organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1437-o1438

1-{2-(4-Chloro­benz­yl­oxy)-2-[4-(mor­pho­lin-4-yl)phen­yl]eth­yl}-1H-benzimidazole propan-2-ol monosolvate

aDepartment of Chemistry, Bülent Ecevit University, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, SO17 1BJ Southampton, England, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 1 August 2013; accepted 12 August 2013; online 17 August 2013)

In the title compound, C26H26ClN3O2·C3H7OH, the benzimid­azole ring system is essentially planar [maximum deviation = −0.018 (2) Å] and its mean plane is oriented with respect to the two benzene rings at dihedral angles of 4.51 (6) and 56.16 (6)°, and the dihedral angle between the two benzene rings is 59.11 (7)°. The morpholine ring displays a chair conformation. The propan-2-ol solvent mol­ecule links with the benzimidazole ring via an O—H⋯N hydrogen bond. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with an R22(28) motif. ππ stacking occurs between the parallel chloro­benzene rings [centroid–centroid distance = 3.792 (1) Å]. Weak C—H⋯π inter­actions and short Cl⋯Cl [3.2037 (10) Å] contacts are also observed.

Related literature

For general background to the biological activity of benz­imid­azole derivatives, see: Özel Güven et al. (2007a[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233-2236.],b[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731-734.]). For related structures, see: Caira et al. (2004[Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601-611.]); Freer et al. (1986[Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350-1352.]); Özel Güven et al. (2008a[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437.],b[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496-o1497.],c[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1588-o1589.],d[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008d). Acta Cryst. E64, o1655-o1656.], 2013[Özel Güven, Ö., Çapanlar, S., Adler, P. D. F., Coles, S. J. & Hökelek, T. (2013). Acta Cryst. E69, o147-o148.]); Peeters et al. (1979a[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979a). Bull Soc. Chim. Belg.88, 265-272.],b[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979b). Acta Cryst. B35, 2461-2464.], 1996[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225-2229.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For ring motif details, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26ClN3O2·C3H8O

  • Mr = 508.04

  • Triclinic, [P \overline 1]

  • a = 10.6542 (3) Å

  • b = 11.5152 (4) Å

  • c = 11.6853 (4) Å

  • α = 87.010 (3)°

  • β = 83.703 (3)°

  • γ = 71.572 (2)°

  • V = 1351.66 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 294 K

  • 0.30 × 0.28 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.95, Tmax = 0.96

  • 17368 measured reflections

  • 6139 independent reflections

  • 3561 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.186

  • S = 1.11

  • 6139 reflections

  • 332 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C4–C9 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N2i 0.85 (3) 2.08 (3) 2.916 (3) 170 (3)
C5—H5⋯O2ii 0.93 2.52 3.429 (3) 165
C2—H2BCg2i 0.97 2.68 3.465 (2) 138
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z.

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Econazole, miconazole, ketoconazole, fluconazole and itraconazole possessing imidazole or triazole ring in their structures have been known as antifungal agents and used in clinics. The crystal structures of econazole (Freer et al., 1986), miconazole (Peeters et al., 1979a), ketoconazole (Peeters et al., 1979b), fluconazole (Caira et al., 2004) and itraconazole (Peeters et al., 1996) have been reported, previously. Then, similar ether structures possessing benzimidazole ring in their structures have been reported to show antibacterial activity more than antifungal ativity (Özel Güven et al., 2007a,b) and the crystal structures of these compounds have been reported (Özel Güven et al., 2008a,b,c,d). Lately, the crystal structure of a similar new compound has been reported (Özel Güven et al., 2013). Now, we report herein the crystal structure of the title compound, (I), which is another benzimidazole derivative.

In the molecule of the title compound, (Fig. 1), the bond lengths and angles are generally within normal ranges. The benzimidazole [A (N1/N2/C3—C9)] ring system is approximately planar with a maximum deviation of -0.018 (2) Å for atom C6 and its mean plane is oriented with respect to the benzene [B (C11—C16)] and phenyl [C (C17—C22)] rings at dihedral angles of A/B = 4.51 (6) and A/C = 56.16 (6) °. The dihedral angle between benzene and phenyl rings is B/C = 59.11 (7)°. Atom C10 is 0.059 (2) Å away from the plane of the benzene ring and atoms C1 and N3 are 0.052 (2) and 0.084 (2) Å away from the plane of the phenyl ring. The morpholine ring D (C23—C26/O2/N3) is not planar, but adopting a chair conformation with puckering parameters (Cremer & Pople, 1975) QT = 1.044 (6)Å, ϕ = 33.3 (2)° and θ = 58.6 (2)°.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric R22(28) dimers (Bernstein et al., 1995). These dimers are further connected via intermolecular O—H···N hydrogen bonds to the solvent molecules (Table 1 and Fig. 2). There also exists a π···π contact between the benzene rings, Cg3—Cg3i, [centroid-centroid distance = 3.792 (1) Å; symmetry code: (i) 1 - x, -y, -z; Cg3 is the centroid of the ring B (C11—C16)] and two weak C—H···π interactions (Table 1), in which they may further stabilize the structure.

Related literature top

For general background to the biological activity of benzimidazole derivatives, see: Özel Güven et al. (2007a,b). For related structures, see: Caira et al. (2004); Freer et al. (1986); Özel Güven et al. (2008a,b,c,d, 2013); Peeters et al. (1979a,b, 1996). For ring puckering parameters, see: Cremer & Pople (1975). For ring motif details, see: Bernstein et al. (1995).

Experimental top

The title compound, (I), was synthesized by the reaction of 2-(1H-benzimidazol-1-yl)-1-(4-morpholinophenyl)ethanol with aryl halide using sodium hydride. NaH (0.022 g, 0.557 mmol) was added to a solution of alcohol (0.180 g, 0.557 mmol) in DMF (4 ml) in small fractions. After stirring the mixture a few minutes, 4-chlorobenzylbromide (0.114 g, 0.557 mmol) was added. Then, the reaction mixture was stirred additional 4 h at room temperature. The reaction was stopped by adding a small amount of methyl alcohol. After evaporation of the solvent, dichloromethane was added to the reaction mixture and extracted with water. The organic phase was separated and dried with anhydrous magnesium sulfate, then evaporated to dryness. The residue was purified by column chromatography using chloroform and crystallized from isopropyl alcohol to obtain colorless crystals suitable for X-ray analysis (yield; 0.127 g, 51%).

Refinement top

Atom H3A (for OH group) was located in a difference Fourier map and was freely refined. The C-bound H-atoms were positioned geometrically with C—H = 0.98, 0.93, 0.97 and 0.96 Å for methine, aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
1-{2-(4-Chlorobenzyloxy)-2-[4-(morpholin-4-yl)phenyl]ethyl}-1H-benzimidazole propan-2-ol monosolvate top
Crystal data top
C26H26ClN3O2·C3H8OZ = 2
Mr = 508.04F(000) = 540
Triclinic, P1Dx = 1.248 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6542 (3) ÅCell parameters from 10744 reflections
b = 11.5152 (4) Åθ = 3.0–27.4°
c = 11.6853 (4) ŵ = 0.18 mm1
α = 87.010 (3)°T = 294 K
β = 83.703 (3)°Prism, colorless
γ = 71.572 (2)°0.30 × 0.28 × 0.25 mm
V = 1351.66 (8) Å3
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
6139 independent reflections
Radiation source: fine-focus sealed tube3561 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
h = 1313
Tmin = 0.95, Tmax = 0.96k = 1414
17368 measured reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.093P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
6139 reflectionsΔρmax = 0.50 e Å3
332 parametersΔρmin = 0.53 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (3)
Crystal data top
C26H26ClN3O2·C3H8Oγ = 71.572 (2)°
Mr = 508.04V = 1351.66 (8) Å3
Triclinic, P1Z = 2
a = 10.6542 (3) ÅMo Kα radiation
b = 11.5152 (4) ŵ = 0.18 mm1
c = 11.6853 (4) ÅT = 294 K
α = 87.010 (3)°0.30 × 0.28 × 0.25 mm
β = 83.703 (3)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
6139 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
3561 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.96Rint = 0.048
17368 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.186H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.50 e Å3
6139 reflectionsΔρmin = 0.53 e Å3
332 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12222 (6)0.01131 (6)0.06222 (7)0.0564 (3)
O10.55011 (15)0.28048 (12)0.19797 (12)0.0332 (4)
O21.05293 (17)0.58050 (15)0.36418 (15)0.0478 (5)
O30.73878 (19)0.85398 (16)0.32068 (16)0.0496 (5)
H3A0.699 (3)0.816 (3)0.368 (2)0.086 (12)*
N10.55093 (18)0.35870 (15)0.42231 (14)0.0296 (4)
N20.41749 (19)0.27808 (17)0.53940 (16)0.0364 (5)
N30.90888 (18)0.48375 (15)0.18415 (15)0.0313 (4)
C10.6596 (2)0.31728 (19)0.22470 (18)0.0308 (5)
H10.72540.24630.25650.037*
C20.6021 (2)0.41068 (19)0.31857 (18)0.0317 (5)
H2A0.67050.44360.33730.038*
H2B0.53080.47770.29020.038*
C30.4401 (2)0.32288 (19)0.4366 (2)0.0337 (5)
H30.38510.32960.37850.040*
C40.6061 (2)0.33516 (18)0.52643 (18)0.0299 (5)
C50.7173 (2)0.35401 (19)0.56430 (19)0.0357 (5)
H50.77360.38630.51570.043*
C60.7403 (3)0.3225 (2)0.6777 (2)0.0433 (6)
H60.81270.33520.70660.052*
C70.6563 (3)0.2716 (2)0.7504 (2)0.0462 (7)
H70.67500.25080.82600.055*
C80.5472 (3)0.2517 (2)0.7123 (2)0.0413 (6)
H80.49260.21740.76080.050*
C90.5211 (2)0.28481 (18)0.59858 (19)0.0328 (5)
C100.5907 (3)0.1737 (2)0.1282 (2)0.0419 (6)
H10A0.65510.10730.16520.050*
H10B0.63180.19110.05380.050*
C110.4708 (2)0.13819 (19)0.1133 (2)0.0343 (5)
C120.4139 (2)0.0811 (2)0.2031 (2)0.0376 (6)
H120.44980.06710.27350.045*
C130.3050 (2)0.0453 (2)0.1886 (2)0.0398 (6)
H130.26700.00780.24900.048*
C140.2527 (2)0.0656 (2)0.0829 (2)0.0389 (6)
C150.3053 (3)0.1241 (2)0.0070 (2)0.0406 (6)
H150.26910.13830.07720.049*
C160.4130 (3)0.1608 (2)0.0104 (2)0.0389 (6)
H160.44800.20200.04890.047*
C170.7259 (2)0.36472 (18)0.12031 (18)0.0301 (5)
C180.8556 (2)0.30403 (19)0.07960 (19)0.0349 (5)
H180.90270.23440.11900.042*
C190.9176 (2)0.3435 (2)0.0178 (2)0.0372 (6)
H191.00550.30040.04190.045*
C200.8508 (2)0.44694 (18)0.08082 (18)0.0297 (5)
C210.7187 (2)0.5080 (2)0.0392 (2)0.0368 (6)
H210.67040.57690.07890.044*
C220.6590 (2)0.4684 (2)0.0586 (2)0.0376 (6)
H220.57180.51190.08430.045*
C231.0515 (2)0.4257 (2)0.2155 (2)0.0358 (6)
H23A1.07390.33790.20270.043*
H23B1.10210.45640.16740.043*
C241.0869 (3)0.4525 (2)0.3397 (2)0.0434 (6)
H24A1.18170.41490.35890.052*
H24B1.04080.41650.38760.052*
C250.9129 (3)0.6344 (2)0.3385 (2)0.0512 (7)
H25A0.86690.59930.38740.061*
H25B0.88890.72160.35550.061*
C260.8684 (2)0.6145 (2)0.2142 (2)0.0405 (6)
H26A0.90710.65660.16520.049*
H26B0.77240.64850.20120.049*
C270.8136 (3)0.8985 (2)0.3906 (2)0.0507 (7)
H270.86110.83140.44020.061*
C280.7247 (4)1.0008 (3)0.4653 (3)0.0780 (11)
H28A0.65920.97270.51130.117*
H28B0.68101.06870.41750.117*
H28C0.77701.02610.51480.117*
C290.9145 (3)0.9384 (3)0.3103 (3)0.0661 (9)
H29A0.97030.87000.26600.099*
H29B0.96810.96840.35460.099*
H29C0.86901.00230.25940.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0380 (4)0.0487 (4)0.0835 (6)0.0127 (3)0.0057 (4)0.0166 (4)
O10.0351 (9)0.0301 (8)0.0351 (9)0.0117 (7)0.0014 (7)0.0076 (6)
O20.0428 (11)0.0463 (10)0.0497 (11)0.0139 (8)0.0105 (8)0.0080 (8)
O30.0585 (13)0.0505 (11)0.0468 (11)0.0286 (9)0.0008 (9)0.0029 (9)
N10.0369 (11)0.0313 (9)0.0229 (9)0.0140 (8)0.0027 (8)0.0003 (7)
N20.0369 (12)0.0379 (10)0.0370 (11)0.0162 (9)0.0005 (9)0.0032 (8)
N30.0332 (11)0.0306 (9)0.0286 (10)0.0086 (8)0.0002 (8)0.0013 (8)
C10.0350 (13)0.0272 (11)0.0310 (12)0.0113 (9)0.0026 (10)0.0000 (9)
C20.0381 (13)0.0316 (11)0.0278 (11)0.0151 (10)0.0018 (10)0.0022 (9)
C30.0336 (13)0.0366 (12)0.0348 (12)0.0174 (10)0.0008 (10)0.0003 (10)
C40.0360 (13)0.0231 (10)0.0312 (12)0.0100 (9)0.0019 (10)0.0048 (9)
C50.0428 (14)0.0311 (12)0.0350 (13)0.0139 (10)0.0036 (11)0.0024 (10)
C60.0534 (16)0.0402 (13)0.0407 (14)0.0187 (12)0.0123 (12)0.0009 (11)
C70.0681 (19)0.0421 (14)0.0314 (13)0.0194 (13)0.0130 (12)0.0045 (11)
C80.0579 (17)0.0337 (12)0.0325 (13)0.0168 (11)0.0015 (12)0.0021 (10)
C90.0423 (14)0.0252 (10)0.0308 (12)0.0125 (10)0.0035 (10)0.0018 (9)
C100.0459 (15)0.0383 (13)0.0435 (14)0.0165 (11)0.0041 (12)0.0146 (11)
C110.0410 (14)0.0254 (11)0.0375 (13)0.0122 (9)0.0005 (11)0.0078 (9)
C120.0474 (15)0.0323 (12)0.0316 (12)0.0114 (10)0.0006 (11)0.0015 (10)
C130.0426 (15)0.0296 (12)0.0463 (15)0.0123 (10)0.0022 (12)0.0001 (10)
C140.0363 (14)0.0279 (11)0.0492 (15)0.0051 (10)0.0028 (11)0.0071 (10)
C150.0503 (16)0.0302 (12)0.0367 (14)0.0041 (11)0.0081 (12)0.0045 (10)
C160.0520 (16)0.0299 (12)0.0349 (13)0.0139 (11)0.0010 (11)0.0056 (10)
C170.0379 (13)0.0252 (10)0.0292 (11)0.0125 (9)0.0045 (10)0.0007 (9)
C180.0381 (14)0.0286 (11)0.0342 (12)0.0068 (10)0.0013 (10)0.0052 (9)
C190.0308 (13)0.0344 (12)0.0405 (13)0.0033 (10)0.0010 (10)0.0001 (10)
C200.0344 (13)0.0270 (10)0.0298 (11)0.0116 (9)0.0048 (10)0.0022 (9)
C210.0377 (14)0.0305 (11)0.0348 (13)0.0028 (10)0.0016 (10)0.0044 (10)
C220.0341 (13)0.0327 (12)0.0392 (13)0.0033 (10)0.0037 (11)0.0014 (10)
C230.0334 (13)0.0314 (11)0.0410 (13)0.0102 (10)0.0049 (11)0.0033 (10)
C240.0434 (15)0.0435 (14)0.0414 (14)0.0147 (11)0.0095 (12)0.0052 (11)
C250.0427 (16)0.0558 (16)0.0449 (15)0.0063 (12)0.0032 (12)0.0159 (13)
C260.0395 (14)0.0363 (13)0.0390 (14)0.0063 (10)0.0042 (11)0.0071 (10)
C270.0587 (18)0.0490 (15)0.0509 (16)0.0259 (13)0.0093 (14)0.0071 (13)
C280.112 (3)0.073 (2)0.060 (2)0.050 (2)0.0162 (19)0.0216 (17)
C290.0525 (19)0.0605 (18)0.089 (2)0.0247 (15)0.0039 (17)0.0047 (16)
Geometric parameters (Å, º) top
Cl1—C141.738 (3)C14—C151.381 (3)
O1—C11.430 (3)C14—C131.389 (4)
O1—C101.433 (2)C15—C161.380 (3)
O2—C241.424 (3)C15—H150.9300
O2—C251.427 (3)C16—C111.386 (3)
O3—C271.418 (3)C16—H160.9300
O3—H3A0.847 (18)C17—C11.507 (3)
N1—C21.453 (3)C17—C181.379 (3)
N1—C31.360 (3)C17—C221.392 (3)
N1—C41.386 (3)C18—H180.9300
N2—C31.310 (3)C19—C181.382 (3)
N2—C91.389 (3)C19—C201.398 (3)
N3—C201.403 (3)C19—H190.9300
N3—C231.466 (3)C20—C211.404 (3)
N3—C261.464 (3)C21—H210.9300
C1—C21.515 (3)C22—C211.375 (3)
C1—H10.9800C22—H220.9300
C2—H2A0.9700C23—C241.500 (3)
C2—H2B0.9700C23—H23A0.9700
C3—H30.9300C23—H23B0.9700
C4—C51.391 (3)C24—H24A0.9700
C4—C91.407 (3)C24—H24B0.9700
C5—C61.383 (3)C25—H25A0.9700
C5—H50.9300C25—H25B0.9700
C6—H60.9300C26—C251.507 (3)
C7—C61.406 (3)C26—H26A0.9700
C7—H70.9300C26—H26B0.9700
C8—C71.376 (4)C27—C281.506 (4)
C8—H80.9300C27—C291.514 (4)
C9—C81.397 (3)C27—H270.9800
C10—H10A0.9700C28—H28A0.9600
C10—H10B0.9700C28—H28B0.9600
C11—C101.489 (3)C28—H28C0.9600
C12—C111.394 (3)C29—H29A0.9600
C12—C131.378 (3)C29—H29B0.9600
C12—H120.9300C29—H29C0.9600
C13—H130.9300
C1—O1—C10112.78 (16)C11—C16—H16119.0
C24—O2—C25108.72 (18)C15—C16—C11122.1 (2)
C27—O3—H3A103 (2)C15—C16—H16119.0
C3—N1—C2127.01 (18)C18—C17—C1120.85 (19)
C3—N1—C4106.32 (17)C18—C17—C22117.0 (2)
C4—N1—C2126.68 (18)C22—C17—C1122.07 (19)
C3—N2—C9104.40 (19)C17—C18—C19122.1 (2)
C20—N3—C23118.45 (17)C17—C18—H18119.0
C20—N3—C26117.93 (16)C19—C18—H18119.0
C26—N3—C23111.22 (17)C18—C19—C20121.2 (2)
O1—C1—C17112.39 (17)C18—C19—H19119.4
O1—C1—C2104.93 (17)C20—C19—H19119.4
O1—C1—H1108.5N3—C20—C21121.36 (19)
C2—C1—H1108.5C19—C20—N3122.12 (19)
C17—C1—C2113.76 (17)C19—C20—C21116.4 (2)
C17—C1—H1108.5C20—C21—H21119.2
N1—C2—C1112.38 (17)C22—C21—C20121.6 (2)
N1—C2—H2A109.1C22—C21—H21119.2
N1—C2—H2B109.1C17—C22—H22119.2
C1—C2—H2A109.1C21—C22—C17121.6 (2)
C1—C2—H2B109.1C21—C22—H22119.2
H2A—C2—H2B107.9N3—C23—C24110.09 (19)
N1—C3—H3122.9N3—C23—H23A109.6
N2—C3—N1114.2 (2)N3—C23—H23B109.6
N2—C3—H3122.9C24—C23—H23A109.6
N1—C4—C5132.8 (2)C24—C23—H23B109.6
N1—C4—C9105.00 (19)H23A—C23—H23B108.2
C5—C4—C9122.2 (2)O2—C24—C23112.08 (18)
C4—C5—H5121.6O2—C24—H24A109.2
C6—C5—C4116.9 (2)O2—C24—H24B109.2
C6—C5—H5121.6C23—C24—H24A109.2
C5—C6—C7121.4 (2)C23—C24—H24B109.2
C5—C6—H6119.3H24A—C24—H24B107.9
C7—C6—H6119.3O2—C25—C26112.0 (2)
C6—C7—H7119.2O2—C25—H25A109.2
C8—C7—C6121.7 (2)O2—C25—H25B109.2
C8—C7—H7119.2C26—C25—H25A109.2
C7—C8—C9117.8 (2)C26—C25—H25B109.2
C7—C8—H8121.1H25A—C25—H25B107.9
C9—C8—H8121.1N3—C26—C25110.64 (19)
N2—C9—C4110.1 (2)N3—C26—H26A109.5
N2—C9—C8129.9 (2)N3—C26—H26B109.5
C8—C9—C4120.0 (2)C25—C26—H26A109.5
O1—C10—C11108.21 (18)C25—C26—H26B109.5
O1—C10—H10A110.1H26A—C26—H26B108.1
O1—C10—H10B110.1O3—C27—C28111.1 (2)
C11—C10—H10A110.1O3—C27—C29106.9 (2)
C11—C10—H10B110.1O3—C27—H27108.8
H10A—C10—H10B108.4C28—C27—C29112.4 (2)
C12—C11—C10120.5 (2)C28—C27—H27108.8
C16—C11—C10121.2 (2)C29—C27—H27108.8
C16—C11—C12118.4 (2)C27—C28—H28A109.5
C11—C12—H12119.7C27—C28—H28B109.5
C13—C12—C11120.6 (2)C27—C28—H28C109.5
C13—C12—H12119.7H28A—C28—H28B109.5
C12—C13—C14119.4 (2)H28A—C28—H28C109.5
C12—C13—H13120.3H28B—C28—H28C109.5
C14—C13—H13120.3C27—C29—H29A109.5
C13—C14—Cl1119.17 (19)C27—C29—H29B109.5
C15—C14—Cl1119.5 (2)C27—C29—H29C109.5
C15—C14—C13121.3 (2)H29A—C29—H29B109.5
C14—C15—H15120.9H29A—C29—H29C109.5
C16—C15—C14118.2 (2)H29B—C29—H29C109.5
C16—C15—H15120.9
C10—O1—C1—C1768.3 (2)C8—C7—C6—C50.5 (4)
C10—O1—C1—C2167.60 (17)C9—C8—C7—C60.5 (4)
C1—O1—C10—C11175.73 (18)N2—C9—C8—C7178.2 (2)
C25—O2—C24—C2360.4 (3)C4—C9—C8—C70.8 (3)
C24—O2—C25—C2659.3 (3)C12—C11—C10—O175.2 (3)
C3—N1—C2—C170.9 (3)C16—C11—C10—O1104.8 (2)
C4—N1—C2—C1108.7 (2)C13—C12—C11—C161.7 (3)
C2—N1—C3—N2179.53 (18)C13—C12—C11—C10178.3 (2)
C4—N1—C3—N20.2 (2)C11—C12—C13—C140.5 (3)
C2—N1—C4—C51.5 (4)Cl1—C14—C13—C12175.85 (17)
C2—N1—C4—C9179.65 (18)C15—C14—C13—C121.8 (3)
C3—N1—C4—C5178.8 (2)Cl1—C14—C15—C16176.86 (17)
C3—N1—C4—C90.0 (2)C13—C14—C15—C160.8 (3)
C9—N2—C3—N10.2 (2)C14—C15—C16—C111.5 (3)
C3—N2—C9—C40.2 (2)C15—C16—C11—C10177.2 (2)
C3—N2—C9—C8178.9 (2)C15—C16—C11—C122.8 (3)
C23—N3—C20—C1911.4 (3)C18—C17—C1—O1115.5 (2)
C23—N3—C20—C21172.8 (2)C18—C17—C1—C2125.5 (2)
C26—N3—C20—C19150.3 (2)C22—C17—C1—O162.4 (3)
C26—N3—C20—C2133.9 (3)C22—C17—C1—C256.7 (3)
C20—N3—C23—C24165.53 (18)C1—C17—C18—C19178.1 (2)
C26—N3—C23—C2453.0 (2)C22—C17—C18—C190.1 (3)
C20—N3—C26—C25166.0 (2)C1—C17—C22—C21177.3 (2)
C23—N3—C26—C2552.4 (3)C18—C17—C22—C210.7 (3)
O1—C1—C2—N162.6 (2)C20—C19—C18—C170.7 (4)
C17—C1—C2—N1174.18 (18)C18—C19—C20—N3175.6 (2)
N1—C4—C5—C6177.8 (2)C18—C19—C20—C210.3 (3)
C9—C4—C5—C60.9 (3)N3—C20—C21—C22176.5 (2)
N1—C4—C9—N20.1 (2)C17—C22—C21—C201.0 (4)
N1—C4—C9—C8179.09 (19)C19—C20—C21—C220.5 (3)
C5—C4—C9—N2179.06 (18)N3—C23—C24—O257.8 (3)
C5—C4—C9—C80.1 (3)N3—C26—C25—O256.1 (3)
C4—C5—C6—C71.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H3A···N2i0.85 (3)2.08 (3)2.916 (3)170 (3)
C5—H5···O2ii0.932.523.429 (3)165
C2—H2B···Cg2i0.972.683.465 (2)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H3A···N2i0.85 (3)2.08 (3)2.916 (3)170 (3)
C5—H5···O2ii0.932.523.429 (3)165
C2—H2B···Cg2i0.972.683.465 (2)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z.
 

Acknowledgements

The authors acknowledge to Zonguldak Karaelmas University Research Fund (Project No: 2010-13-02-06).

References

First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCaira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601–611.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Çapanlar, S., Adler, P. D. F., Coles, S. J. & Hökelek, T. (2013). Acta Cryst. E69, o147–o148.  CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496–o1497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1588–o1589.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008d). Acta Cryst. E64, o1655–o1656.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233–2236.  Web of Science PubMed Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731–734.  Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979a). Bull Soc. Chim. Belg.88, 265–272.  Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979b). Acta Cryst. B35, 2461–2464.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225–2229.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1437-o1438
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds