organic compounds
Methyl 6-deoxy-6-iodo-2,3-O-isopropylidene-α-D-mannopyranoside
aDepartment of Chemistry, Çankırı Karatekin University, TR-18100, Çankırı, Turkey, bUniversität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, cDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
In the title compound, C10H17IO5, the six-membered tetrahydropyran ring and the five-membered 1,3-dioxolane ring adopt sofa and envelope conformations, respectively. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds link the molecules into layers nearly parallel to the bc plane.
Related literature
For et al. (2000); Dransfield et al. (1999); Greul et al. (2001). For conversions of unsaturated to nitrones and see: Dransfield et al. (1999); Bernet & Vasella (1979); Greul et al. (2001); Gallos et al. (1999); Kleban et al. (2001). For the methods reported in the literature for the preparation of the title compound, see: Garegg & Samuelsson (1980); Bundle et al. (1988); Ichikawa et al. (2004). For the synthesis of methyl 2,3-O-isopropylidene-α-D-mannopyranoside, see: Evans & Parrish (1977); Isobe et al. (1981). For ring-puckering parameters, see: Cremer & Pople (1975).
which are important for the preparation of unsaturated see: KlebanExperimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813022629/xu5727sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813022629/xu5727Isup2.hkl
The title compound was synthesized in two steps starting from α-D-mannopyranoside by the literature methods (Garegg & Samuelsson, 1980; Bundle et al., 1988; Ichikawa et al., 2004). To a solution of methyl 2,3-O-isopropylidene-α-D-mannopyranoside (Evans & Parrish, 1977; Isobe et al., 1981) (2.50 g, 10.66 mmol) in dry toluene (70 ml, dissolved at 353 K) were added PPh3 (4.30 g, 15.90 mmol), imidazole (2.17 g, 31.98 mmol) and iodine (3.80 g, 14.90 mmol) sequentially. The reaction mixture was refluxed for 3 h. 20 ml water was added, and then the mixture was extracted with EtOAc (4 × 20 ml). The combined organic phase was washed with brine (300 ml) and then dried over MgSO4. The filtrate was concentrated under reduced pressure, and the residue was purified by (PE:EE 70:30) to afford the iodo compound as a colourless crystalline solid (yield: 90%), m.p. 383–384 K.
Atom H2A (for OH) was located in a difference Fourier map and refined freely. The C-bound H atoms were positioned geometrically, with C—H = 1.00, 0.99 and 0.98 Å for methine, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = kUeq(C), where k = 1.2 for methine and methylene and k = 1.5 for methyl H atoms.
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C10H17IO5 | F(000) = 340 |
Mr = 344.14 | Dx = 1.814 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 3798 reflections |
a = 8.3121 (8) Å | θ = 2.8–30.5° |
b = 10.3911 (10) Å | µ = 2.55 mm−1 |
c = 8.3128 (8) Å | T = 100 K |
β = 118.639 (3)° | Prism, colourless |
V = 630.15 (11) Å3 | 0.99 × 0.58 × 0.44 mm |
Z = 2 |
Bruker Kappa APEXII DUO diffractometer | 3827 independent reflections |
Radiation source: fine-focus sealed tube | 3803 reflections with I > 2σ(I) |
Triumph monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 30.5°, θmin = 2.8° |
Absorption correction: numerical (Blessing, 1995) | h = −11→11 |
Tmin = 0.187, Tmax = 0.401 | k = −14→14 |
13656 measured reflections | l = −11→11 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.016 | w = 1/[σ2(Fo2) + (0.0159P)2 + 0.0596P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.043 | (Δ/σ)max = 0.001 |
S = 1.24 | Δρmax = 0.86 e Å−3 |
3827 reflections | Δρmin = −0.82 e Å−3 |
153 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
3 restraints | Extinction coefficient: 0.0949 (17) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1811 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.003 (12) |
C10H17IO5 | V = 630.15 (11) Å3 |
Mr = 344.14 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 8.3121 (8) Å | µ = 2.55 mm−1 |
b = 10.3911 (10) Å | T = 100 K |
c = 8.3128 (8) Å | 0.99 × 0.58 × 0.44 mm |
β = 118.639 (3)° |
Bruker Kappa APEXII DUO diffractometer | 3827 independent reflections |
Absorption correction: numerical (Blessing, 1995) | 3803 reflections with I > 2σ(I) |
Tmin = 0.187, Tmax = 0.401 | Rint = 0.027 |
13656 measured reflections |
R[F2 > 2σ(F2)] = 0.016 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.043 | Δρmax = 0.86 e Å−3 |
S = 1.24 | Δρmin = −0.82 e Å−3 |
3827 reflections | Absolute structure: Flack (1983), 1811 Friedel pairs |
153 parameters | Absolute structure parameter: 0.003 (12) |
3 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.388710 (12) | 0.741920 (17) | 0.435425 (11) | 0.01675 (5) | |
O1 | 0.59121 (17) | 0.64971 (12) | 0.87699 (17) | 0.0126 (2) | |
O2 | 0.91193 (19) | 0.47140 (13) | 0.78471 (18) | 0.0150 (2) | |
H2A | 0.998 (4) | 0.426 (3) | 0.855 (4) | 0.045 (10)* | |
O3 | 0.76827 (18) | 0.82125 (12) | 1.0565 (2) | 0.0143 (2) | |
O4 | 1.04540 (17) | 0.44287 (13) | 1.19016 (17) | 0.0130 (2) | |
O5 | 0.80476 (18) | 0.50343 (12) | 1.23592 (19) | 0.0143 (2) | |
C1 | 0.6958 (2) | 0.62356 (15) | 0.7844 (2) | 0.0113 (3) | |
H1 | 0.7689 | 0.7009 | 0.7875 | 0.014* | |
C2 | 0.8224 (2) | 0.51098 (16) | 0.8849 (2) | 0.0111 (3) | |
H2 | 0.7473 | 0.4379 | 0.8912 | 0.013* | |
C3 | 0.9584 (2) | 0.55251 (16) | 1.0784 (2) | 0.0105 (3) | |
H3 | 1.0518 | 0.6125 | 1.0768 | 0.013* | |
C4 | 0.8628 (2) | 0.61411 (15) | 1.1762 (2) | 0.0119 (3) | |
H4 | 0.9530 | 0.6646 | 1.2845 | 0.014* | |
C5 | 0.6980 (3) | 0.69768 (17) | 1.0559 (2) | 0.0118 (3) | |
H5 | 0.6183 | 0.7038 | 1.1152 | 0.014* | |
C6 | 0.6277 (3) | 0.91625 (18) | 0.9709 (3) | 0.0226 (4) | |
H6A | 0.5518 | 0.8950 | 0.8409 | 0.034* | |
H6B | 0.6839 | 1.0010 | 0.9823 | 0.034* | |
H6C | 0.5510 | 0.9178 | 1.0309 | 0.034* | |
C7 | 0.5644 (3) | 0.58663 (17) | 0.5897 (3) | 0.0158 (3) | |
H7A | 0.4882 | 0.5136 | 0.5903 | 0.019* | |
H7B | 0.6351 | 0.5574 | 0.5287 | 0.019* | |
C8 | 0.9482 (3) | 0.40997 (16) | 1.2897 (2) | 0.0143 (3) | |
C9 | 0.8614 (3) | 0.27863 (19) | 1.2334 (3) | 0.0220 (4) | |
H9A | 0.7752 | 0.2655 | 1.2809 | 0.033* | |
H9B | 0.9570 | 0.2124 | 1.2832 | 0.033* | |
H9C | 0.7957 | 0.2727 | 1.0993 | 0.033* | |
C10 | 1.0810 (3) | 0.4196 (2) | 1.4915 (3) | 0.0231 (4) | |
H10A | 1.1313 | 0.5070 | 1.5203 | 0.035* | |
H10B | 1.1809 | 0.3579 | 1.5237 | 0.035* | |
H10C | 1.0172 | 0.4004 | 1.5618 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01472 (6) | 0.01220 (5) | 0.01494 (6) | 0.00098 (5) | 0.00036 (4) | 0.00353 (5) |
O1 | 0.0087 (5) | 0.0137 (5) | 0.0134 (6) | 0.0003 (4) | 0.0036 (5) | −0.0021 (4) |
O2 | 0.0145 (6) | 0.0201 (6) | 0.0104 (6) | 0.0058 (5) | 0.0060 (5) | 0.0004 (5) |
O3 | 0.0097 (6) | 0.0093 (5) | 0.0215 (7) | −0.0009 (4) | 0.0055 (5) | −0.0018 (4) |
O4 | 0.0107 (6) | 0.0189 (6) | 0.0111 (6) | 0.0046 (5) | 0.0065 (5) | 0.0047 (5) |
C1 | 0.0102 (7) | 0.0112 (6) | 0.0108 (7) | 0.0007 (5) | 0.0037 (6) | −0.0009 (5) |
C2 | 0.0096 (7) | 0.0130 (6) | 0.0099 (7) | 0.0014 (6) | 0.0042 (6) | 0.0002 (5) |
C3 | 0.0078 (7) | 0.0132 (6) | 0.0101 (7) | 0.0008 (5) | 0.0039 (6) | 0.0009 (5) |
C4 | 0.0113 (7) | 0.0131 (7) | 0.0118 (7) | 0.0001 (6) | 0.0061 (6) | −0.0006 (6) |
C5 | 0.0102 (7) | 0.0116 (6) | 0.0125 (8) | −0.0010 (5) | 0.0046 (7) | −0.0018 (5) |
O5 | 0.0138 (6) | 0.0148 (5) | 0.0175 (6) | 0.0041 (4) | 0.0102 (5) | 0.0048 (5) |
C6 | 0.0155 (9) | 0.0131 (8) | 0.0329 (11) | 0.0036 (6) | 0.0065 (8) | 0.0002 (7) |
C7 | 0.0150 (8) | 0.0134 (7) | 0.0118 (8) | 0.0023 (6) | 0.0005 (7) | 0.0008 (6) |
C8 | 0.0146 (8) | 0.0173 (7) | 0.0147 (8) | 0.0044 (6) | 0.0100 (7) | 0.0039 (6) |
C9 | 0.0234 (10) | 0.0161 (7) | 0.0313 (11) | 0.0018 (6) | 0.0171 (9) | 0.0045 (6) |
C10 | 0.0239 (10) | 0.0326 (10) | 0.0132 (9) | 0.0095 (8) | 0.0093 (8) | 0.0069 (7) |
I1—C7 | 2.1414 (18) | C4—O5 | 1.425 (2) |
O1—C1 | 1.4362 (19) | C4—C5 | 1.522 (3) |
O1—C5 | 1.408 (2) | C4—H4 | 1.0000 |
O2—C2 | 1.4182 (18) | C5—H5 | 1.0000 |
O2—H2A | 0.823 (16) | C6—H6A | 0.9800 |
O3—C5 | 1.409 (2) | C6—H6B | 0.9800 |
O3—C6 | 1.432 (2) | C6—H6C | 0.9800 |
O4—C8 | 1.4480 (19) | C7—H7A | 0.9900 |
O5—C8 | 1.433 (2) | C7—H7B | 0.9900 |
C1—C2 | 1.527 (2) | C8—C9 | 1.509 (3) |
C1—C7 | 1.505 (2) | C8—C10 | 1.506 (3) |
C1—H1 | 1.0000 | C9—H9A | 0.9800 |
C2—C3 | 1.519 (2) | C9—H9B | 0.9800 |
C2—H2 | 1.0000 | C9—H9C | 0.9800 |
C3—O4 | 1.428 (2) | C10—H10A | 0.9800 |
C3—C4 | 1.524 (2) | C10—H10B | 0.9800 |
C3—H3 | 1.0000 | C10—H10C | 0.9800 |
C5—O1—C1 | 113.31 (13) | O3—C5—H5 | 108.2 |
C2—O2—H2A | 106 (3) | C4—C5—H5 | 108.2 |
C5—O3—C6 | 112.85 (13) | O3—C6—H6A | 109.5 |
C3—O4—C8 | 108.25 (12) | O3—C6—H6B | 109.5 |
C4—O5—C8 | 106.61 (12) | O3—C6—H6C | 109.5 |
O1—C1—C2 | 106.69 (13) | H6A—C6—H6B | 109.5 |
O1—C1—C7 | 108.12 (14) | H6A—C6—H6C | 109.5 |
O1—C1—H1 | 110.5 | H6B—C6—H6C | 109.5 |
C2—C1—H1 | 110.5 | I1—C7—H7A | 109.0 |
C7—C1—C2 | 110.34 (13) | I1—C7—H7B | 109.0 |
C7—C1—H1 | 110.5 | C1—C7—I1 | 112.76 (11) |
O2—C2—C1 | 108.61 (13) | C1—C7—H7A | 109.0 |
O2—C2—C3 | 111.71 (13) | C1—C7—H7B | 109.0 |
O2—C2—H2 | 109.1 | H7A—C7—H7B | 107.8 |
C1—C2—H2 | 109.1 | O4—C8—C9 | 110.52 (14) |
C3—C2—C1 | 109.25 (13) | O4—C8—C10 | 107.99 (15) |
C3—C2—H2 | 109.1 | O5—C8—O4 | 105.68 (13) |
O4—C3—C2 | 110.49 (14) | O5—C8—C9 | 108.28 (16) |
O4—C3—C4 | 102.62 (12) | O5—C8—C10 | 111.02 (14) |
O4—C3—H3 | 110.6 | C10—C8—C9 | 113.10 (16) |
C2—C3—C4 | 111.72 (14) | C8—C9—H9A | 109.5 |
C2—C3—H3 | 110.6 | C8—C9—H9B | 109.5 |
C4—C3—H3 | 110.6 | C8—C9—H9C | 109.5 |
O5—C4—C3 | 101.37 (12) | H9A—C9—H9B | 109.5 |
O5—C4—C5 | 109.94 (14) | H9A—C9—H9C | 109.5 |
O5—C4—H4 | 110.0 | H9B—C9—H9C | 109.5 |
C3—C4—H4 | 110.0 | C8—C10—H10A | 109.5 |
C5—C4—C3 | 115.09 (14) | C8—C10—H10B | 109.5 |
C5—C4—H4 | 110.0 | C8—C10—H10C | 109.5 |
O1—C5—O3 | 112.13 (14) | H10A—C10—H10B | 109.5 |
O1—C5—C4 | 113.92 (14) | H10A—C10—H10C | 109.5 |
O1—C5—H5 | 108.2 | H10B—C10—H10C | 109.5 |
O3—C5—C4 | 106.06 (14) | ||
C5—O1—C1—C2 | 67.22 (16) | C2—C1—C7—I1 | −177.65 (10) |
C5—O1—C1—C7 | −174.10 (14) | O2—C2—C3—O4 | −75.14 (16) |
C1—O1—C5—O3 | 67.12 (17) | O2—C2—C3—C4 | 171.29 (13) |
C1—O1—C5—C4 | −53.35 (18) | C1—C2—C3—O4 | 164.67 (12) |
C6—O3—C5—O1 | 63.69 (19) | C1—C2—C3—C4 | 51.10 (17) |
C6—O3—C5—C4 | −171.39 (15) | C2—C3—O4—C8 | −95.94 (15) |
C3—O4—C8—O5 | −0.79 (18) | C4—C3—O4—C8 | 23.30 (17) |
C3—O4—C8—C9 | 116.14 (17) | O4—C3—C4—O5 | −37.10 (16) |
C3—O4—C8—C10 | −119.67 (15) | O4—C3—C4—C5 | −155.67 (14) |
C4—O5—C8—O4 | −24.18 (18) | C2—C3—C4—O5 | 81.28 (16) |
C4—O5—C8—C9 | −142.61 (15) | C2—C3—C4—C5 | −37.29 (19) |
C4—O5—C8—C10 | 92.67 (16) | C3—C4—O5—C8 | 37.73 (17) |
O1—C1—C2—O2 | 172.83 (13) | C5—C4—O5—C8 | 159.94 (14) |
O1—C1—C2—C3 | −65.09 (16) | O5—C4—C5—O1 | −76.30 (17) |
C7—C1—C2—O2 | 55.61 (18) | O5—C4—C5—O3 | 159.88 (12) |
C7—C1—C2—C3 | 177.69 (13) | C3—C4—C5—O1 | 37.36 (19) |
O1—C1—C7—I1 | 66.01 (15) | C3—C4—C5—O3 | −86.45 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O3i | 0.82 (3) | 2.03 (3) | 2.807 (2) | 157 (3) |
C10—H10C···O2ii | 0.98 | 2.51 | 3.390 (3) | 149 |
Symmetry codes: (i) −x+2, y−1/2, −z+2; (ii) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O3i | 0.82 (3) | 2.03 (3) | 2.807 (2) | 157 (3) |
C10—H10C···O2ii | 0.98 | 2.51 | 3.390 (3) | 149 |
Symmetry codes: (i) −x+2, y−1/2, −z+2; (ii) x, y, z+1. |
Acknowledgements
The authors are indebted to the Research Fund of Çankırı Karatekin University (grant No. BAP:2011/06) for financial support, and thank Professor V. Jäger of Stuttgart University, Germany, for helpful discussions.
References
Bernet, B. & Vasella, A. (1979). Helv. Chim. Acta, 62, 2401–2410. Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bundle, D. R., Gerken, M. & Peters, T. (1988). Carbohydr. Res. 174, 239–251. CrossRef CAS PubMed Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dransfield, P. J., Moutel, S., Shipman, M. & Sik, V. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3349–3335. Web of Science CrossRef Google Scholar
Evans, M. E. & Parrish, F. W. (1977). Carbohydr. Res. 54, 105–114. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gallos, J. K., Koumbis, A. E., Xiraphaki, V. P., Dellios, C. C. & Coutouli-Argyropoulou, E. (1999). Tetrahedron, 55, 15167–15180. Web of Science CrossRef CAS Google Scholar
Garegg, P. J. & Samuelsson, B. (1980). J. Chem. Soc. Perkin Trans. 1, pp. 2866–2869. CrossRef Web of Science Google Scholar
Greul, J. N., Kleban, M., Schneider, B., Picasso, S. & Jäger, V. (2001). ChemBioChem, pp. 368–370. CrossRef Google Scholar
Ichikawa, Y., Matsukawa, Y., Nishiyama, T. & Isobe, M. (2004). Eur. J. Org. Chem. pp. 586–591. Web of Science CrossRef Google Scholar
Isobe, M., Ichikawa, Y., Kitamura, M. & Goto, T. (1981). Chem. Lett. pp. 457–460. CrossRef Web of Science Google Scholar
Kleban, M., Hilgers, P., Greul, J. N., Kugler, R. D., Li, J., Picasso, S., Vogel, P. & Jäger, V. (2001). Chembiochem, pp. 365–368. Web of Science CrossRef Google Scholar
Kleban, M., Kautz, U., Greul, J. N., Hilgers, P., Kugler, R. D., Dong, H.-Q. & Jäger, V. (2000). Synthesis, pp. 1027–1033. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Various carbohydrates have been considerably important for the preparation of unsaturated aldehydes (Kleban et al., 2000; Dransfield et al., 1999; Greul et al., 2001). Conversions of unsaturated aldehydes to oximes (Dransfield et al., 1999), nitrones (Bernet & Vasella, 1979; Greul et al., 2001), nitrile oxides (Gallos et al., 1999; Kleban et al., 2001) and their intramolecular cycloadditions have been reported. These cycloadducts are useful intermediates for the syntheses of polyhydroxylated aminocyclopentane derivatives (Greul et al., 2001; Kleban et al., 2001).
In the title compound (Fig. 1), the ring A (C1–C5/O1) is not planar, but adopts a sofa conformation with puckering parameters (Cremer & Pople, 1975) QT = 0.551 (2) Å, ϕ = -113.1 (5)° and θ = 158.5 (2)°. The conformation of ring B (O4/O5/C3/C4/C8) is an envelope, with atom C4 at the flap position, -0.573 (2) Å from the mean plane through the other four atoms. Rings A and B have local pseudo-mirror planes running through C1 and C4 (for ring A), and running through C4 and the midpoint of the O4—C8 bond (for ring B).
In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into layers nearly parallel to the bc plane (Fig. 2).