metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m491-m492

Di-μ-chlorido-di­chlorido­bis­{8-[2-(di­methyl­amino)­ethyl­amino]­quinoline}dicadmium monohydrate

aDepartment of Chemistry, College of Science for Women, Baghdad University, Baghdad, Iraq, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: alsudani@uobaghdad.edu.iq

(Received 22 July 2013; accepted 7 August 2013; online 14 August 2013)

The title complex, [Cd2Cl4(C13H17N3)2]·H2O, is centrosymmetic and contains two Cd2+ ions bridged by two Cl ions, leading to a strictly planar Cd2Cl2 core. Each Cd2+ ion is further coordinated by an additional Cl ion and three N atoms of a tridentate 8-[2-(di­methyl­amino)­ethyl­amino]­quinoline ligand in the form of a considerably distorted octa­hedron for the overall coordination sphere. A lattice water mol­ecule is located on a twofold rotation axis and links pairs of complexes through N—H⋯O and O—H⋯Cl hydrogen bonds.

Related literature

For background to N-containing ligands including quinoline derivatives, see: Chaudhuri et al. (2007[Chaudhuri, U. P., Whiteaker, L. R., Mondal, A., Klein, E. L., Powell, D. R. & Houser, R. P. (2007). Inorg. Chim. Acta, 360, 3610-3618.]); Kizirian (2008[Kizirian, J.-C. (2008). Chem. Rev. 108, 140-205.]); Miodragovic et al. (2008[Miodragovic, D. U., Mitic, D. M., Miodragovic, Z. M., Bogdanovic, G. A. & Vitnik, Z. (2008). Inorg. Chim. Acta, 361, 86-94.]); Puviarasan et al. (2004[Puviarasan, N., Arjunan, V. & Mohan, S. (2004). Turk. J. Chem. 28, 53-65.]); Singh et al. (2008[Singh, A. K., Kumari, S. & Kumar, K. R. (2008). Polyhedron, 27, 181-186.]); Van Asselt & Elsevier (1994[Van Asselt, R. & Elsevier, C. J. (1994). Tetrahedron, 50, 323-334.]); Zhang et al. (2009[Zhang, J.-A., Pan, M., Zhang, J.-Y., Kang, B.-S. & Su, C.-Y. (2009). Inorg. Chim. Acta, 362, 3519-3525.]). For the synthetic procedure, see: Amoroso et al. (2009[Amoroso, A. J., Edwards, P. G., Howard, S. T., Kariuki, B. M., Knight, J. C., Ooi, L.-L., Malik, K. M. A., Stratford, L. & Al-Sudani, A.-R. H. (2009). Dalton Trans. pp. 8356-8362.]); Hartshorn & Baird (1946[Hartshorn, E. B. & Baird, S. L. Jr (1946). J. Am. Chem. Soc. 68, 1562-1563.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2Cl4(C13H17N3)2]·H2O

  • Mr = 815.21

  • Monoclinic, C 2/c

  • a = 20.7162 (3) Å

  • b = 10.1590 (2) Å

  • c = 15.5574 (3) Å

  • β = 107.315 (1)°

  • V = 3125.77 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 150 K

  • 0.22 × 0.22 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.702, Tmax = 0.723

  • 7231 measured reflections

  • 4216 independent reflections

  • 3946 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.053

  • S = 1.06

  • 4216 reflections

  • 183 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.93 2.08 2.9765 (17) 163
O1—H1O⋯Cl2i 0.87 (3) 2.26 (3) 3.0758 (9) 158 (3)
Symmetry code: (i) -x, -y, -z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and ACD/Chemsketch (Advanced Chemistry Development, 2008[Advanced Chemistry Development (2008). ACD/Chemsketch. Advanced Chemistry Development, Inc., Toronto, Ontario, Canada.]).

Supporting information


Comment top

Metal complexes of N-containing ligands occupy an important position in coordination chemistry (Chaudhuri et al., 2007; Singh et al., 2008; Miodragovic et al., 2008; Van Asselt & Elsevier, 1994; Kizirian, 2008; Zhang et al., 2009). Some quinoline-containing ligands show interesting biological activities (Puviarasan et al., 2004), such as antiphlogistic activity in rats, bacterial inhibitors, are precursors to a number of antimalarial and cancer drugs, or act as local anaesthetics. In addition, they are also active against staphylococcus, epidermis, neisseria and gonorrhea. Derivatives of aminoquinoline are used as inhibitors of the human immunedefciency virus (HIV). Although the biologically active ligand 8-[2-(diethylamino)ethylamino]quinoline was synthesized some time ago (Hartshorn & Baird, 1946), to the best of our knowledge, the methyl analogue has not been reported up to date. In addition, complexation properties of such tridentate asymmetric ligands have been neglected. Inspired by the multifarious properties shown by quinoline-containing ligands, the methyl analogue of the tridentate ligand 8-[2-(diethylamino)ethylamino]quinoline, has been synthesized and some aspects of its coordination chemistry are currently being investigated. One of the results is reported here, viz. synthesis and crystal structure of the title complex, [Cd(C13H17Cl2N3)]2.H2O, (I).

Complex (I) is centrosymmetic and hence the asymmetric unit contains one half of the molecule (Fig. 1). The two Cd2+ ions are bridged by two Cl- ions. In addition to the bridging ions, each Cd2+ is also coordinated by another Cl- ion and three N atoms from the tridentate ligand in the form of a considerably distorted octahedron. Large deviations from right angles are observed, with angles ranging from 69.48 (5)° to 101.08 (4)°. The crystal structure (Fig. 2) also contains a water molecule located on a twofold rotation axis. The water molecule is both an acceptor and a donor to hydrogen bonding, accepting two N—H···O bonds and donating two O—H···Cl bonds to a pairs of the complex units (Fig. 3, Table 1).

Related literature top

For background to N-containing ligands including quinoline derivatives, see: Chaudhuri et al. (2007); Kizirian (2008); Miodragovic et al. (2008); Puviarasan et al. (2004); Singh et al. (2008); Van Asselt & Elsevier (1994); Zhang et al. (2009). For the synthetic procedure, see: Amoroso et al. (2009); Hartshorn & Baird (1946).

Experimental top

The ligand was prepared by the standard Bucherer procedure (Amoroso et al., 2009; Hartshorn & Baird, 1946). To a stirred dry methanolic solution (30 ml) of cadmium dichloride (0.2 g; 0.0011 mol) kept under a positive nitrogen pressure, a dry methanolic solution (10 ml) of the ligand (0.24 g; 0.0011 mol) was slowly added. The resulting solution was stirred at room temperature for 3 h. The solvent was then removed under vacuum and the sticky solid obtained was washed twice with dry diethyl ether (10 ml each). The resulting solid was recrystallized by slow diffusion of diethyl ether in ethanolic solution of the complex. The crystallization method gave colourless crystals in 40% yield (0.17 g), m.p. > 573 K. Anal. Calc. for [Cd2Cl4(NN'N")2]; C; 39.15, H; 4.27, and N; 10.54. Found: C; 39.25, H; 4.42, and N;10.42. 1H NMR (DMSO, 400 MHz): 2.3 (s, 6H, N(CH3)2); 2.6 (t, 2H, CH2–CH2); 3.2 (t, 2H, CH2–CH2); 6.3 (broad s, 1H, HN-quin.); the other 6 H-quin appear at 7.15, 7.4, 7.5, 7.65, 8.4, and 8.85. The crystal finally measured was a monohydrate, presumably originating from insufficiently dried solvents. The solid sample of the complex is stable in open air, the organic solution of the complex, however, is slowly oxidized in open air. No attempt was made to identify the oxidation product.

Refinement top

Ligand H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to (except for methyl groups where it was 1.5 times with free rotation about the C—C bond). The water hydrogen was refined freely. Of the low angle reflections missing from the refinement, reflections (110), (200), (202) and (111) were omitted due to deviant intensities consistent with obstruction by the beamstop; the rest of the missing reflections were eliminated automatically during data processing, possibly as overloads.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and ACD/Chemsketch (Advanced Chemistry Development, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the centrosymmetric complex (I), showing atom labels and atoms with their displacement ellipsoids at the 50% probability level for non-H atoms. Non-labelled atoms are generated by symmetry code -x, -y, -z.
[Figure 2] Fig. 2. Crystal packing in the structure of complex (I) in a projection along [010] with H atoms omitted for clarity.
[Figure 3] Fig. 3. O—H···Cl and N—H···O hydrogen bonding interactions involving the lattice water molecule and a pair of complex molecules.
Di-µ-chlorido-dichloridobis{8-[2-(dimethylamino)ethylamino]quinoline}dicadmium monohydrate top
Crystal data top
[Cd2Cl4(C13H17N3)2]·H2OF(000) = 1624
Mr = 815.21Dx = 1.732 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3946 reflections
a = 20.7162 (3) Åθ = 3.6–30.1°
b = 10.1590 (2) ŵ = 1.73 mm1
c = 15.5574 (3) ÅT = 150 K
β = 107.315 (1)°Block, colourless
V = 3125.77 (10) Å30.22 × 0.22 × 0.20 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3946 reflections with I > 2σ(I)
CCD slices, ω and phi scansRint = 0.016
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
θmax = 30.1°, θmin = 3.6°
Tmin = 0.702, Tmax = 0.723h = 2729
7231 measured reflectionsk = 1312
4216 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0199P)2 + 4.8395P]
where P = (Fo2 + 2Fc2)/3
4216 reflections(Δ/σ)max = 0.008
183 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Cd2Cl4(C13H17N3)2]·H2OV = 3125.77 (10) Å3
Mr = 815.21Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.7162 (3) ŵ = 1.73 mm1
b = 10.1590 (2) ÅT = 150 K
c = 15.5574 (3) Å0.22 × 0.22 × 0.20 mm
β = 107.315 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4216 independent reflections
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
3946 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.723Rint = 0.016
7231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.51 e Å3
4216 reflectionsΔρmin = 0.72 e Å3
183 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12451 (10)0.41925 (18)0.06077 (13)0.0253 (4)
H10.13390.40870.00500.030*
C20.12079 (11)0.54785 (19)0.09262 (14)0.0303 (4)
H20.12890.62180.05990.036*
C30.10534 (10)0.56478 (19)0.17143 (14)0.0258 (4)
H30.10060.65090.19260.031*
C40.09641 (8)0.45336 (18)0.22120 (12)0.0199 (3)
C50.10348 (8)0.32726 (17)0.18565 (11)0.0167 (3)
C60.09650 (8)0.21255 (17)0.23430 (11)0.0174 (3)
C70.08071 (9)0.22509 (19)0.31363 (12)0.0215 (3)
H70.07590.14850.34620.026*
C80.07154 (9)0.3509 (2)0.34740 (12)0.0249 (4)
H80.05950.35770.40160.030*
C90.07972 (9)0.46252 (19)0.30298 (12)0.0233 (4)
H90.07420.54640.32690.028*
C100.17837 (9)0.04031 (19)0.24198 (12)0.0226 (3)
H10A0.18100.00310.29990.027*
H10B0.20910.11730.25500.027*
C110.20163 (9)0.05516 (18)0.18250 (13)0.0224 (3)
H11A0.24840.08340.21400.027*
H11B0.17240.13420.17230.027*
C120.21395 (10)0.1006 (2)0.03647 (15)0.0289 (4)
H12A0.25880.13810.06520.043*
H12B0.21290.06230.02170.043*
H12C0.17970.17000.02710.043*
C130.24979 (9)0.10901 (19)0.10403 (15)0.0259 (4)
H13A0.24040.17940.14170.039*
H13B0.24700.14420.04440.039*
H13C0.29530.07400.13220.039*
N10.11566 (7)0.31225 (14)0.10437 (10)0.0184 (3)
N20.10774 (7)0.08637 (14)0.19907 (10)0.0176 (3)
H2A0.07800.02560.21110.021*
N30.19961 (7)0.00256 (15)0.09472 (10)0.0191 (3)
Cl10.04043 (2)0.14862 (4)0.01821 (3)0.01998 (9)
Cl20.11929 (2)0.17411 (5)0.10028 (3)0.02352 (9)
Cd10.088388 (5)0.096714 (11)0.037735 (7)0.01464 (5)
O10.00000.0595 (2)0.25000.0243 (4)
H1O0.0257 (15)0.110 (3)0.209 (2)0.050 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0340 (10)0.0211 (9)0.0220 (9)0.0026 (7)0.0102 (7)0.0035 (7)
C20.0416 (11)0.0174 (9)0.0299 (10)0.0025 (8)0.0078 (8)0.0049 (8)
C30.0274 (9)0.0161 (8)0.0301 (10)0.0012 (7)0.0025 (7)0.0012 (7)
C40.0157 (7)0.0201 (8)0.0213 (8)0.0023 (6)0.0016 (6)0.0034 (7)
C50.0123 (7)0.0187 (8)0.0176 (8)0.0018 (6)0.0022 (6)0.0005 (6)
C60.0132 (7)0.0188 (8)0.0194 (8)0.0042 (6)0.0036 (6)0.0024 (6)
C70.0205 (8)0.0258 (9)0.0180 (8)0.0053 (7)0.0053 (6)0.0014 (7)
C80.0222 (9)0.0329 (10)0.0197 (8)0.0049 (7)0.0065 (7)0.0080 (7)
C90.0206 (8)0.0241 (9)0.0237 (8)0.0019 (7)0.0043 (6)0.0090 (7)
C100.0212 (8)0.0249 (9)0.0200 (8)0.0021 (7)0.0036 (6)0.0059 (7)
C110.0198 (8)0.0190 (8)0.0277 (9)0.0033 (6)0.0061 (7)0.0064 (7)
C120.0234 (9)0.0287 (10)0.0373 (11)0.0049 (7)0.0133 (8)0.0030 (8)
C130.0146 (8)0.0265 (9)0.0354 (11)0.0024 (7)0.0055 (7)0.0075 (8)
N10.0198 (7)0.0167 (7)0.0185 (7)0.0018 (5)0.0056 (5)0.0009 (5)
N20.0170 (7)0.0161 (7)0.0204 (7)0.0025 (5)0.0066 (5)0.0002 (5)
N30.0159 (6)0.0185 (7)0.0239 (7)0.0006 (5)0.0072 (5)0.0019 (6)
Cl10.01501 (17)0.01287 (18)0.0307 (2)0.00086 (13)0.00476 (15)0.00112 (15)
Cl20.0249 (2)0.0277 (2)0.01924 (19)0.00542 (16)0.00846 (16)0.00022 (16)
Cd10.01324 (7)0.01439 (7)0.01632 (7)0.00110 (4)0.00444 (5)0.00040 (4)
O10.0240 (9)0.0220 (9)0.0242 (9)0.0000.0028 (7)0.000
Geometric parameters (Å, º) top
C1—N11.323 (2)C10—H10B0.9900
C1—C21.408 (3)C11—N31.475 (2)
C1—H10.9500C11—H11A0.9900
C2—C31.367 (3)C11—H11B0.9900
C2—H20.9500C12—N31.472 (2)
C3—C41.414 (3)C12—H12A0.9800
C3—H30.9500C12—H12B0.9800
C4—C91.417 (3)C12—H12C0.9800
C4—C51.420 (2)C13—N31.477 (2)
C5—N11.369 (2)C13—H13A0.9800
C5—C61.420 (2)C13—H13B0.9800
C6—C71.374 (2)C13—H13C0.9800
C6—N21.440 (2)N1—Cd12.4166 (15)
C7—C81.416 (3)N2—Cd12.4234 (15)
C7—H70.9500N2—H2A0.9300
C8—C91.365 (3)N3—Cd12.4070 (14)
C8—H80.9500Cl1—Cd12.6028 (4)
C9—H90.9500Cl1—Cd1i2.6667 (4)
C10—N21.491 (2)Cl2—Cd12.5410 (4)
C10—C111.515 (3)Cd1—Cl1i2.6667 (4)
C10—H10A0.9900O1—H1O0.87 (3)
N1—C1—C2123.49 (18)H12A—C12—H12B109.5
N1—C1—H1118.3N3—C12—H12C109.5
C2—C1—H1118.3H12A—C12—H12C109.5
C3—C2—C1118.98 (18)H12B—C12—H12C109.5
C3—C2—H2120.5N3—C13—H13A109.5
C1—C2—H2120.5N3—C13—H13B109.5
C2—C3—C4119.60 (17)H13A—C13—H13B109.5
C2—C3—H3120.2N3—C13—H13C109.5
C4—C3—H3120.2H13A—C13—H13C109.5
C3—C4—C9123.05 (17)H13B—C13—H13C109.5
C3—C4—C5117.60 (16)C1—N1—C5118.28 (15)
C9—C4—C5119.33 (17)C1—N1—Cd1125.10 (12)
N1—C5—C4121.92 (15)C5—N1—Cd1114.41 (11)
N1—C5—C6118.47 (15)C6—N2—C10110.93 (14)
C4—C5—C6119.60 (16)C6—N2—Cd1111.09 (10)
C7—C6—C5119.48 (16)C10—N2—Cd1108.36 (10)
C7—C6—N2122.22 (16)C6—N2—H2A108.8
C5—C6—N2118.29 (15)C10—N2—H2A108.8
C6—C7—C8120.74 (17)Cd1—N2—H2A108.8
C6—C7—H7119.6C12—N3—C11109.36 (15)
C8—C7—H7119.6C12—N3—C13108.44 (15)
C9—C8—C7120.77 (17)C11—N3—C13112.03 (14)
C9—C8—H8119.6C12—N3—Cd1113.73 (11)
C7—C8—H8119.6C11—N3—Cd1105.02 (10)
C8—C9—C4120.02 (17)C13—N3—Cd1108.29 (11)
C8—C9—H9120.0Cd1—Cl1—Cd1i99.142 (13)
C4—C9—H9120.0N3—Cd1—N197.25 (5)
N2—C10—C11112.06 (14)N3—Cd1—N275.88 (5)
N2—C10—H10A109.2N1—Cd1—N269.48 (5)
C11—C10—H10A109.2N3—Cd1—Cl288.85 (4)
N2—C10—H10B109.2N1—Cd1—Cl289.81 (4)
C11—C10—H10B109.2N2—Cd1—Cl2152.01 (4)
H10A—C10—H10B107.9N3—Cd1—Cl1167.81 (4)
N3—C11—C10112.61 (14)N1—Cd1—Cl192.60 (4)
N3—C11—H11A109.1N2—Cd1—Cl1101.08 (4)
C10—C11—H11A109.1Cl2—Cd1—Cl198.388 (14)
N3—C11—H11B109.1N3—Cd1—Cl1i87.36 (4)
C10—C11—H11B109.1N1—Cd1—Cl1i158.02 (4)
H11A—C11—H11B107.8N2—Cd1—Cl1i91.07 (3)
N3—C12—H12A109.5Cl2—Cd1—Cl1i111.836 (14)
N3—C12—H12B109.5Cl1—Cd1—Cl1i80.858 (13)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.932.082.9765 (17)163
O1—H1O···Cl2i0.87 (3)2.26 (3)3.0758 (9)158 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.932.082.9765 (17)162.9
O1—H1O···Cl2i0.87 (3)2.26 (3)3.0758 (9)158 (3)
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors extend their appreciation to Cardiff University for supporting this research. Professor P. G. Edwards and Dr A. J. Amoroso are thanked for their advice and financial support.

References

First citationAdvanced Chemistry Development (2008). ACD/Chemsketch. Advanced Chemistry Development, Inc., Toronto, Ontario, Canada.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAmoroso, A. J., Edwards, P. G., Howard, S. T., Kariuki, B. M., Knight, J. C., Ooi, L.-L., Malik, K. M. A., Stratford, L. & Al-Sudani, A.-R. H. (2009). Dalton Trans. pp. 8356–8362.  Web of Science CSD CrossRef Google Scholar
First citationChaudhuri, U. P., Whiteaker, L. R., Mondal, A., Klein, E. L., Powell, D. R. & Houser, R. P. (2007). Inorg. Chim. Acta, 360, 3610–3618.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHartshorn, E. B. & Baird, S. L. Jr (1946). J. Am. Chem. Soc. 68, 1562–1563.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKizirian, J.-C. (2008). Chem. Rev. 108, 140–205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiodragovic, D. U., Mitic, D. M., Miodragovic, Z. M., Bogdanovic, G. A. & Vitnik, Z. (2008). Inorg. Chim. Acta, 361, 86–94.  CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPuviarasan, N., Arjunan, V. & Mohan, S. (2004). Turk. J. Chem. 28, 53–65.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, A. K., Kumari, S. & Kumar, K. R. (2008). Polyhedron, 27, 181–186.  Web of Science CSD CrossRef CAS Google Scholar
First citationVan Asselt, R. & Elsevier, C. J. (1994). Tetrahedron, 50, 323–334.  CrossRef CAS Web of Science Google Scholar
First citationZhang, J.-A., Pan, M., Zhang, J.-Y., Kang, B.-S. & Su, C.-Y. (2009). Inorg. Chim. Acta, 362, 3519–3525.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m491-m492
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds