organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′,1′′-Di­methyl-4′-phenyl­di­spiro­[11H-indeno­[1,2-b]quinoxaline-11,2′-pyrrolidine-3′,3′′-piperidin]-4′′-one

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 5 August 2013; accepted 8 August 2013; online 14 August 2013)

In the title compound, C30H28N4O, the central pyrrolidine ring adopts an envelope conformation with the CH2 C atom as the flap. The quinoxaline and indene ring systems are planar, with r.m.s. deviations of 0.0165 and 0.0181 Å, respectively. The pyrrolidine ring mean plane forms dihedral angles of 88.84 (1) and 86.14 (1)° with the quinoxaline and indene ring systems, respectively. A weak intra­molecular C—H⋯N inter­action is observed. In the crystal, C—H⋯O inter­actions lead to helical supra­molecular chains along the b axis having a C(9) motif.

Related literature

For the importance of spiro compounds, see: Kobayashi et al. (1991[Kobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617-6622.]); James et al. (1991[James, D., Kunze, H. B. & Faulker, D. (1991). J. Nat. Prod. 54, 1137-1140.]). For the importance of pyrrolidine derivatives, see: Amal Raj et al. (2003[Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-409.]). For conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a related structure, see: Selvanayagam et al. (2011[Selvanayagam, S., Sridhar, B., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o629.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C30H28N4O

  • Mr = 460.56

  • Monoclinic, P 21 /c

  • a = 13.4470 (6) Å

  • b = 8.4557 (4) Å

  • c = 20.8580 (9) Å

  • β = 90.195 (2)°

  • V = 2371.62 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 28395 measured reflections

  • 6662 independent reflections

  • 4394 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.138

  • S = 1.02

  • 6662 reflections

  • 316 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C41—H41B⋯N3 0.97 2.39 2.9475 (18) 116
C9—H9⋯O1i 0.93 2.53 3.3564 (18) 148
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Spiro compounds are a particular class of naturally occurring substances characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). Pyrrolidine derivatives are found to have anti-convulsant, anti-microbial and anti-fungal activities against various pathogens (Amal Raj et al., 2003). Our interest in preparing pharmacologically active pyrrolidines led us to the title compound, and we have undertaken X-ray crystal structure determination in order to establish its conformation.

In the title compound (Fig. 1) C30H28N4O, the central pyrrolidine ring is an envelope on C2 with the asymmetry parameters ΔCs(C2) = 1.02 (13)° and puckering parameters q2 = 0.4394 (14) Å and ϕ2 = 219.24 (18)° (Cremer & Pople, 1975). The quinoxaline indene and the indole group forms dihedral angles of 88.84 (1) and 86.14 (1)°, respectively, with the central pyrrolidine ring. The quinoxaline-indene ring system (C12-C17/N3,N4) is planar, with r.m.s. deviation = 0.0165 Å. The indole group is also in planar with r.m.s. deviation = 0.0181 Å . The substituent at C3 is in an equatorial position indicated by the dihedral angle of 77.13 (1)° with the mean plane of the central pyrrolidine ring. The C—C bond lengths in the pyrrolidine ring in particular, at two spiro junctions (C3—C4 = 1.5531 (17) Å and C4—C5 = 1.6003 (17) Å) are somewhat longer than the normal values (C—C = 1.54 Å ), as found in a similar structure (Selvanayagam et al., 2011). This may be due to the the steric interactions of the bulky substituents at atoms C4 and C5 of the pyrrolidine ring. The short H32 ··· H2A contact (2.27 Å) results in substantial widening of the bond angle C3—C31—C32 to 123.14 (14)°. The sum of bond angles around N1 (341.8°) and N2 (339.7°) indicate the atoms N1 and N2 are each in a trigonal geometry. A weak intramolecular C—H···N interaction is observed (Table 1).

In the crystal structure, a C—H···O interaction leads to helical chains generating a C22(9) motif (Bernstein et al., 1995).

Related literature top

For the importance of spiro compounds, see: Kobayashi et al. (1991); James et al. (1991). For the importance of pyrrolidine derivatives, see: Amal Raj et al. (2003). For conformation analysis, see: Cremer & Pople (1975). For a related structure, see: Selvanayagam et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 1-methyl-3-[E-phenylmethylidene]tetrahydro-2(1H)-pyridinone (1 mmol), ninhydrin (1 mmol), o-phenylenediamine (1 mmol) and sarcosine (1 mmol) in methanol was refluxed for 3-4 h. After completion of the reaction, as indicated by TLC, the reaction mixture was poured into cold water. The solid precipitate obtained was filtered and dried. The product was purified by column chromatography using petroleum ether:ethylacetate mixture (90:10 v/v). Suitable crystals for the single crystal X-ray studies were obtained by recrystallizing the product from methanol. Yield: 45%, M.pt: 510-511 K.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98Å. Uiso = 1.2Ueq(C) for CH2 and CH groups and Uiso = 1.5Ueq(C) for CH3 groups. The reflections (1 0 0) and (0 0 2) are affected by the beam-stop and these reflections are omitted from the final refinement. The DELU constraint is applied to the N2—C43 bond in order to avoid the Hirshfield difference.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 20% probability displacement ellipsoids and the atom-numbering scheme. H-atoms are omitted for clarity.
[Figure 2] Fig. 2. The partial packing diagram showing C—H—O interactions as dashed lines.
1',1''-Dimethyl-4'-phenyldispiro[11H-indeno[1,2-b]quinoxaline-11,2'-pyrrolidine-3',3''-piperidin]-4''-one top
Crystal data top
C30H28N4OF(000) = 976
Mr = 460.56Dx = 1.290 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 13.4470 (6) Åθ = 2–31°
b = 8.4557 (4) ŵ = 0.08 mm1
c = 20.8580 (9) ÅT = 293 K
β = 90.195 (2)°Block, green
V = 2371.62 (19) Å30.21 × 0.19 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
6662 independent reflections
Radiation source: fine-focus sealed tube4394 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 0 pixels mm-1θmax = 29.7°, θmin = 2.5°
ω and ϕ scansh = 1813
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.967, Tmax = 0.974l = 1828
28395 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.385P]
where P = (Fo2 + 2Fc2)/3
6662 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C30H28N4OV = 2371.62 (19) Å3
Mr = 460.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4470 (6) ŵ = 0.08 mm1
b = 8.4557 (4) ÅT = 293 K
c = 20.8580 (9) Å0.21 × 0.19 × 0.18 mm
β = 90.195 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
6662 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4394 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.032
28395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.138H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
6662 reflectionsΔρmin = 0.23 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R- factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36237 (14)0.57618 (18)0.06530 (9)0.0608 (4)
H1A0.37640.55010.10920.091*
H1B0.41250.53100.03830.091*
H1C0.29850.53460.05350.091*
C20.34240 (11)0.80537 (17)0.00602 (7)0.0444 (3)
H2A0.27710.77380.02120.053*
H2B0.39240.77010.03620.053*
C30.34818 (10)0.98182 (15)0.00505 (6)0.0367 (3)
H30.41761.00480.01590.044*
C40.28798 (9)1.00430 (14)0.06781 (6)0.0329 (3)
C50.30193 (10)0.83818 (15)0.10348 (6)0.0355 (3)
C60.35593 (10)0.84200 (15)0.16788 (6)0.0393 (3)
C70.30027 (11)0.77358 (16)0.21664 (6)0.0408 (3)
C80.33822 (13)0.75968 (19)0.27843 (7)0.0529 (4)
H80.30100.71290.31080.063*
C90.43177 (13)0.8165 (2)0.29050 (8)0.0597 (4)
H90.45810.80910.33170.072*
C100.48776 (13)0.8847 (2)0.24228 (8)0.0584 (4)
H100.55090.92320.25160.070*
C110.45123 (11)0.89637 (18)0.18041 (8)0.0491 (4)
H110.48980.93980.14790.059*
C120.20533 (10)0.75594 (14)0.12273 (6)0.0363 (3)
C130.20671 (10)0.71782 (15)0.18953 (6)0.0392 (3)
C140.05869 (11)0.59550 (16)0.17986 (7)0.0458 (3)
C150.05754 (11)0.63118 (16)0.11364 (7)0.0431 (3)
C160.02353 (12)0.58276 (19)0.07619 (9)0.0541 (4)
H160.02620.60900.03290.065*
C170.09862 (13)0.4972 (2)0.10312 (10)0.0672 (5)
H170.15200.46450.07790.081*
C180.09591 (14)0.4583 (2)0.16794 (11)0.0701 (5)
H180.14700.39810.18540.084*
C190.02015 (13)0.5068 (2)0.20580 (9)0.0600 (4)
H190.02000.48150.24920.072*
C310.32246 (11)1.08677 (18)0.05113 (6)0.0436 (3)
C320.25500 (13)1.0445 (2)0.09802 (7)0.0615 (4)
H320.21980.95030.09430.074*
C330.23919 (18)1.1419 (3)0.15091 (9)0.0826 (7)
H330.19421.11190.18260.099*
C340.2896 (2)1.2812 (3)0.15630 (9)0.0873 (7)
H340.27871.34620.19160.105*
C350.35562 (18)1.3253 (3)0.11021 (10)0.0787 (6)
H350.38941.42090.11380.094*
C360.37261 (13)1.2288 (2)0.05827 (8)0.0594 (4)
H360.41871.25940.02730.071*
C410.17892 (10)1.04422 (16)0.05398 (6)0.0379 (3)
H41A0.17581.13870.02770.045*
H41B0.14900.95830.02990.045*
C420.01616 (12)1.0763 (2)0.09830 (9)0.0662 (5)
H42A0.00390.97990.07770.099*
H42B0.00281.16410.07040.099*
H42C0.02031.08910.13750.099*
C430.15684 (14)1.21341 (18)0.14362 (8)0.0576 (4)
H43A0.11721.23390.18150.069*
H43B0.14931.30240.11470.069*
C440.26476 (14)1.19575 (19)0.16236 (7)0.0571 (4)
H44A0.28941.29660.17790.069*
H44B0.27001.12010.19720.069*
C450.32857 (11)1.14165 (16)0.10784 (6)0.0419 (3)
N10.36204 (9)0.74661 (13)0.05769 (6)0.0422 (3)
N20.12222 (9)1.07001 (14)0.11253 (5)0.0457 (3)
N30.13447 (9)0.71125 (13)0.08434 (5)0.0408 (3)
N40.13632 (9)0.63976 (14)0.21868 (6)0.0469 (3)
O10.40639 (9)1.20595 (13)0.09512 (5)0.0567 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0738 (11)0.0356 (8)0.0732 (11)0.0120 (8)0.0169 (9)0.0021 (7)
C20.0490 (8)0.0435 (8)0.0408 (7)0.0026 (6)0.0096 (6)0.0072 (6)
C30.0359 (7)0.0398 (7)0.0344 (6)0.0005 (5)0.0027 (5)0.0005 (5)
C40.0381 (7)0.0314 (6)0.0292 (6)0.0015 (5)0.0004 (5)0.0012 (5)
C50.0388 (7)0.0328 (6)0.0348 (6)0.0028 (5)0.0014 (5)0.0003 (5)
C60.0426 (7)0.0342 (6)0.0411 (7)0.0081 (6)0.0034 (6)0.0007 (6)
C70.0473 (8)0.0370 (7)0.0382 (7)0.0111 (6)0.0002 (6)0.0027 (6)
C80.0624 (10)0.0552 (9)0.0411 (8)0.0167 (8)0.0013 (7)0.0061 (7)
C90.0654 (11)0.0668 (10)0.0466 (9)0.0209 (9)0.0182 (8)0.0010 (8)
C100.0520 (9)0.0629 (10)0.0604 (10)0.0118 (8)0.0172 (8)0.0023 (8)
C110.0458 (8)0.0481 (8)0.0535 (9)0.0051 (7)0.0059 (7)0.0022 (7)
C120.0424 (7)0.0292 (6)0.0374 (7)0.0040 (5)0.0036 (5)0.0002 (5)
C130.0474 (8)0.0326 (6)0.0378 (7)0.0073 (6)0.0062 (6)0.0019 (5)
C140.0480 (8)0.0351 (7)0.0545 (9)0.0054 (6)0.0139 (7)0.0006 (6)
C150.0430 (8)0.0329 (7)0.0534 (8)0.0008 (6)0.0091 (6)0.0055 (6)
C160.0509 (9)0.0466 (8)0.0648 (10)0.0048 (7)0.0039 (7)0.0112 (7)
C170.0481 (10)0.0606 (11)0.0930 (14)0.0111 (8)0.0067 (9)0.0129 (10)
C180.0543 (10)0.0594 (11)0.0969 (15)0.0102 (8)0.0240 (10)0.0029 (10)
C190.0561 (10)0.0533 (9)0.0707 (11)0.0002 (8)0.0227 (8)0.0073 (8)
C310.0459 (8)0.0520 (8)0.0330 (7)0.0083 (6)0.0100 (6)0.0015 (6)
C320.0652 (11)0.0785 (12)0.0406 (8)0.0092 (9)0.0033 (7)0.0034 (8)
C330.0974 (16)0.1114 (18)0.0389 (9)0.0342 (14)0.0113 (9)0.0023 (10)
C340.1221 (19)0.0938 (17)0.0461 (11)0.0480 (15)0.0199 (12)0.0228 (11)
C350.1013 (16)0.0702 (12)0.0647 (12)0.0143 (11)0.0216 (11)0.0275 (10)
C360.0686 (11)0.0565 (10)0.0534 (9)0.0014 (8)0.0094 (8)0.0130 (8)
C410.0420 (7)0.0379 (7)0.0338 (6)0.0058 (6)0.0033 (5)0.0028 (5)
C420.0499 (10)0.0749 (12)0.0741 (11)0.0191 (9)0.0175 (8)0.0087 (9)
C430.0811 (12)0.0435 (8)0.0485 (9)0.0169 (7)0.0164 (8)0.0054 (6)
C440.0888 (13)0.0429 (8)0.0396 (8)0.0051 (8)0.0033 (8)0.0118 (6)
C450.0560 (9)0.0333 (7)0.0363 (7)0.0012 (6)0.0102 (6)0.0011 (5)
N10.0483 (7)0.0334 (6)0.0450 (6)0.0073 (5)0.0081 (5)0.0017 (5)
N20.0499 (7)0.0447 (6)0.0426 (6)0.0114 (5)0.0118 (5)0.0014 (5)
N30.0451 (7)0.0362 (6)0.0410 (6)0.0024 (5)0.0037 (5)0.0034 (5)
N40.0512 (7)0.0441 (7)0.0456 (7)0.0052 (6)0.0114 (6)0.0063 (5)
O10.0632 (7)0.0481 (6)0.0586 (7)0.0154 (5)0.0148 (5)0.0004 (5)
Geometric parameters (Å, º) top
C1—N11.4499 (18)C15—C161.400 (2)
C1—H1A0.9600C16—C171.365 (2)
C1—H1B0.9600C16—H160.9300
C1—H1C0.9600C17—C181.392 (3)
C2—N11.4423 (18)C17—H170.9300
C2—C31.5117 (19)C18—C191.351 (3)
C2—H2A0.9700C18—H180.9300
C2—H2B0.9700C19—H190.9300
C3—C311.5091 (18)C31—C321.379 (2)
C3—C41.5531 (17)C31—C361.385 (2)
C3—H30.9800C32—C331.393 (3)
C4—C451.5301 (18)C32—H320.9300
C4—C411.5312 (18)C33—C341.364 (3)
C4—C51.6003 (17)C33—H330.9300
C5—N11.4731 (17)C34—C351.359 (3)
C5—C61.5252 (18)C34—H340.9300
C5—C121.5284 (19)C35—C361.375 (2)
C6—C111.386 (2)C35—H350.9300
C6—C71.3908 (19)C36—H360.9300
C7—C81.389 (2)C41—N21.4582 (17)
C7—C131.456 (2)C41—H41A0.9700
C8—C91.369 (2)C41—H41B0.9700
C8—H80.9300C42—N21.457 (2)
C9—C101.384 (3)C42—H42A0.9600
C9—H90.9300C42—H42B0.9600
C10—C111.383 (2)C42—H42C0.9600
C10—H100.9300C43—N21.451 (2)
C11—H110.9300C43—C441.509 (2)
C12—N31.2986 (17)C43—H43A0.9700
C12—C131.4302 (19)C43—H43B0.9700
C13—N41.3058 (18)C44—C451.498 (2)
C14—N41.371 (2)C44—H44A0.9700
C14—C191.408 (2)C44—H44B0.9700
C14—C151.414 (2)C45—O11.2095 (18)
C15—N31.3807 (18)
N1—C1—H1A109.5C16—C17—C18120.53 (17)
N1—C1—H1B109.5C16—C17—H17119.7
H1A—C1—H1B109.5C18—C17—H17119.7
N1—C1—H1C109.5C19—C18—C17120.90 (17)
H1A—C1—H1C109.5C19—C18—H18119.5
H1B—C1—H1C109.5C17—C18—H18119.5
N1—C2—C3100.96 (11)C18—C19—C14120.29 (17)
N1—C2—H2A111.6C18—C19—H19119.9
C3—C2—H2A111.6C14—C19—H19119.9
N1—C2—H2B111.6C32—C31—C36117.89 (15)
C3—C2—H2B111.6C32—C31—C3123.14 (14)
H2A—C2—H2B109.4C36—C31—C3118.87 (13)
C31—C3—C2116.76 (11)C31—C32—C33120.5 (2)
C31—C3—C4117.63 (11)C31—C32—H32119.8
C2—C3—C4102.87 (10)C33—C32—H32119.8
C31—C3—H3106.2C34—C33—C32120.1 (2)
C2—C3—H3106.2C34—C33—H33119.9
C4—C3—H3106.2C32—C33—H33119.9
C45—C4—C41105.97 (10)C35—C34—C33120.16 (18)
C45—C4—C3111.52 (11)C35—C34—H34119.9
C41—C4—C3111.71 (10)C33—C34—H34119.9
C45—C4—C5111.80 (10)C34—C35—C36120.1 (2)
C41—C4—C5113.06 (10)C34—C35—H35120.0
C3—C4—C5102.93 (9)C36—C35—H35120.0
N1—C5—C6108.76 (10)C35—C36—C31121.31 (19)
N1—C5—C12113.57 (11)C35—C36—H36119.3
C6—C5—C12100.41 (10)C31—C36—H36119.3
N1—C5—C4102.92 (10)N2—C41—C4112.24 (10)
C6—C5—C4116.47 (10)N2—C41—H41A109.2
C12—C5—C4115.03 (10)C4—C41—H41A109.2
C11—C6—C7119.99 (13)N2—C41—H41B109.2
C11—C6—C5127.61 (13)C4—C41—H41B109.2
C7—C6—C5112.30 (12)H41A—C41—H41B107.9
C8—C7—C6121.10 (14)N2—C42—H42A109.5
C8—C7—C13130.31 (14)N2—C42—H42B109.5
C6—C7—C13108.49 (11)H42A—C42—H42B109.5
C9—C8—C7118.38 (16)N2—C42—H42C109.5
C9—C8—H8120.8H42A—C42—H42C109.5
C7—C8—H8120.8H42B—C42—H42C109.5
C8—C9—C10120.94 (14)N2—C43—C44109.87 (12)
C8—C9—H9119.5N2—C43—H43A109.7
C10—C9—H9119.5C44—C43—H43A109.7
C11—C10—C9121.03 (16)N2—C43—H43B109.7
C11—C10—H10119.5C44—C43—H43B109.7
C9—C10—H10119.5H43A—C43—H43B108.2
C10—C11—C6118.53 (15)C45—C44—C43112.72 (12)
C10—C11—H11120.7C45—C44—H44A109.0
C6—C11—H11120.7C43—C44—H44A109.0
N3—C12—C13122.84 (13)C45—C44—H44B109.0
N3—C12—C5126.36 (12)C43—C44—H44B109.0
C13—C12—C5110.50 (11)H44A—C44—H44B107.8
N4—C13—C12124.08 (13)O1—C45—C44121.83 (13)
N4—C13—C7127.56 (13)O1—C45—C4121.92 (13)
C12—C13—C7108.29 (12)C44—C45—C4116.22 (13)
N4—C14—C19119.42 (15)C2—N1—C1116.35 (12)
N4—C14—C15121.63 (13)C2—N1—C5108.49 (10)
C19—C14—C15118.90 (15)C1—N1—C5116.94 (12)
N3—C15—C16118.66 (14)C43—N2—C42111.90 (13)
N3—C15—C14122.10 (13)C43—N2—C41109.35 (12)
C16—C15—C14119.24 (14)C42—N2—C41110.44 (12)
C17—C16—C15120.08 (17)C12—N3—C15114.77 (12)
C17—C16—H16120.0C13—N4—C14114.51 (12)
C15—C16—H16120.0
N1—C2—C3—C31174.91 (11)N3—C15—C16—C17177.03 (14)
N1—C2—C3—C444.52 (13)C14—C15—C16—C172.4 (2)
C31—C3—C4—C4582.17 (14)C15—C16—C17—C180.5 (3)
C2—C3—C4—C45147.97 (11)C16—C17—C18—C191.3 (3)
C31—C3—C4—C4136.21 (16)C17—C18—C19—C141.2 (3)
C2—C3—C4—C4193.65 (12)N4—C14—C19—C18178.14 (15)
C31—C3—C4—C5157.82 (11)C15—C14—C19—C180.7 (2)
C2—C3—C4—C527.95 (12)C2—C3—C31—C3230.6 (2)
C45—C4—C5—N1121.60 (11)C4—C3—C31—C3292.51 (16)
C41—C4—C5—N1118.90 (11)C2—C3—C31—C36145.75 (14)
C3—C4—C5—N11.78 (12)C4—C3—C31—C3691.18 (16)
C45—C4—C5—C62.74 (15)C36—C31—C32—C330.6 (2)
C41—C4—C5—C6122.24 (12)C3—C31—C32—C33175.77 (15)
C3—C4—C5—C6117.08 (12)C31—C32—C33—C340.9 (3)
C45—C4—C5—C12114.35 (13)C32—C33—C34—C350.2 (3)
C41—C4—C5—C125.15 (14)C33—C34—C35—C360.6 (3)
C3—C4—C5—C12125.83 (11)C34—C35—C36—C310.9 (3)
N1—C5—C6—C1156.97 (17)C32—C31—C36—C350.3 (2)
C12—C5—C6—C11176.43 (13)C3—C31—C36—C35176.80 (15)
C4—C5—C6—C1158.68 (18)C45—C4—C41—N256.74 (14)
N1—C5—C6—C7119.49 (12)C3—C4—C41—N2178.38 (11)
C12—C5—C6—C70.03 (13)C5—C4—C41—N266.07 (13)
C4—C5—C6—C7124.86 (12)N2—C43—C44—C4551.34 (18)
C11—C6—C7—C80.6 (2)C43—C44—C45—O1132.24 (15)
C5—C6—C7—C8177.34 (12)C43—C44—C45—C445.70 (17)
C11—C6—C7—C13176.19 (12)C41—C4—C45—O1131.69 (13)
C5—C6—C7—C130.57 (15)C3—C4—C45—O19.93 (17)
C6—C7—C8—C90.6 (2)C5—C4—C45—O1104.71 (14)
C13—C7—C8—C9176.60 (14)C41—C4—C45—C4446.25 (14)
C7—C8—C9—C100.7 (2)C3—C4—C45—C44168.01 (11)
C8—C9—C10—C110.5 (3)C5—C4—C45—C4477.35 (14)
C9—C10—C11—C61.7 (2)C3—C2—N1—C1179.96 (13)
C7—C6—C11—C101.7 (2)C3—C2—N1—C545.72 (14)
C5—C6—C11—C10177.93 (13)C6—C5—N1—C2151.26 (11)
N1—C5—C12—N358.40 (17)C12—C5—N1—C297.86 (13)
C6—C5—C12—N3174.31 (12)C4—C5—N1—C227.15 (13)
C4—C5—C12—N359.83 (17)C6—C5—N1—C174.73 (16)
N1—C5—C12—C13115.36 (12)C12—C5—N1—C136.15 (17)
C6—C5—C12—C130.54 (13)C4—C5—N1—C1161.16 (13)
C4—C5—C12—C13126.41 (11)C44—C43—N2—C42175.24 (13)
N3—C12—C13—N42.3 (2)C44—C43—N2—C4162.07 (16)
C5—C12—C13—N4176.31 (12)C4—C41—N2—C4367.73 (14)
N3—C12—C13—C7174.93 (12)C4—C41—N2—C42168.72 (12)
C5—C12—C13—C70.91 (14)C13—C12—N3—C153.36 (18)
C8—C7—C13—N40.2 (2)C5—C12—N3—C15176.41 (12)
C6—C7—C13—N4176.18 (13)C16—C15—N3—C12178.09 (13)
C8—C7—C13—C12177.28 (14)C14—C15—N3—C122.53 (19)
C6—C7—C13—C120.91 (15)C12—C13—N4—C140.02 (19)
N4—C14—C15—N30.5 (2)C7—C13—N4—C14176.69 (13)
C19—C14—C15—N3176.95 (13)C19—C14—N4—C13178.22 (13)
N4—C14—C15—C16179.83 (13)C15—C14—N4—C130.82 (19)
C19—C14—C15—C162.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C41—H41B···N30.972.392.9475 (18)116
C9—H9···O1i0.932.533.3564 (18)148
Symmetry code: (i) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C41—H41B···N30.972.392.9475 (18)116.3
C9—H9···O1i0.932.533.3564 (18)148.4
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

JS and RAN thank the management of Madura College for their encouragement and support. RRK thanks theDST, New Delhi, for funds under the fast-track scheme (No. SR/FT/CS-073/2009)

References

First citationAmal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409.  Web of Science PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJames, D., Kunze, H. B. & Faulker, D. (1991). J. Nat. Prod. 54, 1137–1140.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617–6622.  CrossRef CAS Web of Science Google Scholar
First citationSelvanayagam, S., Sridhar, B., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds