organic compounds
3-Benzhydryl-1,3,4-thiadiazole-2(3H)-thione
aStrategic Research Centre for Biotechnology, Chemistry and Systems Biology, Deakin University, Vic 3216, Australia, bQueensland Micro and Nanotechnology Centre, Griffith University, Brisbane 4111, Australia, and cSchool of Chemistry, Physics & Mechanical Engineering, Queensland University of Technology, Brisbane 4001, Australia
*Correspondence e-mail: P.Healy@griffith.edu.au
In the title compound, C15H12N2S2, the two phenyl rings and the planar (r.m.s. deviation = 0.002 Å) thiadiazole ring adopt a propeller conformation about the central C—H axis with H—C—C—C(phenyl) torsion angles of 44 and 42° and an H—C—N—C(thiadiazole) torsion angle of 28°. Intramolecular C—H⋯S and C—H⋯N contacts are observed. In the crystal, centrosymmetrically related molecules associate through C—H⋯π interactions. These are connected into a supramolecular chain along [101] by C—H⋯N interactions.
Related literature
For details of the use of 1,3,4-thiadiazoles in the synthesis of et al. (1987). For their uses as scaffolds in potential pharmaceuticals, see; Aggarwal et al. (2012); Bhole & Bhusari (2011); Ghani & Ullah (2010); Kadi et al. (2010); Zhan et al. (2009).
see: PappalardoExperimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: TEXSAN (Molecular Structure Corporation, 2001) and SIR97 (Altomare et al., 1999); program(s) used to refine structure: TEXSAN and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813021867/tk5245sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813021867/tk5245Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813021867/tk5245Isup3.cml
Diphenylmethanol (100 mg) was placed into a microwave reactor vessel charged with 2-mercapto-1,3,4-thiadiazole (0.1 ml) and stirred with acid-doped triethylamine:methanesulfonic acid (TeaMs, 0.25 ml). The vessel was then heated to 100°C for 20 minutes. The solution was then diluted with water and diethyl ether, 5 ml of NaOH (2M solution) was added and the aqueous phase extracted 3 times with diethyl ether. The combined organic phases were then dried (MgSO4), filtered and the solvent removed in vacuo to give a clear oil. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in toluene. 1H NMR (400 MHz, CDCl3): δ = 8.24 (1H, s, thiadiazole CH), 7.71 (1H, s, CHPh2), 7.42–7.22 (10H, m, 2 × Ph). 13C NMR (100 MHz, CDCl3): δ = 185.8, 143.7, 143.5, 137.8, 129.0–128.0 (10 × C), 65.8, 65.6. M.Pt: 402.2–403.2 K. HRMS, m/z calcd for (C15H13N2S2) 285.0514, found 285.0532.
The carbon-bound H atoms were constrained as riding atoms with C—H = 0.95 Å. Uiso(H) values were set at 1.2Ueq of the parent C atom.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: TEXSAN (Molecular Structure Corporation, 2001) and SIR97 (Altomare et al., 1999); program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 2001) and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound with atom labelling and displacement ellipsoids for non-H atoms drawn at the 40% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. | |
Fig. 2. Centrosymmetrically related molecules of (I) through C—H···π inter-molecular interactions between C5—H5 and phenyl ring 2. |
C15H12N2S2 | F(000) = 592 |
Mr = 284.41 | Dx = 1.317 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -P 2yn | Cell parameters from 2095 reflections |
a = 9.1198 (4) Å | θ = 3.3–30.4° |
b = 15.4226 (5) Å | µ = 0.36 mm−1 |
c = 10.7584 (4) Å | T = 223 K |
β = 108.546 (5)° | Block, colourless |
V = 1434.60 (10) Å3 | 0.44 × 0.29 × 0.18 mm |
Z = 4 |
Oxford-Diffraction GEMINI S Ultra diffractometer | 2524 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2144 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 16.0774 pixels mm-1 | θmax = 25.0°, θmin = 3.3° |
ω and ϕ scans | h = −9→10 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −15→18 |
Tmin = 0.859, Tmax = 0.938 | l = −12→8 |
5244 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0518P)2 + 0.4906P] where P = (Fo2 + 2Fc2)/3 |
2524 reflections | (Δ/σ)max = 0.001 |
172 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.53 e Å−3 |
C15H12N2S2 | V = 1434.60 (10) Å3 |
Mr = 284.41 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.1198 (4) Å | µ = 0.36 mm−1 |
b = 15.4226 (5) Å | T = 223 K |
c = 10.7584 (4) Å | 0.44 × 0.29 × 0.18 mm |
β = 108.546 (5)° |
Oxford-Diffraction GEMINI S Ultra diffractometer | 2524 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 2144 reflections with I > 2σ(I) |
Tmin = 0.859, Tmax = 0.938 | Rint = 0.023 |
5244 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.24 e Å−3 |
2524 reflections | Δρmin = −0.53 e Å−3 |
172 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.14225 (8) | 0.60316 (4) | 0.93721 (6) | 0.0449 (2) | |
S2 | −0.07408 (7) | 0.55846 (4) | 0.66718 (7) | 0.0443 (2) | |
N3 | 0.18984 (19) | 0.47793 (10) | 0.80719 (16) | 0.0252 (5) | |
N4 | 0.3130 (2) | 0.47539 (12) | 0.92075 (18) | 0.0356 (6) | |
C1 | 0.1813 (2) | 0.41149 (13) | 0.70617 (19) | 0.0243 (6) | |
C2 | 0.0829 (2) | 0.54127 (13) | 0.7940 (2) | 0.0286 (7) | |
C5 | 0.3017 (3) | 0.53775 (16) | 0.9967 (2) | 0.0413 (8) | |
C11 | 0.0918 (2) | 0.33159 (13) | 0.7227 (2) | 0.0258 (6) | |
C12 | 0.0312 (3) | 0.27892 (15) | 0.6142 (2) | 0.0389 (8) | |
C13 | −0.0465 (3) | 0.20345 (16) | 0.6232 (3) | 0.0495 (9) | |
C14 | −0.0660 (3) | 0.18047 (15) | 0.7410 (3) | 0.0500 (9) | |
C15 | −0.0069 (3) | 0.23250 (17) | 0.8493 (3) | 0.0463 (9) | |
C16 | 0.0723 (3) | 0.30800 (15) | 0.8406 (2) | 0.0358 (7) | |
C21 | 0.3436 (2) | 0.39221 (12) | 0.70245 (19) | 0.0238 (6) | |
C22 | 0.4181 (3) | 0.45525 (14) | 0.6523 (2) | 0.0312 (7) | |
C23 | 0.5672 (3) | 0.44091 (15) | 0.6484 (2) | 0.0361 (7) | |
C24 | 0.6424 (3) | 0.36380 (16) | 0.6942 (2) | 0.0365 (8) | |
C25 | 0.5692 (3) | 0.30087 (14) | 0.7442 (2) | 0.0363 (7) | |
C26 | 0.4200 (2) | 0.31507 (13) | 0.7485 (2) | 0.0307 (7) | |
H1 | 0.12570 | 0.43650 | 0.62400 | 0.0290* | |
H5 | 0.37650 | 0.54700 | 1.08020 | 0.0500* | |
H12 | 0.04310 | 0.29490 | 0.53260 | 0.0470* | |
H13 | −0.08640 | 0.16740 | 0.54840 | 0.0590* | |
H14 | −0.12000 | 0.12890 | 0.74730 | 0.0600* | |
H15 | −0.02040 | 0.21670 | 0.93030 | 0.0560* | |
H16 | 0.11320 | 0.34360 | 0.91580 | 0.0430* | |
H22 | 0.36700 | 0.50830 | 0.62050 | 0.0370* | |
H23 | 0.61760 | 0.48430 | 0.61410 | 0.0430* | |
H24 | 0.74410 | 0.35420 | 0.69130 | 0.0440* | |
H25 | 0.62060 | 0.24780 | 0.77560 | 0.0440* | |
H26 | 0.37010 | 0.27160 | 0.78330 | 0.0370* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0499 (4) | 0.0387 (4) | 0.0422 (4) | 0.0092 (3) | 0.0090 (3) | −0.0159 (3) |
S2 | 0.0313 (3) | 0.0448 (4) | 0.0473 (4) | 0.0123 (3) | −0.0008 (3) | −0.0057 (3) |
N3 | 0.0253 (9) | 0.0241 (9) | 0.0232 (9) | 0.0009 (7) | 0.0035 (7) | −0.0041 (7) |
N4 | 0.0382 (11) | 0.0352 (10) | 0.0241 (10) | 0.0063 (8) | −0.0033 (8) | −0.0048 (8) |
C1 | 0.0250 (10) | 0.0234 (10) | 0.0218 (10) | 0.0005 (8) | 0.0036 (8) | −0.0037 (8) |
C2 | 0.0291 (11) | 0.0247 (11) | 0.0327 (12) | 0.0003 (8) | 0.0109 (10) | −0.0023 (9) |
C5 | 0.0474 (15) | 0.0391 (13) | 0.0294 (13) | 0.0047 (11) | 0.0009 (11) | −0.0089 (10) |
C11 | 0.0200 (10) | 0.0256 (11) | 0.0305 (11) | 0.0015 (8) | 0.0063 (9) | −0.0012 (8) |
C12 | 0.0386 (13) | 0.0395 (13) | 0.0384 (13) | −0.0091 (11) | 0.0119 (11) | −0.0108 (11) |
C13 | 0.0440 (15) | 0.0361 (14) | 0.0647 (18) | −0.0127 (11) | 0.0120 (13) | −0.0172 (13) |
C14 | 0.0388 (14) | 0.0298 (13) | 0.081 (2) | −0.0030 (11) | 0.0184 (14) | 0.0075 (13) |
C15 | 0.0426 (15) | 0.0446 (15) | 0.0529 (16) | 0.0011 (11) | 0.0171 (13) | 0.0166 (12) |
C16 | 0.0327 (12) | 0.0386 (13) | 0.0352 (13) | −0.0014 (10) | 0.0094 (10) | 0.0007 (10) |
C21 | 0.0246 (10) | 0.0249 (10) | 0.0197 (10) | −0.0011 (8) | 0.0040 (8) | −0.0044 (8) |
C22 | 0.0337 (12) | 0.0317 (12) | 0.0267 (12) | 0.0004 (9) | 0.0076 (10) | 0.0053 (9) |
C23 | 0.0338 (13) | 0.0442 (13) | 0.0314 (12) | −0.0069 (10) | 0.0120 (10) | 0.0030 (10) |
C24 | 0.0269 (12) | 0.0476 (14) | 0.0356 (13) | −0.0003 (10) | 0.0108 (10) | −0.0067 (11) |
C25 | 0.0327 (12) | 0.0303 (12) | 0.0441 (14) | 0.0061 (10) | 0.0096 (10) | −0.0025 (10) |
C26 | 0.0289 (12) | 0.0259 (11) | 0.0377 (12) | 0.0000 (9) | 0.0110 (10) | 0.0003 (9) |
S1—C2 | 1.746 (2) | C22—C23 | 1.391 (4) |
S1—C5 | 1.718 (3) | C23—C24 | 1.383 (3) |
S2—C2 | 1.655 (2) | C24—C25 | 1.380 (4) |
N3—N4 | 1.372 (3) | C25—C26 | 1.393 (3) |
N3—C1 | 1.478 (3) | C1—H1 | 0.9500 |
N3—C2 | 1.356 (3) | C5—H5 | 0.9500 |
N4—C5 | 1.287 (3) | C12—H12 | 0.9500 |
C1—C11 | 1.519 (3) | C13—H13 | 0.9500 |
C1—C21 | 1.523 (3) | C14—H14 | 0.9500 |
C11—C12 | 1.385 (3) | C15—H15 | 0.9500 |
C11—C16 | 1.384 (3) | C16—H16 | 0.9500 |
C12—C13 | 1.382 (4) | C22—H22 | 0.9500 |
C13—C14 | 1.381 (4) | C23—H23 | 0.9500 |
C14—C15 | 1.376 (4) | C24—H24 | 0.9500 |
C15—C16 | 1.389 (4) | C25—H25 | 0.9500 |
C21—C22 | 1.390 (3) | C26—H26 | 0.9500 |
C21—C26 | 1.388 (3) | ||
S1···N4 | 2.552 (2) | C23···H23vi | 3.0200 |
S2···C23i | 3.689 (3) | C23···H5iv | 2.8100 |
S2···H1 | 2.7600 | C24···H5iv | 2.8400 |
S2···H23i | 2.9200 | C24···H15viii | 3.0200 |
S2···H25ii | 3.0400 | C25···H5iv | 2.9500 |
S2···H1iii | 3.0200 | C26···H5iv | 3.0300 |
S2···H12iii | 3.1900 | H1···S2 | 2.7600 |
N3···S1 | 2.5023 (17) | H1···H12 | 2.4200 |
N4···C22 | 3.334 (3) | H1···H22 | 2.4700 |
N4···S1 | 2.552 (2) | H1···S2iii | 3.0200 |
N4···C16 | 3.320 (3) | H5···N4iv | 2.8600 |
N4···C5iv | 3.345 (3) | H5···C21iv | 3.0100 |
N4···C26 | 3.413 (3) | H5···C22iv | 2.8900 |
N3···H16 | 2.5800 | H5···C23iv | 2.8100 |
N4···H16 | 2.7200 | H5···C24iv | 2.8400 |
N4···H5iv | 2.8600 | H5···C25iv | 2.9500 |
N4···H13v | 2.6000 | H5···C26iv | 3.0300 |
C5···N4iv | 3.345 (3) | H12···H1 | 2.4200 |
C5···C24iv | 3.542 (3) | H12···S2iii | 3.1900 |
C12···C26 | 3.422 (3) | H13···N4ix | 2.6000 |
C16···N4 | 3.320 (3) | H14···C23x | 3.0900 |
C22···N4 | 3.334 (3) | H15···C24xi | 3.0200 |
C23···C23vi | 3.540 (3) | H16···N3 | 2.5800 |
C23···S2vii | 3.689 (3) | H16···N4 | 2.7200 |
C24···C5iv | 3.542 (3) | H22···H1 | 2.4700 |
C26···C12 | 3.422 (3) | H22···H23vi | 2.5700 |
C26···N4 | 3.413 (3) | H23···S2vii | 2.9200 |
C11···H26 | 2.5800 | H23···C22vi | 2.9300 |
C11···H24i | 3.1000 | H23···C23vi | 3.0200 |
C12···H26 | 3.0500 | H23···H22vi | 2.5700 |
C15···H24i | 3.0200 | H24···C11vii | 3.1000 |
C16···H26 | 3.0200 | H24···C15vii | 3.0200 |
C16···H24i | 3.0000 | H24···C16vii | 3.0000 |
C21···H5iv | 3.0100 | H25···S2x | 3.0400 |
C22···H23vi | 2.9300 | H26···C11 | 2.5800 |
C22···H5iv | 2.8900 | H26···C12 | 3.0500 |
C23···H14ii | 3.0900 | H26···C16 | 3.0200 |
C2—S1—C5 | 89.76 (10) | C21—C26—C25 | 120.50 (19) |
N4—N3—C1 | 118.15 (16) | N3—C1—H1 | 107.00 |
N4—N3—C2 | 118.15 (16) | C11—C1—H1 | 107.00 |
C1—N3—C2 | 123.70 (17) | C21—C1—H1 | 107.00 |
N3—N4—C5 | 109.62 (19) | S1—C5—H5 | 122.00 |
N3—C1—C11 | 112.39 (16) | N4—C5—H5 | 122.00 |
N3—C1—C21 | 109.30 (16) | C11—C12—H12 | 120.00 |
C11—C1—C21 | 114.05 (16) | C13—C12—H12 | 120.00 |
S1—C2—S2 | 125.74 (12) | C12—C13—H13 | 120.00 |
S1—C2—N3 | 106.91 (14) | C14—C13—H13 | 120.00 |
S2—C2—N3 | 127.35 (16) | C13—C14—H14 | 120.00 |
S1—C5—N4 | 115.57 (17) | C15—C14—H14 | 120.00 |
C1—C11—C12 | 117.54 (18) | C14—C15—H15 | 120.00 |
C1—C11—C16 | 123.42 (19) | C16—C15—H15 | 120.00 |
C12—C11—C16 | 119.0 (2) | C11—C16—H16 | 120.00 |
C11—C12—C13 | 120.7 (2) | C15—C16—H16 | 120.00 |
C12—C13—C14 | 119.9 (2) | C21—C22—H22 | 120.00 |
C13—C14—C15 | 119.8 (2) | C23—C22—H22 | 120.00 |
C14—C15—C16 | 120.3 (3) | C22—C23—H23 | 120.00 |
C11—C16—C15 | 120.2 (2) | C24—C23—H23 | 120.00 |
C1—C21—C22 | 118.23 (18) | C23—C24—H24 | 120.00 |
C1—C21—C26 | 122.67 (17) | C25—C24—H24 | 120.00 |
C22—C21—C26 | 119.10 (19) | C24—C25—H25 | 120.00 |
C21—C22—C23 | 120.2 (2) | C26—C25—H25 | 120.00 |
C22—C23—C24 | 120.3 (2) | C21—C26—H26 | 120.00 |
C23—C24—C25 | 119.8 (3) | C25—C26—H26 | 120.00 |
C24—C25—C26 | 120.1 (2) | ||
C5—S1—C2—S2 | −179.44 (16) | C21—C1—C11—C12 | −76.1 (2) |
C5—S1—C2—N3 | 0.18 (16) | C21—C1—C11—C16 | 101.9 (2) |
C2—S1—C5—N4 | −0.3 (2) | N3—C1—C21—C26 | 108.4 (2) |
C1—N3—N4—C5 | 179.84 (19) | C1—C11—C12—C13 | 177.6 (2) |
N4—N3—C1—C11 | 90.8 (2) | C12—C11—C16—C15 | 0.1 (4) |
N4—N3—C1—C21 | −36.9 (2) | C16—C11—C12—C13 | −0.6 (4) |
C2—N3—N4—C5 | −0.1 (3) | C1—C11—C16—C15 | −178.0 (2) |
C2—N3—C1—C21 | 143.07 (18) | C11—C12—C13—C14 | 0.8 (4) |
N4—N3—C2—S1 | −0.1 (2) | C12—C13—C14—C15 | −0.5 (4) |
N4—N3—C2—S2 | 179.55 (16) | C13—C14—C15—C16 | 0.0 (4) |
C1—N3—C2—S1 | 179.96 (14) | C14—C15—C16—C11 | 0.3 (4) |
C1—N3—C2—S2 | −0.4 (3) | C1—C21—C22—C23 | 179.23 (18) |
C2—N3—C1—C11 | −89.3 (2) | C26—C21—C22—C23 | 0.1 (3) |
N3—N4—C5—S1 | 0.3 (3) | C1—C21—C26—C25 | −179.32 (18) |
N3—C1—C11—C12 | 158.78 (19) | C22—C21—C26—C25 | −0.2 (3) |
N3—C1—C11—C16 | −23.2 (3) | C21—C22—C23—C24 | 0.1 (3) |
C11—C1—C21—C22 | 162.48 (18) | C22—C23—C24—C25 | −0.1 (3) |
C11—C1—C21—C26 | −18.4 (3) | C23—C24—C25—C26 | 0.0 (3) |
N3—C1—C21—C22 | −70.8 (2) | C24—C25—C26—C21 | 0.2 (3) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+2; (v) x+1/2, −y+1/2, z+1/2; (vi) −x+1, −y+1, −z+1; (vii) x+1, y, z; (viii) x+1/2, −y+1/2, z−1/2; (ix) x−1/2, −y+1/2, z−1/2; (x) −x+1/2, y−1/2, −z+3/2; (xi) x−1/2, −y+1/2, z+1/2. |
Cg2 is the centroid of the C21–C26 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···S2 | 0.95 | 2.76 | 3.181 (2) | 108 |
C16—H16···N3 | 0.95 | 2.58 | 2.897 (3) | 100 |
C5—H5···Cg2iv | 0.95 | 2.74 | 3.670 (3) | 157 |
C13—H13···N4ix | 0.95 | 2.60 | 3.495 (3) | 157 |
Symmetry codes: (iv) −x+1, −y+1, −z+2; (ix) x−1/2, −y+1/2, z−1/2. |
Cg2 is the centroid of the C21–C26 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···S2 | 0.95 | 2.76 | 3.181 (2) | 108 |
C16—H16···N3 | 0.95 | 2.58 | 2.897 (3) | 100 |
C5—H5···Cg2i | 0.95 | 2.74 | 3.670 (3) | 157 |
C13—H13···N4ii | 0.95 | 2.60 | 3.495 (3) | 157 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
We acknowledge support of this work by the Micro and Nanotechnology Centre, Griffith University, the Central Analytical Research Facility, Queensland University of Technology, and the Strategic Research Centre for Biotechnology, Chemistry and Systems Biology, Deakin University.
References
Aggarwal, N., Kumar, R., Dureja, P. & Khurana, J. M. (2012). Chem. Biol. Drug Des. 79, 384–397. Web of Science CrossRef CAS PubMed Google Scholar
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bhole, R. P. & Bhusari, K. P. (2011). Med. Chem. Res. 20, 695–704. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghani, U. & Ullah, N. (2010). Bioorg. Med. Chem. 18, 4042–4048. Web of Science CrossRef CAS PubMed Google Scholar
Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011. Web of Science CrossRef CAS PubMed Google Scholar
Molecular Structure Corporation. (2001). TEXSAN for Windows. MSC, The Woodlands, Texas, USA. Google Scholar
Pappalardo, S., Bottino, F. & Tringali, C. (1987). J. Org. Chem. 52, 3409–3413. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhan, P., Liu, X., Fang, Z., Li, Z., Pannecouque, C. & De Clercq, E. (2009). Eur. J. Med. Chem. 44, 4648–4653. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structure of the title compound, (I), was determined as part of an ongoing project developing diphenylmethyl (DPM) thioethers which may be used to access sulfur-based heterocycles or as a protecting group in organic chemistry. This compound was the result of a side reaction in the synthesis of DPM thioethers, whereby the 1,3,4-thiadiazole compound is formed. The 1,3,4-thiadiazole core of the title compound is a central component of key compounds which have been used in the synthesis of crown ethers (Pappalardo et al., 1987), as well as included in potential pharmacological compounds, including anti-microbials (Aggarwal et al., 2012), anti-tumor compounds (Bhole & Bhusari, 2011), tyrosinase inhibitors (Ghani & Ullah, 2010), anti-inflammatory compounds (Kadi et al., 2010), and HIV-1 reverse transcriptase inhibitors (Zhan et al., 2009).
In (I) the two phenyl rings and the planar thiadiazole ring adopt a propeller conformation about the central C—H axis with the torsion angles H1—C1—C2—C3 = 42°, H1—C1—C8—C9 = 44° and H1—C1—N1—C2 = 28° (Fig. 1). Intra-molecular C—H···S and and both intra- and inter molecular C—H···N contacts are observed (Table 1). In the crystal lattice, centrosymmetrically related molecules associate through C—H···π inter-molecular interactions between C5—H5 and phenyl ring 2 (Table 1, Fig. 2).