organic compounds
N-(4-Methoxyphenyl)-2,6-dimethyl-1,3-dioxan-4-amine
aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bChemistry Department, GEBH, Sree Vidyanikethan Engineering College, A. Rangampet, Tirupati 517102, India, and cCentre for Organic and Medicinal Chemistry, VIT University, Vellore 632 014, India
*Correspondence e-mail: shirai2011@gmail.com
In the title compound, C13H19NO3, the dioxane ring adopts a chair conformation. Its mean plane is inclined to the 4-methoxyphenyl ring by 70.34 (9)°. In the crystal, molecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(16) ring motif. The dimers are linked via C—H⋯π interactions, forming two-dimensional networks lying parallel to the ac plane.
Related literature
For biological properties of oxygen heterocycles, such as dioxane derivatives, see: Aubele et al. (2005); Marucci et al. (2005). For some applications, see: Wang et al. (1994, 1996a,b); Yuan et al. (2005). For related crystal structures, see: Chuprunov et al. (1981); Yuan et al. (2008). For graph-set motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813023763/su2641sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813023763/su2641Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813023763/su2641Isup3.cml
To 4-anisidine (1 mmol), acetaldehyde (3 mmol) was added drop wise and stirred for about 4 h at 273 K. The progress of the reaction was monitored by TLC. The reaction mixture was then washed with petroleum ether. The residue was dissolved in diethylether and the solution left for the solvent to evaporate. The solid product obtained was recrystallized from diethylether giving block-like colourless crystals of the title compound.
The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were placed in calculated positions refined as riding: C—H = 0.93 Å to 0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C13H19NO3 | F(000) = 512 |
Mr = 237.29 | Dx = 1.231 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3169 reflections |
a = 9.6472 (6) Å | θ = 2.3–28.3° |
b = 13.8194 (8) Å | µ = 0.09 mm−1 |
c = 10.5384 (6) Å | T = 293 K |
β = 114.355 (3)° | Block, colourless |
V = 1279.93 (13) Å3 | 0.25 × 0.20 × 0.15 mm |
Z = 4 |
Bruker SMART APEXII area-detector diffractometer | 3169 independent reflections |
Radiation source: fine-focus sealed tube | 2133 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ω and ϕ scans | θmax = 28.3°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −12→12 |
Tmin = 0.667, Tmax = 0.746 | k = −14→18 |
12259 measured reflections | l = −14→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.162 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0708P)2 + 0.303P] where P = (Fo2 + 2Fc2)/3 |
3169 reflections | (Δ/σ)max < 0.001 |
158 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C13H19NO3 | V = 1279.93 (13) Å3 |
Mr = 237.29 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.6472 (6) Å | µ = 0.09 mm−1 |
b = 13.8194 (8) Å | T = 293 K |
c = 10.5384 (6) Å | 0.25 × 0.20 × 0.15 mm |
β = 114.355 (3)° |
Bruker SMART APEXII area-detector diffractometer | 3169 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2133 reflections with I > 2σ(I) |
Tmin = 0.667, Tmax = 0.746 | Rint = 0.033 |
12259 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.162 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.26 e Å−3 |
3169 reflections | Δρmin = −0.21 e Å−3 |
158 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.56542 (16) | 0.15949 (11) | 1.12382 (14) | 0.0777 (5) | |
O2 | 0.19690 (13) | 0.02459 (8) | 0.46195 (11) | 0.0537 (4) | |
O3 | 0.11891 (13) | 0.03028 (9) | 0.22128 (11) | 0.0565 (4) | |
N1 | 0.10656 (17) | 0.13011 (11) | 0.58487 (15) | 0.0547 (5) | |
C1 | 0.5636 (3) | 0.09930 (17) | 1.2298 (2) | 0.0825 (8) | |
C2 | 0.4475 (2) | 0.14896 (12) | 0.99327 (18) | 0.0562 (6) | |
C3 | 0.4759 (2) | 0.17933 (13) | 0.88187 (19) | 0.0591 (6) | |
C4 | 0.36687 (19) | 0.17229 (13) | 0.74810 (18) | 0.0563 (6) | |
C5 | 0.22273 (18) | 0.13465 (11) | 0.72040 (17) | 0.0477 (5) | |
C6 | 0.1945 (2) | 0.10636 (13) | 0.83313 (19) | 0.0599 (6) | |
C7 | 0.3056 (2) | 0.11259 (13) | 0.96875 (19) | 0.0641 (7) | |
C8 | 0.14159 (19) | 0.12184 (12) | 0.46695 (17) | 0.0521 (5) | |
C9 | 0.0083 (2) | 0.14104 (13) | 0.33069 (18) | 0.0573 (6) | |
C10 | 0.0541 (2) | 0.12534 (12) | 0.21047 (18) | 0.0585 (6) | |
C11 | 0.24203 (19) | 0.01538 (14) | 0.35085 (18) | 0.0591 (6) | |
C12 | 0.3020 (3) | −0.08501 (18) | 0.3532 (2) | 0.0865 (9) | |
C13 | −0.0748 (2) | 0.13359 (16) | 0.0683 (2) | 0.0753 (7) | |
H1 | 0.028 (2) | 0.0955 (14) | 0.576 (2) | 0.065 (6)* | |
H1A | 0.65040 | 0.11310 | 1.31480 | 0.1240* | |
H1B | 0.56700 | 0.03290 | 1.20440 | 0.1240* | |
H1C | 0.47210 | 0.11050 | 1.24280 | 0.1240* | |
H3 | 0.57060 | 0.20510 | 0.89760 | 0.0710* | |
H4 | 0.38920 | 0.19290 | 0.67460 | 0.0680* | |
H6 | 0.09880 | 0.08260 | 0.81800 | 0.0720* | |
H7 | 0.28420 | 0.09220 | 1.04290 | 0.0770* | |
H8 | 0.22250 | 0.16810 | 0.47710 | 0.0630* | |
H9A | −0.02650 | 0.20710 | 0.32900 | 0.0690* | |
H9B | −0.07490 | 0.09790 | 0.32100 | 0.0690* | |
H10 | 0.13190 | 0.17330 | 0.21760 | 0.0700* | |
H11 | 0.32240 | 0.06250 | 0.36270 | 0.0710* | |
H12A | 0.33440 | −0.09200 | 0.27890 | 0.1300* | |
H12B | 0.22330 | −0.13120 | 0.34140 | 0.1300* | |
H12C | 0.38680 | −0.09610 | 0.44080 | 0.1300* | |
H13A | −0.03690 | 0.12280 | −0.00170 | 0.1130* | |
H13B | −0.11850 | 0.19710 | 0.05700 | 0.1130* | |
H13C | −0.15100 | 0.08610 | 0.05900 | 0.1130* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0820 (9) | 0.0918 (10) | 0.0602 (8) | −0.0148 (8) | 0.0302 (7) | 0.0000 (7) |
O2 | 0.0582 (6) | 0.0538 (7) | 0.0540 (7) | 0.0064 (5) | 0.0281 (5) | 0.0009 (5) |
O3 | 0.0587 (7) | 0.0601 (7) | 0.0520 (7) | −0.0045 (5) | 0.0243 (6) | −0.0050 (5) |
N1 | 0.0539 (8) | 0.0563 (9) | 0.0579 (9) | −0.0016 (6) | 0.0270 (7) | −0.0055 (6) |
C1 | 0.1004 (16) | 0.0807 (14) | 0.0697 (13) | 0.0130 (12) | 0.0384 (12) | 0.0102 (11) |
C2 | 0.0630 (10) | 0.0509 (9) | 0.0562 (10) | −0.0005 (8) | 0.0262 (8) | −0.0032 (7) |
C3 | 0.0561 (9) | 0.0619 (11) | 0.0642 (11) | −0.0034 (8) | 0.0297 (9) | 0.0005 (8) |
C4 | 0.0596 (10) | 0.0594 (10) | 0.0575 (10) | 0.0003 (8) | 0.0317 (8) | 0.0031 (8) |
C5 | 0.0566 (9) | 0.0365 (7) | 0.0551 (9) | 0.0039 (6) | 0.0281 (8) | −0.0046 (6) |
C6 | 0.0675 (10) | 0.0547 (10) | 0.0676 (11) | −0.0132 (8) | 0.0381 (9) | −0.0071 (8) |
C7 | 0.0876 (13) | 0.0588 (11) | 0.0595 (11) | −0.0108 (9) | 0.0439 (10) | −0.0019 (8) |
C8 | 0.0576 (9) | 0.0466 (9) | 0.0546 (10) | −0.0039 (7) | 0.0258 (8) | −0.0028 (7) |
C9 | 0.0642 (10) | 0.0461 (9) | 0.0591 (10) | 0.0038 (7) | 0.0228 (8) | 0.0013 (7) |
C10 | 0.0661 (10) | 0.0501 (10) | 0.0569 (10) | −0.0124 (8) | 0.0231 (8) | 0.0030 (7) |
C11 | 0.0503 (9) | 0.0752 (12) | 0.0559 (10) | −0.0014 (8) | 0.0259 (8) | −0.0070 (8) |
C12 | 0.0845 (14) | 0.1010 (17) | 0.0764 (14) | 0.0342 (12) | 0.0356 (12) | −0.0071 (12) |
C13 | 0.0867 (14) | 0.0712 (13) | 0.0582 (11) | −0.0038 (11) | 0.0200 (10) | 0.0090 (9) |
O1—C1 | 1.399 (3) | C1—H1A | 0.9600 |
O1—C2 | 1.385 (2) | C1—H1B | 0.9600 |
O2—C8 | 1.455 (2) | C1—H1C | 0.9600 |
O2—C11 | 1.413 (2) | C3—H3 | 0.9300 |
O3—C10 | 1.439 (2) | C4—H4 | 0.9300 |
O3—C11 | 1.407 (2) | C6—H6 | 0.9300 |
N1—C5 | 1.407 (2) | C7—H7 | 0.9300 |
N1—C8 | 1.421 (2) | C8—H8 | 0.9800 |
N1—H1 | 0.87 (2) | C9—H9A | 0.9700 |
C2—C7 | 1.379 (3) | C9—H9B | 0.9700 |
C2—C3 | 1.377 (3) | C10—H10 | 0.9800 |
C3—C4 | 1.371 (3) | C11—H11 | 0.9800 |
C4—C5 | 1.398 (3) | C12—H12A | 0.9600 |
C5—C6 | 1.380 (3) | C12—H12B | 0.9600 |
C6—C7 | 1.391 (3) | C12—H12C | 0.9600 |
C8—C9 | 1.504 (2) | C13—H13A | 0.9600 |
C9—C10 | 1.520 (3) | C13—H13B | 0.9600 |
C10—C13 | 1.506 (3) | C13—H13C | 0.9600 |
C11—C12 | 1.499 (3) | ||
C1—O1—C2 | 117.08 (17) | C4—C3—H3 | 119.00 |
C8—O2—C11 | 110.86 (13) | C3—C4—H4 | 119.00 |
C10—O3—C11 | 112.07 (13) | C5—C4—H4 | 119.00 |
C5—N1—C8 | 120.95 (16) | C5—C6—H6 | 119.00 |
C8—N1—H1 | 111.9 (13) | C7—C6—H6 | 119.00 |
C5—N1—H1 | 115.4 (13) | C2—C7—H7 | 120.00 |
O1—C2—C7 | 124.74 (17) | C6—C7—H7 | 120.00 |
O1—C2—C3 | 116.39 (18) | O2—C8—H8 | 109.00 |
C3—C2—C7 | 118.86 (17) | N1—C8—H8 | 109.00 |
C2—C3—C4 | 121.14 (19) | C9—C8—H8 | 109.00 |
C3—C4—C5 | 121.08 (17) | C8—C9—H9A | 110.00 |
C4—C5—C6 | 117.26 (16) | C8—C9—H9B | 110.00 |
N1—C5—C6 | 120.25 (17) | C10—C9—H9A | 110.00 |
N1—C5—C4 | 122.40 (16) | C10—C9—H9B | 110.00 |
C5—C6—C7 | 121.66 (19) | H9A—C9—H9B | 108.00 |
C2—C7—C6 | 119.98 (18) | O3—C10—H10 | 108.00 |
N1—C8—C9 | 113.75 (16) | C9—C10—H10 | 108.00 |
O2—C8—N1 | 109.21 (13) | C13—C10—H10 | 108.00 |
O2—C8—C9 | 108.07 (13) | O2—C11—H11 | 109.00 |
C8—C9—C10 | 110.04 (16) | O3—C11—H11 | 109.00 |
O3—C10—C13 | 107.55 (14) | C12—C11—H11 | 109.00 |
C9—C10—C13 | 114.46 (17) | C11—C12—H12A | 109.00 |
O3—C10—C9 | 109.30 (14) | C11—C12—H12B | 110.00 |
O3—C11—C12 | 108.48 (15) | C11—C12—H12C | 109.00 |
O2—C11—O3 | 111.45 (15) | H12A—C12—H12B | 109.00 |
O2—C11—C12 | 108.56 (16) | H12A—C12—H12C | 109.00 |
O1—C1—H1A | 109.00 | H12B—C12—H12C | 109.00 |
O1—C1—H1B | 109.00 | C10—C13—H13A | 109.00 |
O1—C1—H1C | 109.00 | C10—C13—H13B | 109.00 |
H1A—C1—H1B | 109.00 | C10—C13—H13C | 109.00 |
H1A—C1—H1C | 110.00 | H13A—C13—H13B | 109.00 |
H1B—C1—H1C | 109.00 | H13A—C13—H13C | 109.00 |
C2—C3—H3 | 119.00 | H13B—C13—H13C | 110.00 |
C1—O1—C2—C3 | −156.71 (19) | O1—C2—C3—C4 | −179.91 (17) |
C1—O1—C2—C7 | 24.7 (3) | O1—C2—C7—C6 | 179.13 (17) |
C11—O2—C8—N1 | −176.31 (14) | C3—C2—C7—C6 | 0.5 (3) |
C11—O2—C8—C9 | 59.47 (19) | C7—C2—C3—C4 | −1.2 (3) |
C8—O2—C11—O3 | −62.20 (18) | C2—C3—C4—C5 | 0.5 (3) |
C8—O2—C11—C12 | 178.39 (16) | C3—C4—C5—N1 | 177.38 (17) |
C11—O3—C10—C9 | −55.69 (19) | C3—C4—C5—C6 | 0.9 (3) |
C11—O3—C10—C13 | 179.51 (15) | N1—C5—C6—C7 | −178.12 (16) |
C10—O3—C11—O2 | 60.39 (19) | C4—C5—C6—C7 | −1.6 (3) |
C10—O3—C11—C12 | 179.85 (17) | C5—C6—C7—C2 | 0.9 (3) |
C8—N1—C5—C4 | 28.2 (2) | O2—C8—C9—C10 | −55.53 (18) |
C8—N1—C5—C6 | −155.40 (16) | N1—C8—C9—C10 | −176.99 (14) |
C5—N1—C8—O2 | 72.63 (19) | C8—C9—C10—O3 | 53.91 (19) |
C5—N1—C8—C9 | −166.56 (15) | C8—C9—C10—C13 | 174.58 (15) |
Cg1 is the centroid of ring C2-C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O3i | 0.93 | 2.51 | 3.407 (2) | 162 |
C1—H1B···Cg1ii | 0.96 | 2.77 | 3.700 (3) | 163 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+2. |
Cg1 is the centroid of ring C2-C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O3i | 0.93 | 2.51 | 3.407 (2) | 162 |
C1—H1B···Cg1ii | 0.96 | 2.77 | 3.700 (3) | 163 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+2. |
Acknowledgements
The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. ZF and DV acknowledge the UGC (SAP–CAS) for departmental facilities. ZF also thanks the UGC for a meritorious fellowship.
References
Aubele, D. L., Wan, S. & Floreancig, P. E. (2005). Angew. Chem. Int. Ed. 44, 3485–3488. Web of Science CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A. Google Scholar
Chuprunov, E. V., Tarkhova, T. N., Korallova, T. Y., Simonov, M. A. & Belov, W. V. (1981). Zh. Strukt. Khim. 22, 191–192. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marucci, G., Piero, A., Brasili, L., Buccioni, M., Giardiná, D., Gulini, U., Piergentili, A. & Sagratini, G. (2005). Med. Chem. Res. 14, 274–296. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, G. W., Yuan, X. Y., Lei, X. G. & Liu, Y. C. (1996a). Chin. J. Appl. Chem. 11, 114–115. Google Scholar
Wang, G. W., Yuan, X. Y., Liu, Y. C., Guo, Q. X. & Lei, X. G. (1996b). Indian J. Chem. Sect. B, 35, 583–585. Google Scholar
Wang, G., Yuan, X.-Y., Liu, Y.-C. & Lei, X.-G. (1994). J. Am. Oil Chem. Soc. 74, 727–730. CrossRef Web of Science Google Scholar
Yuan, X. Y., Yang, N. F., Luo, H. A. & Liu, Y. J. (2005). Chin. J. Org. Chem. 25, 1049–1052. CAS Google Scholar
Yuan, X.-Y., Zhang, M. & Ng, S. W. (2008). Acta Cryst. E64, o1314. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Oxygen heterocycles play a vital role as basic building blocks in pharmaceutical preparations. Dioxane rings are frequently encountered in many bioactive molecules, such as cytotoxic agents (Aubele et al., 2005) and antimuscarinic agents (Marucci et al., 2005). This class of compounds also has useful insecticidal as well as anti-foaming properties (Yuan et al., 2005; Wang et al., 1994, 1996a,b). In view of the different applications of this class of compounds, we have synthesized the title derivative and report herein on its crystal structure.
In the title molecule, Fig. 1, the dioxane ring (O2/O3/C8—C11) adopts a chair conformation and its mean plane makes a dihedral angle of 70.34 (9)° with the benzene ring (C2—C7).
In the crystal, molecules are linked by pairs of C—H···O hydrogen bonds (Table 1 and Fig. 2) forming inversion dimers with an R22(16) ring motif (Bernstein et al., 1995). The dimers are linked via C-H···π interactions forming two-dimensional networks lying parallel to the ac plane (Table 1).