inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

BaMnII2MnIII(PO4)3

aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: g_alhakmi@yahoo.fr

(Received 8 August 2013; accepted 16 August 2013; online 23 August 2013)

The title compound, barium trimanganese tris­(ortho­phosphate), was synthesized hydro­thermally. Its structure is isotypic with the lead and strontium analogues AMnII2MnIII(PO4)3 (A = Pb, Sr). Except for two O atoms on general positions, all atoms are located on special positions. The Ba and one P atom exhibit mm2 symmetry, the MnII atom 2/m symmetry, the MnIII atom and the other P atom .2. symmetry and two O atoms are located on mirror planes. The crystal structure contains two types of chains running parallel to [010]. One chain is linear and is composed of alternating MnIIIO6 octa­hedra and PO4 tetra­hedra sharing vertices; the other chain has a zigzag arrangement and is built up from two edge-sharing MnIIO6 octa­hedra connected to PO4 tetra­hedra by edges and vertices. The two types of chains are linked through PO4 tetra­hedra into an open three-dimensional framework which contains channels parallel to [100] and [010] in which the BaII ions are located. The alkaline earth cation is surrounded by eight O atoms in the form of a slightly distorted bicapped trigonal prism.

Related literature

For the isotypic lead and strontium analogues, see: Alhakmi et al. (2013a[Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013a). Acta Cryst. E69, i40.]) and (2013b[Alhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013b). Acta Cryst. E69, i56.]), respectively. For related structures, see: Adam et al. (2009[Adam, L., Guesdon, A. & Raveau, B. (2009). J. Solid State Chem. 182, 2338-2343.]); Assani et al. (2011a[Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011a). Acta Cryst. E67, i41.],b[Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40.]). For bond-valence analysis, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]). For the by- product phase, see: Moore & Araki (1973[Moore, P. B. & Araki, T. (1973). Am. Mineral. 58, 302-307.]).

Experimental

Crystal data
  • BaMn3(PO4)3

  • Mr = 587.07

  • Orthorhombic, I m m a

  • a = 10.3038 (7) Å

  • b = 14.0163 (11) Å

  • c = 6.7126 (4) Å

  • V = 969.44 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.39 mm−1

  • T = 296 K

  • 0.29 × 0.17 × 0.13 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.164, Tmax = 0.376

  • 3968 measured reflections

  • 811 independent reflections

  • 732 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.055

  • S = 1.09

  • 811 reflections

  • 53 parameters

  • Δρmax = 1.86 e Å−3

  • Δρmin = −0.78 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Investigating functional compounds by means of the hydrothermal process, particularly phosphates, we have succeeded to synthesize and structurally characterize new mixed-cation orthophosphates with open frameworks, e.g. the isotypic pair Ag2M3(HPO4)(PO4)2 (M = Co, Ni) (Assani et al., 2011a,b) that is closely related to the alluaudite structure. Others investigated phosphates include compounds crystallizing in the AMnII2MnIII(PO4)3 (A = Pb, Sr) structure type (Alhakmi et al. (2013a,b) with rarely observed mixed-valent MnII/III cations (Adam et al., 2009). The present article reports on synthesis and crystal structure of the isotypic barium analogue, BaMnII2MnIII(PO4)3.

All atoms of this structure are in special positions, except two oxygen atoms (O3, O4) in general position of space group Imma. The connection of the metal-oxygen polyhedra, viz. BaO8 polyhedra, MnO6 octahedra and PO4 tetrahedra is shown in Fig. 1. The framework of the crystal structure consists of two isolated PO4 tetrahedra linked to MnO6 octahedra, building two types of chains running along [010]. The first chain is formed by alternating MnIIIO6 octahedra and PO4 tetrahedra sharing vertices. The second chain is built up from two edge-sharing MnIIO6 octahedra leading to the formation of MnII2O10 dimers that are connected to two PO4 tetrahedra by a common edge. These two types of chains are linked together by common vertices of PO4 tetrahedra to form an open three-dimensional framework that delimits two types of tunnels parallel to [100] and [010] where the BaII ions are located (Fig. 2). The coordination sphere of the BaII ion is that of a bicapped trigonal prism.

Bond valence sum calculation (Brown & Altermatt, 1985) of BaMnII2MnIII(PO4)3 resulted in expected values (in valence units) for the ions Ba1II (2.26), Mn1III (3.01), Mn2II (2.09), P1V (4.99), and P2V (4.87). The three-dimensional framework of BaMnII2MnIII(PO4)3 and its isotypic AMnII2MnIII(PO4)3 (A = Pb, Sr) analogues, resemble that of the Ag2M3(HPO4)(PO4)2 type with M = Ni or Co, whereby the two Ag+ cations in the channels are replaced by BaII, PbII or SrII.

Related literature top

For the isotypic lead and strontium analogues, see: Alhakmi et al. (2013a) and (2013b), respectively. For related structures, see: Adam et al. (2009); Assani et al. (2011a,b). For bond-valence analysis, see: Brown & Altermatt (1985). For the by- product phase, see: Moore & Araki (1973).

Experimental top

The hydrothermal treatment of a reaction mixture of barium, manganese and phosphate precursors in a proportion corresponding to the molar ratio Ba: Mn: P = 1: 3: 3 has allowed to isolate brown block-shaped crystals corresponding to the title compound as well as a parallelepipedic colourless crystals which were identified to be the known manganese phosphate Mn5(HPO4)2(PO4)2.4H2O (Moore & Araki, 1973). The hydrothermal reaction was conducted in a 23 ml Teflon-lined autoclave, filled to 50% with distilled water and under autogeneous pressure at 463 K for five days.

Refinement top

The highest peak and the deepest hole in the final Fourier map are at 0.82 Å and 1.00 Å away from Ba1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The main building units of the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, -y + 1, -z; (ii) -x, y - 1/2, -z; (iii) x, y - 1/2, -z; (iv) -x, -y + 1, -z; (v) x, y, z - 1; (vi) -x, -y + 1/2, z - 1; (vii) -x, -y + 1/2, z; (viii) -x + 1/2, y - 1/2, z + 1/2; (ix) x - 1/2, -y + 1/2, -z + 1/2; (x) -x + 1/2, -y + 1/2, -z + 1/2; (xi) x - 1/2, y - 1/2, z + 1/2; (xii) -x, -y, -z + 1; (xiii) -x + 1/2, -y + 1, z + 1/2; (xiv) -x + 1/2, y, -z + 1/2.]
[Figure 2] Fig. 2. Polyhedral representation of BaMn3(PO4)3 with channels running parallel to [010].
Barium trimanganese tris(orthophosphate) top
Crystal data top
BaMn3(PO4)3F(000) = 1088
Mr = 587.07Dx = 4.022 Mg m3
Orthorhombic, ImmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2b 2Cell parameters from 811 reflections
a = 10.3038 (7) Åθ = 3.4–30.5°
b = 14.0163 (11) ŵ = 8.39 mm1
c = 6.7126 (4) ÅT = 296 K
V = 969.44 (12) Å3Block, brown
Z = 40.29 × 0.17 × 0.13 mm
Data collection top
Bruker X8 APEX
diffractometer
811 independent reflections
Radiation source: fine-focus sealed tube732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 30.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1413
Tmin = 0.164, Tmax = 0.376k = 1920
3968 measured reflectionsl = 97
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.020Secondary atom site location: difference Fourier map
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0353P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
811 reflectionsΔρmax = 1.86 e Å3
53 parametersΔρmin = 0.78 e Å3
Crystal data top
BaMn3(PO4)3V = 969.44 (12) Å3
Mr = 587.07Z = 4
Orthorhombic, ImmaMo Kα radiation
a = 10.3038 (7) ŵ = 8.39 mm1
b = 14.0163 (11) ÅT = 296 K
c = 6.7126 (4) Å0.29 × 0.17 × 0.13 mm
Data collection top
Bruker X8 APEX
diffractometer
811 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
732 reflections with I > 2σ(I)
Tmin = 0.164, Tmax = 0.376Rint = 0.032
3968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02053 parameters
wR(F2) = 0.0550 restraints
S = 1.09Δρmax = 1.86 e Å3
811 reflectionsΔρmin = 0.78 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.00000.25000.11499 (4)0.01125 (10)
Mn10.00000.50000.50000.00794 (15)
Mn20.25000.36758 (4)0.25000.01092 (13)
P10.00000.25000.39677 (16)0.0078 (2)
P20.25000.57094 (6)0.25000.00851 (17)
O10.00000.15998 (16)0.5237 (4)0.0115 (5)
O20.1185 (2)0.25000.2553 (3)0.0107 (4)
O30.21046 (19)0.63040 (12)0.0721 (3)0.0133 (3)
O40.36337 (16)0.49927 (12)0.1983 (2)0.0103 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01480 (16)0.01187 (15)0.00707 (14)0.0000.0000.000
Mn10.0102 (3)0.0081 (3)0.0056 (3)0.0000.0000.0001 (2)
Mn20.0154 (3)0.0063 (2)0.0110 (2)0.0000.00074 (18)0.000
P10.0104 (5)0.0065 (5)0.0066 (5)0.0000.0000.000
P20.0121 (4)0.0064 (4)0.0071 (3)0.0000.0010 (3)0.000
O10.0166 (12)0.0049 (9)0.0129 (11)0.0000.0000.0014 (8)
O20.0121 (11)0.0103 (11)0.0098 (10)0.0000.0035 (8)0.000
O30.0183 (8)0.0114 (8)0.0100 (7)0.0027 (6)0.0006 (7)0.0033 (6)
O40.0123 (8)0.0087 (7)0.0100 (7)0.0014 (6)0.0016 (6)0.0009 (5)
Geometric parameters (Å, º) top
Ba1—O1i2.734 (2)Mn2—O22.1337 (16)
Ba1—O1ii2.734 (2)Mn2—O2xiii2.1337 (16)
Ba1—O3iii2.7560 (18)Mn2—O3iii2.2006 (17)
Ba1—O3iv2.7560 (18)Mn2—O3ix2.2006 (17)
Ba1—O3v2.7560 (18)Mn2—O42.2117 (17)
Ba1—O3vi2.7560 (18)Mn2—O4x2.2117 (17)
Ba1—O22.769 (2)P1—O11.523 (2)
Ba1—O2vii2.769 (2)P1—O1vii1.523 (2)
Mn1—O4viii1.9377 (17)P1—O2vii1.547 (2)
Mn1—O4ix1.9377 (17)P1—O21.547 (2)
Mn1—O4x1.9377 (17)P2—O3x1.5119 (17)
Mn1—O4xi1.9377 (17)P2—O31.5119 (17)
Mn1—O1vii2.248 (2)P2—O4x1.5792 (17)
Mn1—O1xii2.248 (2)P2—O41.5792 (17)
O1i—Ba1—O1ii54.97 (9)O4ix—Mn1—O1vii87.51 (6)
O1i—Ba1—O3iii111.92 (5)O4x—Mn1—O1vii92.49 (6)
O1ii—Ba1—O3iii79.16 (5)O4xi—Mn1—O1vii87.51 (6)
O1i—Ba1—O3iv79.16 (5)O4viii—Mn1—O1xii87.51 (6)
O1ii—Ba1—O3iv111.92 (5)O4ix—Mn1—O1xii92.49 (6)
O3iii—Ba1—O3iv168.02 (7)O4x—Mn1—O1xii87.51 (6)
O1i—Ba1—O3v79.16 (5)O4xi—Mn1—O1xii92.49 (6)
O1ii—Ba1—O3v111.92 (5)O1vii—Mn1—O1xii180.0
O3iii—Ba1—O3v74.93 (8)O2—Mn2—O2xiii78.86 (10)
O3iv—Ba1—O3v103.78 (8)O2—Mn2—O3iii84.77 (8)
O1i—Ba1—O3vi111.92 (5)O2xiii—Mn2—O3iii96.38 (8)
O1ii—Ba1—O3vi79.16 (5)O2—Mn2—O3ix96.38 (8)
O3iii—Ba1—O3vi103.78 (8)O2xiii—Mn2—O3ix84.77 (8)
O3iv—Ba1—O3vi74.93 (8)O3iii—Mn2—O3ix178.52 (9)
O3v—Ba1—O3vi168.02 (7)O2—Mn2—O4169.28 (7)
O1i—Ba1—O2142.77 (4)O2xiii—Mn2—O4107.86 (7)
O1ii—Ba1—O2142.77 (4)O3iii—Mn2—O486.16 (6)
O3iii—Ba1—O263.86 (5)O3ix—Mn2—O492.61 (7)
O3iv—Ba1—O2104.67 (5)O2—Mn2—O4x107.86 (7)
O3v—Ba1—O263.86 (5)O2xiii—Mn2—O4x169.28 (7)
O3vi—Ba1—O2104.67 (5)O3iii—Mn2—O4x92.61 (7)
O1i—Ba1—O2vii142.77 (4)O3ix—Mn2—O4x86.16 (6)
O1ii—Ba1—O2vii142.77 (4)O4—Mn2—O4x66.86 (9)
O3iii—Ba1—O2vii104.67 (5)O1—P1—O1vii111.94 (19)
O3iv—Ba1—O2vii63.86 (5)O1—P1—O2vii110.09 (7)
O3v—Ba1—O2vii104.67 (5)O1vii—P1—O2vii110.09 (7)
O3vi—Ba1—O2vii63.86 (5)O1—P1—O2110.09 (7)
O2—Ba1—O2vii52.33 (10)O1vii—P1—O2110.09 (7)
O4viii—Mn1—O4ix180.0O2vii—P1—O2104.27 (19)
O4viii—Mn1—O4x93.19 (10)O3x—P2—O3113.10 (14)
O4ix—Mn1—O4x86.81 (10)O3x—P2—O4x112.12 (9)
O4viii—Mn1—O4xi86.81 (10)O3—P2—O4x108.95 (10)
O4ix—Mn1—O4xi93.19 (10)O3x—P2—O4108.95 (10)
O4x—Mn1—O4xi180.0O3—P2—O4112.12 (9)
O4viii—Mn1—O1vii92.49 (6)O4x—P2—O4100.99 (13)
Symmetry codes: (i) x, y, z1; (ii) x, y+1/2, z1; (iii) x, y+1, z; (iv) x, y1/2, z; (v) x, y1/2, z; (vi) x, y+1, z; (vii) x, y+1/2, z; (viii) x1/2, y, z+1/2; (ix) x+1/2, y+1, z+1/2; (x) x+1/2, y, z+1/2; (xi) x1/2, y+1, z+1/2; (xii) x, y+1/2, z+1; (xiii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaBaMn3(PO4)3
Mr587.07
Crystal system, space groupOrthorhombic, Imma
Temperature (K)296
a, b, c (Å)10.3038 (7), 14.0163 (11), 6.7126 (4)
V3)969.44 (12)
Z4
Radiation typeMo Kα
µ (mm1)8.39
Crystal size (mm)0.29 × 0.17 × 0.13
Data collection
DiffractometerBruker X8 APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.164, 0.376
No. of measured, independent and
observed [I > 2σ(I)] reflections
3968, 811, 732
Rint0.032
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.055, 1.09
No. of reflections811
No. of parameters53
Δρmax, Δρmin (e Å3)1.86, 0.78

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAdam, L., Guesdon, A. & Raveau, B. (2009). J. Solid State Chem. 182, 2338–2343.  Web of Science CrossRef CAS Google Scholar
First citationAlhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013a). Acta Cryst. E69, i40.  CrossRef IUCr Journals Google Scholar
First citationAlhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013b). Acta Cryst. E69, i56.  CrossRef IUCr Journals Google Scholar
First citationAssani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011a). Acta Cryst. E67, i41.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAssani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoore, P. B. & Araki, T. (1973). Am. Mineral. 58, 302–307.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds