organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1460-o1461

3-{[(E)-(2-Hydroxynaphthalen-1-yl)methyl­idene]amino}pyridinium per­chlorate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000, Algeria, bLaboratory of Solid State Chemistry and Mössbauer Spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H3G 1M8, Canada, cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi 04000, Algeria, and dLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse cedex, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 10 August 2013; accepted 15 August 2013; online 21 August 2013)

In the title Schiff base salt, C16H13N2O+·ClO4, the pyridine ring and the naphthalene ring system are approximately co-planar [making a dihedral angle of 6.05 (12)°] and an intra­molecular O—H⋯N hydrogen bond occurs between the hydroxyl and imino groups. In the crystal, the cations and anions are linked by N—H⋯O and weak C—H⋯O hydrogen bonds, forming the supra­molecular layers parallel to (100). The crystal studied was an inversion twin refined with minor component = 0.43 (13).

Related literature

For the pharmaceutical and medicinal activity of Schiff bases, see: Dao et al. (2000[Dao, V. T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]). For the coordination chemistry of Schiff bases, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.]); Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Yeap et al. (2009[Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.]). For the crystal structures of related Schiff base compounds, see: Damous et al. (2011[Damous, M., Hamlaoui, M., Bouacida, S., Merazig, H. & Daran, J.-C. (2011). Acta Cryst. E67, o1123-o1124.]); Fun et al. (2009[Fun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349-o350.]); Nadeem et al. (2009[Nadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.]); Eltayeb et al. (2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576-o577.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13N2O+·ClO4

  • Mr = 348.73

  • Orthorhombic, P 21 21 21

  • a = 6.5043 (9) Å

  • b = 14.6915 (19) Å

  • c = 15.398 (3) Å

  • V = 1471.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 180 K

  • 0.25 × 0.04 × 0.03 mm

Data collection
  • Agilent Xcalibur (Sapphire1) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent, (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.685, Tmax = 1.000

  • 9582 measured reflections

  • 3369 independent reflections

  • 1695 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.127

  • S = 0.92

  • 3369 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1362 Friedel pairs

  • Absolute structure parameter: 0.43 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.82 2.545 (4) 147
N5—H5⋯O13i 0.86 2.09 2.844 (5) 146
C2—H2⋯O11 0.93 2.44 3.354 (5) 166
C3—H3⋯O1ii 0.93 2.59 3.260 (5) 129
C13—H13⋯O12iii 0.93 2.57 3.451 (6) 158
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent, (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1012).

Supporting information


Comment top

Schiff base compounds are a class of important materials used as pharmaceuticals and in various medicinal fields of interest (Dao et al., 2000; Sriram et al., 2006; Karthikeyan et al., 2006). Schiff bases have also been used as versatile ligands in coordination chemistry (Ali et al., 2008; Kargar et al., 2009; Yeap et al., 2009). Recently, the crystal structures of a large number of new Schiff base compounds have been reported (Fun et al., 2009; Nadeem et al., 2009; Eltayeb et al., 2008; Damous et al., 2011).

Herein we report the synthesis and crystal structure of 3-{[E)-(2-Hydroxynaphthalen-1-yl)methylidene]amino}pyridinium perchlorate, (I). The molecular structure of (I), and the atomic numbering used, is illustrated in Fig. 1. The asymmetric unit of (I) consists of one protoned N-(3-pyridil)-2-oxo-1-naphthylidenemethylamine cation and one perchlorate anion. All bond distances and angles are within the ranges of accepted values(CSD, Allen, 2002). The cation is co-planar with r.m.s. deviation all non-H atoms, for cation, are essentially co-planar with a maximum deviation of -0.1158 (39) Å for N5 [r.m.s. deviation: 0.0590 Å]. The molecule is twisted with the dihedral angle between the benzene and the naphthyl ring mean planes being 6.05 (12) °.

In the crystal structure, cationic and anionic layers alternate along the c axis and are linked by intermolecular N—H···O and weak C—H···O hydrogen bonds (Table 1, Fig.2) resulting in a two-dimensional network parallel to (100)plane (Fig.3). Also, we observe an intramolecular O—H···N hydrogen bond, involving the naphthalene hydroxyl substituent and the pyridine N-atom (Fig.1, Table 1).

Related literature top

For the pharmaceutical and medicinal activity of Schiff bases, see: Dao et al. (2000); Sriram et al. (2006); Karthikeyan et al. (2006). For the coordination chemistry of Schiff bases, see: Ali et al. (2008); Kargar et al. (2009); Yeap et al. (2009). For the crystal structures of related Schiff base compounds, see: Damous et al. (2011); Fun et al. (2009); Nadeem et al. (2009); Eltayeb et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound, (I), was prepared by refluxing a mixture of a solution containing (0.1 mmol) of 2-hydroxy-1-naphthaldehyde and (0.1 mmol) of 3-aminopyridine in presence of perchloric acid in 20 ml methanol. The reaction mixture was stirred for 1 h under reflux. Microcrystals of (I) were obtained by allowing the clear solution to stand overnight. The powder product was dissolved and recrystallized from DMSO solution. Some red crystals were carefully isolated under polarizing microscope for analysis by X-ray diffraction.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, O and N) with C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å and Uiso(H)=1.2Ueq(C or N); Uiso(H)=1.5Ueq(O).

The crystal used is an inversion twin with refined components 0.57 and 0.43.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX publication routines (Farrugia, 1012).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound with the atomic labelling scheme (Farrugia, 2012). Displacement are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius. Intramolecular hydrogen bond O—H···N is showing as dashed line.
[Figure 2] Fig. 2. Hydrogen bond connections as dashed line in the same layers parallel to (100) plane between cations and anions (Brandenburg & Berndt, 2001).
[Figure 3] Fig. 3. A diagram of the layered crystal packing in (I), viewed down the b axis showing hydrogen bond as dashed line (Brandenburg & Berndt, 2001)
3-{[(E)-(2-Hydroxynaphthalen-1-yl)methylidene]amino}pyridinium perchlorate top
Crystal data top
C16H13N2O+·ClO4Dx = 1.574 Mg m3
Mr = 348.73Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1867 reflections
a = 6.5043 (9) Åθ = 3.0–28.4°
b = 14.6915 (19) ŵ = 0.29 mm1
c = 15.398 (3) ÅT = 180 K
V = 1471.4 (4) Å3Needle, red
Z = 40.25 × 0.04 × 0.03 mm
F(000) = 720
Data collection top
Agilent Xcalibur (Sapphire1)
diffractometer
3369 independent reflections
Radiation source: fine-focus sealed tube1695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 8.2632 pixels mm-1θmax = 28.5°, θmin = 3.0°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1919
Tmin = 0.685, Tmax = 1.000l = 1919
9582 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0494P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
3369 reflectionsΔρmax = 0.26 e Å3
218 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 1362 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.43 (13)
Crystal data top
C16H13N2O+·ClO4V = 1471.4 (4) Å3
Mr = 348.73Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.5043 (9) ŵ = 0.29 mm1
b = 14.6915 (19) ÅT = 180 K
c = 15.398 (3) Å0.25 × 0.04 × 0.03 mm
Data collection top
Agilent Xcalibur (Sapphire1)
diffractometer
3369 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1695 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 1.000Rint = 0.069
9582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.127Δρmax = 0.26 e Å3
S = 0.92Δρmin = 0.28 e Å3
3369 reflectionsAbsolute structure: Flack (1983), 1362 Friedel pairs
218 parametersAbsolute structure parameter: 0.43 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.26988 (16)0.25979 (7)0.14441 (7)0.0420 (3)
O10.3025 (4)0.31465 (18)0.63157 (19)0.0404 (7)
H10.30220.35560.59540.061*
O130.3797 (5)0.2618 (2)0.0636 (2)0.0567 (9)
O120.2121 (6)0.1681 (2)0.1622 (2)0.0702 (10)
N10.2985 (5)0.3865 (2)0.4812 (2)0.0283 (9)
O110.4044 (5)0.2891 (2)0.2118 (2)0.0647 (10)
C170.2947 (6)0.1364 (2)0.4624 (3)0.0271 (10)
C80.2991 (5)0.2266 (2)0.5012 (2)0.0267 (9)
C90.3004 (5)0.2340 (3)0.5911 (3)0.0297 (10)
C160.2929 (5)0.1213 (3)0.3737 (3)0.0357 (10)
H160.29640.17070.33590.043*
C100.2994 (6)0.1562 (3)0.6438 (3)0.0366 (10)
H100.30150.16270.70390.044*
C120.2913 (6)0.0598 (2)0.5180 (3)0.0293 (9)
N50.2590 (6)0.6228 (2)0.4274 (3)0.0455 (10)
H50.24960.67280.45620.055*
C10.2895 (6)0.4649 (2)0.4284 (3)0.0302 (10)
C70.2958 (6)0.3064 (2)0.4483 (3)0.0284 (9)
H70.29150.30.38820.034*
C110.2954 (6)0.0720 (3)0.6088 (3)0.0373 (11)
H110.29540.02140.64510.045*
O140.0992 (5)0.3161 (3)0.1393 (3)0.1075 (16)
C20.2884 (6)0.4676 (3)0.3384 (3)0.0360 (11)
H20.29990.41380.3070.043*
C130.2841 (7)0.0278 (3)0.4825 (3)0.0390 (11)
H130.28070.07810.51920.047*
C30.2706 (7)0.5487 (3)0.2955 (3)0.0405 (11)
H30.26840.54990.23510.049*
C40.2562 (7)0.6270 (3)0.3411 (3)0.0443 (11)
H40.24450.68270.31270.053*
C150.2861 (7)0.0350 (3)0.3406 (3)0.0455 (12)
H150.28430.02650.28070.055*
C60.2756 (7)0.5459 (2)0.4712 (3)0.0374 (11)
H60.27780.54690.53160.045*
C140.2819 (7)0.0405 (3)0.3954 (3)0.0471 (12)
H140.27770.0990.37240.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0533 (6)0.0401 (6)0.0327 (6)0.0063 (6)0.0004 (6)0.0032 (5)
O10.0468 (17)0.0434 (16)0.0311 (19)0.0026 (14)0.0021 (18)0.0021 (14)
O130.078 (2)0.059 (2)0.033 (2)0.0139 (19)0.0153 (16)0.0113 (18)
O120.106 (3)0.0500 (19)0.055 (3)0.036 (2)0.000 (3)0.0080 (16)
N10.027 (2)0.0273 (17)0.030 (2)0.0024 (16)0.0026 (17)0.0030 (15)
O110.089 (2)0.057 (2)0.048 (3)0.0196 (19)0.006 (2)0.0124 (19)
C170.021 (2)0.036 (2)0.024 (3)0.0001 (19)0.003 (2)0.0003 (18)
C80.0181 (18)0.034 (2)0.028 (2)0.0023 (18)0.0019 (18)0.0030 (18)
C90.023 (2)0.036 (2)0.030 (3)0.003 (2)0.0009 (18)0.0020 (19)
C160.040 (2)0.036 (2)0.031 (3)0.005 (2)0.004 (2)0.0080 (18)
C100.033 (2)0.055 (3)0.022 (2)0.001 (2)0.001 (2)0.009 (2)
C120.023 (2)0.030 (2)0.034 (3)0.0001 (19)0.001 (2)0.0113 (18)
N50.056 (3)0.0278 (19)0.052 (3)0.005 (2)0.006 (2)0.0102 (17)
C10.031 (2)0.025 (2)0.035 (3)0.004 (2)0.003 (2)0.0012 (18)
C70.023 (2)0.033 (2)0.029 (2)0.0020 (19)0.004 (2)0.0023 (19)
C110.038 (2)0.039 (2)0.034 (3)0.006 (2)0.003 (2)0.012 (2)
O140.104 (3)0.128 (3)0.091 (4)0.078 (3)0.039 (3)0.043 (3)
C20.046 (3)0.031 (2)0.031 (3)0.004 (2)0.008 (2)0.0033 (19)
C130.039 (3)0.032 (2)0.047 (3)0.003 (2)0.004 (3)0.009 (2)
C30.050 (3)0.034 (2)0.037 (3)0.002 (3)0.003 (3)0.007 (2)
C40.049 (3)0.032 (2)0.051 (4)0.001 (2)0.006 (3)0.010 (2)
C150.060 (3)0.038 (3)0.038 (3)0.002 (3)0.002 (3)0.008 (2)
C60.041 (3)0.027 (2)0.044 (3)0.002 (2)0.003 (3)0.0008 (19)
C140.054 (3)0.032 (2)0.055 (3)0.005 (3)0.005 (3)0.000 (2)
Geometric parameters (Å, º) top
Cl1—O141.387 (3)C12—C111.411 (5)
Cl1—O111.424 (3)N5—C61.321 (5)
Cl1—O121.425 (3)N5—C41.331 (5)
Cl1—O131.436 (3)N5—H50.86
O1—C91.339 (4)C1—C61.363 (5)
O1—H10.82C1—C21.386 (5)
N1—C71.282 (4)C7—H70.93
N1—C11.411 (5)C11—H110.93
C17—C161.384 (6)C2—C31.367 (5)
C17—C121.414 (5)C2—H20.93
C17—C81.455 (5)C13—C141.353 (6)
C8—C91.388 (5)C13—H130.93
C8—C71.428 (5)C3—C41.351 (5)
C9—C101.402 (5)C3—H30.93
C16—C151.367 (5)C4—H40.93
C16—H160.93C15—C141.394 (5)
C10—C111.349 (5)C15—H150.93
C10—H100.93C6—H60.93
C12—C131.399 (5)C14—H140.93
O14—Cl1—O11110.6 (3)C6—C1—N1115.9 (4)
O14—Cl1—O12111.3 (3)C2—C1—N1126.8 (3)
O11—Cl1—O12107.9 (2)N1—C7—C8121.9 (4)
O14—Cl1—O13109.7 (2)N1—C7—H7119.1
O11—Cl1—O13108.6 (2)C8—C7—H7119.1
O12—Cl1—O13108.5 (2)C10—C11—C12120.9 (4)
C9—O1—H1109.5C10—C11—H11119.6
C7—N1—C1121.4 (4)C12—C11—H11119.6
C16—C17—C12118.0 (4)C3—C2—C1120.6 (4)
C16—C17—C8123.5 (4)C3—C2—H2119.7
C12—C17—C8118.5 (4)C1—C2—H2119.7
C9—C8—C7120.3 (4)C14—C13—C12120.9 (4)
C9—C8—C17118.8 (3)C14—C13—H13119.5
C7—C8—C17120.9 (4)C12—C13—H13119.5
O1—C9—C8122.2 (3)C4—C3—C2119.8 (4)
O1—C9—C10116.9 (4)C4—C3—H3120.1
C8—C9—C10120.9 (4)C2—C3—H3120.1
C15—C16—C17121.1 (4)N5—C4—C3118.6 (4)
C15—C16—H16119.4N5—C4—H4120.7
C17—C16—H16119.4C3—C4—H4120.7
C11—C10—C9121.1 (4)C16—C15—C14120.8 (4)
C11—C10—H10119.4C16—C15—H15119.6
C9—C10—H10119.4C14—C15—H15119.6
C13—C12—C11120.4 (4)N5—C6—C1120.4 (4)
C13—C12—C17119.7 (4)N5—C6—H6119.8
C11—C12—C17119.9 (4)C1—C6—H6119.8
C6—N5—C4123.4 (4)C13—C14—C15119.3 (4)
C6—N5—H5118.3C13—C14—H14120.3
C4—N5—H5118.3C15—C14—H14120.3
C6—C1—C2117.3 (4)
C16—C17—C8—C9179.9 (4)C9—C8—C7—N11.6 (6)
C12—C17—C8—C90.2 (5)C17—C8—C7—N1179.7 (3)
C16—C17—C8—C71.8 (6)C9—C10—C11—C120.2 (6)
C12—C17—C8—C7177.9 (4)C13—C12—C11—C10179.0 (4)
C7—C8—C9—O11.3 (5)C17—C12—C11—C101.0 (6)
C17—C8—C9—O1179.4 (3)C6—C1—C2—C31.0 (7)
C7—C8—C9—C10178.7 (4)N1—C1—C2—C3177.3 (4)
C17—C8—C9—C100.6 (5)C11—C12—C13—C14179.4 (4)
C12—C17—C16—C150.6 (6)C17—C12—C13—C140.5 (6)
C8—C17—C16—C15179.2 (4)C1—C2—C3—C40.7 (7)
O1—C9—C10—C11179.4 (3)C6—N5—C4—C30.1 (8)
C8—C9—C10—C110.6 (6)C2—C3—C4—N50.2 (7)
C16—C17—C12—C130.7 (6)C17—C16—C15—C140.3 (6)
C8—C17—C12—C13179.1 (3)C4—N5—C6—C10.5 (7)
C16—C17—C12—C11179.3 (4)C2—C1—C6—N50.9 (7)
C8—C17—C12—C111.0 (6)N1—C1—C6—N5177.6 (4)
C7—N1—C1—C6174.5 (4)C12—C13—C14—C150.3 (7)
C7—N1—C1—C23.8 (7)C16—C15—C14—C130.2 (7)
C1—N1—C7—C8178.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.822.545 (4)147
N5—H5···O13i0.862.092.844 (5)146
C2—H2···O110.932.443.354 (5)166
C3—H3···O1ii0.932.593.260 (5)129
C13—H13···O12iii0.932.573.451 (6)158
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.822.545 (4)147
N5—H5···O13i0.862.092.844 (5)146
C2—H2···O110.932.443.354 (5)166
C3—H3···O1ii0.932.593.260 (5)129
C13—H13···O12iii0.932.573.451 (6)158
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y, z+1/2.
 

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, Algeria, and the Laboratoire de Chimie de Coordination Toulouse, France. Thanks are due to the Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie (via the PNR project) for financial support.

References

First citationAgilent, (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDamous, M., Hamlaoui, M., Bouacida, S., Merazig, H. & Daran, J.-C. (2011). Acta Cryst. E67, o1123–o1124.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDao, V. T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576–o577.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349–o350.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1460-o1461
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds