730.50620.067*
H22C0.69810.90630.55810.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0314 (3)0.0225 (2)0.0276 (2)0.0004 (2)0.0208 (2)0.0017 (2)
F10.0739 (11)0.0365 (8)0.0653 (10)0.0167 (7)0.0484 (10)0.0247 (7)
O10.0322 (8)0.0221 (7)0.0342 (8)0.0004 (6)0.0227 (7)0.0020 (6)
O20.0349 (9)0.0331 (8)0.0494 (10)0.0030 (7)0.0280 (9)0.0051 (7)
C10.0253 (10)0.0232 (10)0.0292 (10)0.0023 (8)0.0190 (9)0.0019 (8)
C20.0274 (11)0.0246 (10)0.0329 (11)0.0038 (8)0.0229 (10)0.0056 (9)
C30.0276 (11)0.0244 (11)0.0286 (11)0.0008 (8)0.0188 (9)0.0029 (8)
C40.0282 (11)0.0370 (12)0.0308 (11)0.0022 (9)0.0210 (10)0.0052 (9)
C50.0356 (13)0.0347 (12)0.0362 (13)0.0107 (10)0.0271 (11)0.0141 (10)
C60.0369 (12)0.0269 (11)0.0434 (13)0.0050 (9)0.0320 (11)0.0086 (10)
C70.0275 (11)0.0254 (10)0.0363 (12)0.0016 (8)0.0238 (10)0.0012 (9)
C80.0268 (11)0.0244 (10)0.0339 (11)0.0031 (8)0.0216 (10)0.0020 (9)
C90.0346 (12)0.0344 (12)0.0278 (11)0.0030 (9)0.0197 (10)0.0071 (9)
C100.0324 (13)0.0575 (16)0.0352 (13)0.0044 (11)0.0218 (11)0.0027 (11)
C110.0326 (13)0.0697 (18)0.0335 (15)0.0013 (13)0.0165 (12)0.0023 (12)
C120.0475 (16)0.0666 (18)0.0285 (13)0.0011 (13)0.0213 (13)0.0014 (13)
C130.0506 (16)0.0627 (18)0.0363 (14)0.0076 (13)0.0308 (13)0.0033 (12)
C140.0368 (14)0.0499 (14)0.0327 (12)0.0079 (11)0.0236 (11)0.0043 (11)
C150.0251 (11)0.0269 (11)0.0344 (12)0.0033 (8)0.0208 (10)0.0044 (9)
C160.0297 (12)0.0310 (12)0.0370 (12)0.0006 (10)0.0178 (11)0.0060 (10)
C170.0337 (13)0.0430 (14)0.0369 (14)0.0021 (10)0.0159 (12)0.0002 (11)
C180.0364 (14)0.0501 (15)0.0340 (13)0.0107 (11)0.0207 (12)0.0121 (11)
C190.0394 (14)0.0333 (13)0.0502 (15)0.0150 (10)0.0331 (13)0.0181 (11)
C200.0358 (13)0.0259 (11)0.0430 (13)0.0042 (9)0.0285 (12)0.0030 (9)
C210.0406 (13)0.0272 (11)0.0447 (13)0.0064 (9)0.0328 (12)0.0050 (10)
C220.0591 (17)0.0266 (12)0.0598 (16)0.0072 (11)0.0447 (15)0.0078 (11)
Geometric parameters (Å, º) top
S1—O21.4920 (16)C11—H11A0.9900
S1—C11.772 (2)C11—H11B0.9900
S1—C211.804 (2)C12—C131.524 (4)
F1—C191.361 (3)C12—H12A0.9900
O1—C81.377 (2)C12—H12B0.9900
O1—C71.381 (3)C13—C141.527 (4)
C1—C81.359 (3)C13—H13A0.9900
C1—C21.445 (3)C13—H13B0.9900
C2—C71.391 (3)C14—H14A0.9900
C2—C31.396 (3)C14—H14B0.9900
C3—C41.390 (3)C15—C161.388 (3)
C3—H30.9500C15—C201.405 (3)
C4—C51.406 (3)C16—C171.382 (3)
C4—C91.514 (3)C16—H160.9500
C5—C61.385 (3)C17—C181.379 (3)
C5—H50.9500C17—H170.9500
C6—C71.373 (3)C18—C191.375 (4)
C6—H60.9500C18—H180.9500
C8—C151.459 (3)C19—C201.367 (3)
C9—C141.526 (3)C20—H200.9500
C9—C101.531 (3)C21—C221.514 (3)
C9—H91.0000C21—H21A0.9900
C10—C111.531 (4)C21—H21B0.9900
C10—H10A0.9900C22—H22A0.9800
C10—H10B0.9900C22—H22B0.9800
C11—C121.519 (4)C22—H22C0.9800
O2—S1—C1106.30 (10)C11—C12—H12A109.3
O2—S1—C21107.36 (11)C13—C12—H12A109.3
C1—S1—C2198.42 (10)C11—C12—H12B109.3
C8—O1—C7106.23 (15)C13—C12—H12B109.3
C8—C1—C2107.06 (18)H12A—C12—H12B107.9
C8—C1—S1125.93 (17)C12—C13—C14110.7 (2)
C2—C1—S1125.60 (16)C12—C13—H13A109.5
C7—C2—C3119.02 (19)C14—C13—H13A109.5
C7—C2—C1105.08 (18)C12—C13—H13B109.5
C3—C2—C1135.88 (18)C14—C13—H13B109.5
C4—C3—C2119.28 (19)H13A—C13—H13B108.1
C4—C3—H3120.4C9—C14—C13111.6 (2)
C2—C3—H3120.4C9—C14—H14A109.3
C3—C4—C5119.4 (2)C13—C14—H14A109.3
C3—C4—C9119.34 (19)C9—C14—H14B109.3
C5—C4—C9121.28 (19)C13—C14—H14B109.3
C6—C5—C4122.20 (19)H14A—C14—H14B108.0
C6—C5—H5118.9C16—C15—C20119.3 (2)
C4—C5—H5118.9C16—C15—C8120.53 (19)
C7—C6—C5116.7 (2)C20—C15—C8120.2 (2)
C7—C6—H6121.7C17—C16—C15120.4 (2)
C5—C6—H6121.7C17—C16—H16119.8
C6—C7—O1125.95 (18)C15—C16—H16119.8
C6—C7—C2123.4 (2)C18—C17—C16121.0 (2)
O1—C7—C2110.60 (17)C18—C17—H17119.5
C1—C8—O1111.02 (19)C16—C17—H17119.5
C1—C8—C15132.3 (2)C19—C18—C17117.3 (2)
O1—C8—C15116.66 (18)C19—C18—H18121.3
C4—C9—C14111.50 (19)C17—C18—H18121.3
C4—C9—C10113.44 (19)F1—C19—C20118.3 (2)
C14—C9—C10109.39 (18)F1—C19—C18117.6 (2)
C4—C9—H9107.4C20—C19—C18124.1 (2)
C14—C9—H9107.4C19—C20—C15117.8 (2)
C10—C9—H9107.4C19—C20—H20121.1
C9—C10—C11110.9 (2)C15—C20—H20121.1
C9—C10—H10A109.5C22—C21—S1109.59 (16)
C11—C10—H10A109.5C22—C21—H21A109.8
C9—C10—H10B109.5S1—C21—H21A109.8
C11—C10—H10B109.5C22—C21—H21B109.8
H10A—C10—H10B108.0S1—C21—H21B109.8
C12—C11—C10111.5 (2)H21A—C21—H21B108.2
C12—C11—H11A109.3C21—C22—H22A109.5
C10—C11—H11A109.3C21—C22—H22B109.5
C12—C11—H11B109.3H22A—C22—H22B109.5
C10—C11—H11B109.3C21—C22—H22C109.5
H11A—C11—H11B108.0H22A—C22—H22C109.5
C11—C12—C13111.7 (2)H22B—C22—H22C109.5
O2—S1—C1—C8131.38 (19)C3—C4—C9—C14111.2 (2)
C21—S1—C1—C8117.7 (2)C5—C4—C9—C1467.5 (3)
O2—S1—C1—C233.2 (2)C3—C4—C9—C10124.7 (2)
C21—S1—C1—C277.72 (19)C5—C4—C9—C1056.6 (3)
C8—C1—C2—C70.9 (2)C4—C9—C10—C11177.6 (2)
S1—C1—C2—C7166.14 (15)C14—C9—C10—C1157.3 (3)
C8—C1—C2—C3177.8 (2)C9—C10—C11—C1256.1 (3)
S1—C1—C2—C315.2 (4)C10—C11—C12—C1354.4 (3)
C7—C2—C3—C40.2 (3)C11—C12—C13—C1454.2 (3)
C1—C2—C3—C4178.4 (2)C4—C9—C14—C13175.7 (2)
C2—C3—C4—C50.8 (3)C10—C9—C14—C1358.0 (3)
C2—C3—C4—C9177.90 (19)C12—C13—C14—C956.6 (3)
C3—C4—C5—C60.4 (3)C1—C8—C15—C1624.8 (4)
C9—C4—C5—C6178.3 (2)O1—C8—C15—C16155.5 (2)
C4—C5—C6—C70.8 (3)C1—C8—C15—C20153.6 (2)
C5—C6—C7—O1177.80 (19)O1—C8—C15—C2026.1 (3)
C5—C6—C7—C21.5 (3)C20—C15—C16—C172.7 (3)
C8—O1—C7—C6179.5 (2)C8—C15—C16—C17175.7 (2)
C8—O1—C7—C20.2 (2)C15—C16—C17—C182.1 (4)
C3—C2—C7—C61.0 (3)C16—C17—C18—C190.1 (4)
C1—C2—C7—C6179.99 (19)C17—C18—C19—F1179.4 (2)
C3—C2—C7—O1178.33 (18)C17—C18—C19—C201.2 (4)
C1—C2—C7—O10.6 (2)F1—C19—C20—C15179.94 (19)
C2—C1—C8—O10.8 (2)C18—C19—C20—C150.6 (3)
S1—C1—C8—O1166.15 (14)C16—C15—C20—C191.4 (3)
C2—C1—C8—C15179.5 (2)C8—C15—C20—C19177.0 (2)
S1—C1—C8—C1513.5 (4)O2—S1—C21—C2265.6 (2)
C7—O1—C8—C10.4 (2)C1—S1—C21—C22175.71 (18)
C7—O1—C8—C15179.85 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.952.543.291 (3)136
C3—H3···F1ii0.952.543.438 (3)159
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1/2, y+1/2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.952.543.291 (3)136
C3—H3···F1ii0.952.543.438 (3)159
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1/2, y+1/2, z1.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o944.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o470.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds