organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Meth­­oxy­phen­yl)-2,6-di­methyl-1,3-dioxan-4-amine

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bChemistry Department, GEBH, Sree Vidyanikethan Engineering College, A. Rangampet, Tirupati 517102, India, and cCentre for Organic and Medicinal Chemistry, VIT University, Vellore 632 014, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 19 August 2013; accepted 22 August 2013; online 31 August 2013)

In the title compound, C13H19NO3, the dioxane ring adopts a chair conformation. Its mean plane is inclined to the 4-meth­oxy­phenyl ring by 70.34 (9)°. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(16) ring motif. The dimers are linked via C—H⋯π inter­actions, forming two-dimensional networks lying parallel to the ac plane.

Related literature

For biological properties of oxygen heterocycles, such as dioxane derivatives, see: Aubele et al. (2005[Aubele, D. L., Wan, S. & Floreancig, P. E. (2005). Angew. Chem. Int. Ed. 44, 3485-3488.]); Marucci et al. (2005[Marucci, G., Piero, A., Brasili, L., Buccioni, M., Giardiná, D., Gulini, U., Piergentili, A. & Sagratini, G. (2005). Med. Chem. Res. 14, 274-296.]). For some applications, see: Wang et al. (1994[Wang, G., Yuan, X.-Y., Liu, Y.-C. & Lei, X.-G. (1994). J. Am. Oil Chem. Soc. 74, 727-730.], 1996a[Wang, G. W., Yuan, X. Y., Lei, X. G. & Liu, Y. C. (1996a). Chin. J. Appl. Chem. 11, 114-115.],b[Wang, G. W., Yuan, X. Y., Liu, Y. C., Guo, Q. X. & Lei, X. G. (1996b). Indian J. Chem. Sect. B, 35, 583-585.]); Yuan et al. (2005[Yuan, X. Y., Yang, N. F., Luo, H. A. & Liu, Y. J. (2005). Chin. J. Org. Chem. 25, 1049-1052.]). For related crystal structures, see: Chuprunov et al. (1981[Chuprunov, E. V., Tarkhova, T. N., Korallova, T. Y., Simonov, M. A. & Belov, W. V. (1981). Zh. Strukt. Khim. 22, 191-192.]); Yuan et al. (2008[Yuan, X.-Y., Zhang, M. & Ng, S. W. (2008). Acta Cryst. E64, o1314.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H19NO3

  • Mr = 237.29

  • Monoclinic, P 21 /c

  • a = 9.6472 (6) Å

  • b = 13.8194 (8) Å

  • c = 10.5384 (6) Å

  • β = 114.355 (3)°

  • V = 1279.93 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]) Tmin = 0.667, Tmax = 0.746

  • 12259 measured reflections

  • 3169 independent reflections

  • 2133 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.162

  • S = 1.03

  • 3169 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of ring C2-C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.93 2.51 3.407 (2) 162
C1—H1BCg1ii 0.96 2.77 3.700 (3) 163
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Oxygen heterocycles play a vital role as basic building blocks in pharmaceutical preparations. Dioxane rings are frequently encountered in many bioactive molecules, such as cytotoxic agents (Aubele et al., 2005) and antimuscarinic agents (Marucci et al., 2005). This class of compounds also has useful insecticidal as well as anti-foaming properties (Yuan et al., 2005; Wang et al., 1994, 1996a,b). In view of the different applications of this class of compounds, we have synthesized the title derivative and report herein on its crystal structure.

In the title molecule, Fig. 1, the dioxane ring (O2/O3/C8—C11) adopts a chair conformation and its mean plane makes a dihedral angle of 70.34 (9)° with the benzene ring (C2—C7).

In the crystal, molecules are linked by pairs of C—H···O hydrogen bonds (Table 1 and Fig. 2) forming inversion dimers with an R22(16) ring motif (Bernstein et al., 1995). The dimers are linked via C-H···π interactions forming two-dimensional networks lying parallel to the ac plane (Table 1).

Related literature top

For biological properties of oxygen heterocycles, such as dioxane derivatives, see: Aubele et al. (2005); Marucci et al. (2005). For some applications, see: Wang et al. (1994, 1996a,b); Yuan et al. (2005). For related crystal structures, see: Chuprunov et al. (1981); Yuan et al. (2008). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

To 4-anisidine (1 mmol), acetaldehyde (3 mmol) was added drop wise and stirred for about 4 h at 273 K. The progress of the reaction was monitored by TLC. The reaction mixture was then washed with petroleum ether. The residue was dissolved in diethylether and the solution left for the solvent to evaporate. The solid product obtained was recrystallized from diethylether giving block-like colourless crystals of the title compound.

Refinement top

The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were placed in calculated positions refined as riding: C—H = 0.93 Å to 0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed almost perpendicular to (011). Hydrogen bonds are shown as dashed lines (see Table 1 for details; H-atoms not involved in hydrogen bonding have been omitted for clarity).
N-(4-Methoxyphenyl)-2,6-dimethyl-1,3-dioxan-4-amine top
Crystal data top
C13H19NO3F(000) = 512
Mr = 237.29Dx = 1.231 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3169 reflections
a = 9.6472 (6) Åθ = 2.3–28.3°
b = 13.8194 (8) ŵ = 0.09 mm1
c = 10.5384 (6) ÅT = 293 K
β = 114.355 (3)°Block, colourless
V = 1279.93 (13) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3169 independent reflections
Radiation source: fine-focus sealed tube2133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.667, Tmax = 0.746k = 1418
12259 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.303P]
where P = (Fo2 + 2Fc2)/3
3169 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H19NO3V = 1279.93 (13) Å3
Mr = 237.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6472 (6) ŵ = 0.09 mm1
b = 13.8194 (8) ÅT = 293 K
c = 10.5384 (6) Å0.25 × 0.20 × 0.15 mm
β = 114.355 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3169 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2133 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 0.746Rint = 0.033
12259 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
3169 reflectionsΔρmin = 0.21 e Å3
158 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56542 (16)0.15949 (11)1.12382 (14)0.0777 (5)
O20.19690 (13)0.02459 (8)0.46195 (11)0.0537 (4)
O30.11891 (13)0.03028 (9)0.22128 (11)0.0565 (4)
N10.10656 (17)0.13011 (11)0.58487 (15)0.0547 (5)
C10.5636 (3)0.09930 (17)1.2298 (2)0.0825 (8)
C20.4475 (2)0.14896 (12)0.99327 (18)0.0562 (6)
C30.4759 (2)0.17933 (13)0.88187 (19)0.0591 (6)
C40.36687 (19)0.17229 (13)0.74810 (18)0.0563 (6)
C50.22273 (18)0.13465 (11)0.72040 (17)0.0477 (5)
C60.1945 (2)0.10636 (13)0.83313 (19)0.0599 (6)
C70.3056 (2)0.11259 (13)0.96875 (19)0.0641 (7)
C80.14159 (19)0.12184 (12)0.46695 (17)0.0521 (5)
C90.0083 (2)0.14104 (13)0.33069 (18)0.0573 (6)
C100.0541 (2)0.12534 (12)0.21047 (18)0.0585 (6)
C110.24203 (19)0.01538 (14)0.35085 (18)0.0591 (6)
C120.3020 (3)0.08501 (18)0.3532 (2)0.0865 (9)
C130.0748 (2)0.13359 (16)0.0683 (2)0.0753 (7)
H10.028 (2)0.0955 (14)0.576 (2)0.065 (6)*
H1A0.650400.113101.314800.1240*
H1B0.567000.032901.204400.1240*
H1C0.472100.110501.242800.1240*
H30.570600.205100.897600.0710*
H40.389200.192900.674600.0680*
H60.098800.082600.818000.0720*
H70.284200.092201.042900.0770*
H80.222500.168100.477100.0630*
H9A0.026500.207100.329000.0690*
H9B0.074900.097900.321000.0690*
H100.131900.173300.217600.0700*
H110.322400.062500.362700.0710*
H12A0.334400.092000.278900.1300*
H12B0.223300.131200.341400.1300*
H12C0.386800.096100.440800.1300*
H13A0.036900.122800.001700.1130*
H13B0.118500.197100.057000.1130*
H13C0.151000.086100.059000.1130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0820 (9)0.0918 (10)0.0602 (8)0.0148 (8)0.0302 (7)0.0000 (7)
O20.0582 (6)0.0538 (7)0.0540 (7)0.0064 (5)0.0281 (5)0.0009 (5)
O30.0587 (7)0.0601 (7)0.0520 (7)0.0045 (5)0.0243 (6)0.0050 (5)
N10.0539 (8)0.0563 (9)0.0579 (9)0.0016 (6)0.0270 (7)0.0055 (6)
C10.1004 (16)0.0807 (14)0.0697 (13)0.0130 (12)0.0384 (12)0.0102 (11)
C20.0630 (10)0.0509 (9)0.0562 (10)0.0005 (8)0.0262 (8)0.0032 (7)
C30.0561 (9)0.0619 (11)0.0642 (11)0.0034 (8)0.0297 (9)0.0005 (8)
C40.0596 (10)0.0594 (10)0.0575 (10)0.0003 (8)0.0317 (8)0.0031 (8)
C50.0566 (9)0.0365 (7)0.0551 (9)0.0039 (6)0.0281 (8)0.0046 (6)
C60.0675 (10)0.0547 (10)0.0676 (11)0.0132 (8)0.0381 (9)0.0071 (8)
C70.0876 (13)0.0588 (11)0.0595 (11)0.0108 (9)0.0439 (10)0.0019 (8)
C80.0576 (9)0.0466 (9)0.0546 (10)0.0039 (7)0.0258 (8)0.0028 (7)
C90.0642 (10)0.0461 (9)0.0591 (10)0.0038 (7)0.0228 (8)0.0013 (7)
C100.0661 (10)0.0501 (10)0.0569 (10)0.0124 (8)0.0231 (8)0.0030 (7)
C110.0503 (9)0.0752 (12)0.0559 (10)0.0014 (8)0.0259 (8)0.0070 (8)
C120.0845 (14)0.1010 (17)0.0764 (14)0.0342 (12)0.0356 (12)0.0071 (12)
C130.0867 (14)0.0712 (13)0.0582 (11)0.0038 (11)0.0200 (10)0.0090 (9)
Geometric parameters (Å, º) top
O1—C11.399 (3)C1—H1A0.9600
O1—C21.385 (2)C1—H1B0.9600
O2—C81.455 (2)C1—H1C0.9600
O2—C111.413 (2)C3—H30.9300
O3—C101.439 (2)C4—H40.9300
O3—C111.407 (2)C6—H60.9300
N1—C51.407 (2)C7—H70.9300
N1—C81.421 (2)C8—H80.9800
N1—H10.87 (2)C9—H9A0.9700
C2—C71.379 (3)C9—H9B0.9700
C2—C31.377 (3)C10—H100.9800
C3—C41.371 (3)C11—H110.9800
C4—C51.398 (3)C12—H12A0.9600
C5—C61.380 (3)C12—H12B0.9600
C6—C71.391 (3)C12—H12C0.9600
C8—C91.504 (2)C13—H13A0.9600
C9—C101.520 (3)C13—H13B0.9600
C10—C131.506 (3)C13—H13C0.9600
C11—C121.499 (3)
C1—O1—C2117.08 (17)C4—C3—H3119.00
C8—O2—C11110.86 (13)C3—C4—H4119.00
C10—O3—C11112.07 (13)C5—C4—H4119.00
C5—N1—C8120.95 (16)C5—C6—H6119.00
C8—N1—H1111.9 (13)C7—C6—H6119.00
C5—N1—H1115.4 (13)C2—C7—H7120.00
O1—C2—C7124.74 (17)C6—C7—H7120.00
O1—C2—C3116.39 (18)O2—C8—H8109.00
C3—C2—C7118.86 (17)N1—C8—H8109.00
C2—C3—C4121.14 (19)C9—C8—H8109.00
C3—C4—C5121.08 (17)C8—C9—H9A110.00
C4—C5—C6117.26 (16)C8—C9—H9B110.00
N1—C5—C6120.25 (17)C10—C9—H9A110.00
N1—C5—C4122.40 (16)C10—C9—H9B110.00
C5—C6—C7121.66 (19)H9A—C9—H9B108.00
C2—C7—C6119.98 (18)O3—C10—H10108.00
N1—C8—C9113.75 (16)C9—C10—H10108.00
O2—C8—N1109.21 (13)C13—C10—H10108.00
O2—C8—C9108.07 (13)O2—C11—H11109.00
C8—C9—C10110.04 (16)O3—C11—H11109.00
O3—C10—C13107.55 (14)C12—C11—H11109.00
C9—C10—C13114.46 (17)C11—C12—H12A109.00
O3—C10—C9109.30 (14)C11—C12—H12B110.00
O3—C11—C12108.48 (15)C11—C12—H12C109.00
O2—C11—O3111.45 (15)H12A—C12—H12B109.00
O2—C11—C12108.56 (16)H12A—C12—H12C109.00
O1—C1—H1A109.00H12B—C12—H12C109.00
O1—C1—H1B109.00C10—C13—H13A109.00
O1—C1—H1C109.00C10—C13—H13B109.00
H1A—C1—H1B109.00C10—C13—H13C109.00
H1A—C1—H1C110.00H13A—C13—H13B109.00
H1B—C1—H1C109.00H13A—C13—H13C109.00
C2—C3—H3119.00H13B—C13—H13C110.00
C1—O1—C2—C3156.71 (19)O1—C2—C3—C4179.91 (17)
C1—O1—C2—C724.7 (3)O1—C2—C7—C6179.13 (17)
C11—O2—C8—N1176.31 (14)C3—C2—C7—C60.5 (3)
C11—O2—C8—C959.47 (19)C7—C2—C3—C41.2 (3)
C8—O2—C11—O362.20 (18)C2—C3—C4—C50.5 (3)
C8—O2—C11—C12178.39 (16)C3—C4—C5—N1177.38 (17)
C11—O3—C10—C955.69 (19)C3—C4—C5—C60.9 (3)
C11—O3—C10—C13179.51 (15)N1—C5—C6—C7178.12 (16)
C10—O3—C11—O260.39 (19)C4—C5—C6—C71.6 (3)
C10—O3—C11—C12179.85 (17)C5—C6—C7—C20.9 (3)
C8—N1—C5—C428.2 (2)O2—C8—C9—C1055.53 (18)
C8—N1—C5—C6155.40 (16)N1—C8—C9—C10176.99 (14)
C5—N1—C8—O272.63 (19)C8—C9—C10—O353.91 (19)
C5—N1—C8—C9166.56 (15)C8—C9—C10—C13174.58 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring C2-C7 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.932.513.407 (2)162
C1—H1B···Cg1ii0.962.773.700 (3)163
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring C2-C7 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.932.513.407 (2)162
C1—H1B···Cg1ii0.962.773.700 (3)163
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. ZF and DV acknowledge the UGC (SAP–CAS) for departmental facilities. ZF also thanks the UGC for a meritorious fellowship.

References

First citationAubele, D. L., Wan, S. & Floreancig, P. E. (2005). Angew. Chem. Int. Ed. 44, 3485–3488.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationChuprunov, E. V., Tarkhova, T. N., Korallova, T. Y., Simonov, M. A. & Belov, W. V. (1981). Zh. Strukt. Khim. 22, 191–192.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarucci, G., Piero, A., Brasili, L., Buccioni, M., Giardiná, D., Gulini, U., Piergentili, A. & Sagratini, G. (2005). Med. Chem. Res. 14, 274–296.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G. W., Yuan, X. Y., Lei, X. G. & Liu, Y. C. (1996a). Chin. J. Appl. Chem. 11, 114–115.  Google Scholar
First citationWang, G. W., Yuan, X. Y., Liu, Y. C., Guo, Q. X. & Lei, X. G. (1996b). Indian J. Chem. Sect. B, 35, 583–585.  Google Scholar
First citationWang, G., Yuan, X.-Y., Liu, Y.-C. & Lei, X.-G. (1994). J. Am. Oil Chem. Soc. 74, 727–730.  CrossRef Web of Science Google Scholar
First citationYuan, X. Y., Yang, N. F., Luo, H. A. & Liu, Y. J. (2005). Chin. J. Org. Chem. 25, 1049–1052.  CAS Google Scholar
First citationYuan, X.-Y., Zhang, M. & Ng, S. W. (2008). Acta Cryst. E64, o1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds