organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1445-o1446

Bis(2,9-di­methyl-1,10-phenanthrolin-1-ium) 2,5-di­carb­­oxy­benzene-1,4-di­carb­oxyl­ate–2,9-di­methyl-1,10-phenanthroline–benzene-1,2,4,5-tetra­carb­­oxy­lic acid (1/2/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 10 August 2013; accepted 12 August 2013; online 17 August 2013)

The asymmetric unit of the title co-crystal, 2C14H13N2+·C10H4O82−·2C14H12N2·C10H6O8, comprises a 2,9-dimethyl-1,10-phenanthrolin-1-ium cation (Me2PhenH+) and a 2,9-dimethyl-1,10-phenanthroline mol­ecule (Me2Phen), each in a general position, and half each of a 2,5-di­carb­oxy­benzene-1,4-di­carboxyl­ate dianion (LH22−) and a benzene-1,2,4,5-tetra­carb­oxy­lic acid mol­ecule (LH4), each being disposed about a centre of inversion. Small twists are evident in the dianion [the C—C—C—O torsion angles are 168.41 (18) and 16.2 (3)°], whereas a major twist is found for one carb­oxy­lic acid group in the neutral mol­ecule [C—C—C—O = 66.3 (2) and 18.2 (3)°]. The most prominent feature of the crystal packing is the formation of linear supra­molecular chains along [001] mediated by charge-assisted O—H⋯O hydrogen bonding between alternating LH4 and LH22−. These are connected to the Me2PhenH+ and Me2Phen species by N—H⋯O and O—H⋯N hydrogen bonds, respectively. A three-dimensional architecture is formed by C—H⋯O and ππ inter­actions [inter-centroid distance = 3.5337 (17) Å].

Related literature

For salt formation with benzene-1,2,4,5-tetra­carb­oxy­lic acid, see: Arman & Tiekink (2013[Arman, H. D. & Tiekink, E. R. T. (2013). Z. Kristallogr. Cryst. Mat. 228, 289-294.]). For a co-crystal involving 2,9-dimethyl-1,10-phenanthroline, see: Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2602.]). For the structure of a 2,9-dimethyl-1,10-phenanthrolin-1-ium carb­oxyl­ate salt, see: Derikvand & Olmstead (2011[Derikvand, Z. & Olmstead, M. M. (2011). Acta Cryst. E67, o87-o88.]).

[Scheme 1]

Experimental

Crystal data
  • 2C14H13N2+·C10H4O82−·2C14H12N2·C10H6O8

  • Mr = 1341.32

  • Monoclinic, P 21 /n

  • a = 11.798 (4) Å

  • b = 13.893 (4) Å

  • c = 19.163 (6) Å

  • β = 92.216 (5)°

  • V = 3138.8 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 98 K

  • 0.48 × 0.37 × 0.09 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.723, Tmax = 1.000

  • 22006 measured reflections

  • 7181 independent reflections

  • 6007 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.148

  • S = 1.11

  • 7181 reflections

  • 467 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1o⋯O1 0.85 (2) 1.55 (2) 2.403 (2) 176 (3)
O6—H2o⋯O2i 0.85 (1) 1.74 (1) 2.577 (2) 168 (2)
O8—H3o⋯N4ii 0.85 (2) 1.79 (2) 2.636 (2) 173 (2)
N1—H1n⋯O3iii 0.89 (2) 2.41 (2) 3.257 (2) 161 (2)
N1—H1n⋯O4iii 0.89 (2) 2.35 (2) 2.957 (2) 126 (2)
C13—H13⋯O7iv 0.95 2.28 3.225 (3) 171
C28—H28⋯O5v 0.95 2.40 3.320 (3) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of on-going structural studies of salts/co-crystals formed between carboxylic acids and various pyridyl derivatives (Arman et al., 2010; Arman & Tiekink, 2013), the title salt co-crystal, (I), was isolated from the 2:3 co-crystallization of benzene-1,2,4,5-tetracarboxylic acid (LH4) and 2,9-dimethyl-1,10-phenanthroline (Me2Phen).

The asymmetric unit of (I) comprises a centrosymmetric, doubly deprotonated LH22- dianion, a centrosymmetric neutral LH4 molecule, a protonated Me2PhenH+ cation and a neutral Me2Phen molecule, Fig. 1, and is formulated as a combination of a 2:1 Me2Phen+:LH22- salt combined with a 2:1 Me2Phen:HL4 co-crystal. A salt formed between Me2PhenH+ and a hydrogen(S,S)-tartrate has been reported (Derikvand & Olmstead, 2011).

Small twists are evident in the LH22- dianion as seen in the C2—C1—C4—O2 and C1—C2—C5—O4 torsion angles of 168.41 (18) and 16.2 (3)°, respectively. This arrangement is stabilized by intramolecular O—H···O hydrogen bonds, Table 1. By contrast, a considerable twist is evident in LH4 with the C7—C6—C9—O6 and C6—C7—C10—O7 torsion angles being 66.3 (2) and 18.2 (3)°, respectively. Such variations in conformation have been discussed in some detail (Arman & Tiekink, 2013). The Me2Phen molecule and Me2PhenH+ cation are each planar with the r.m.s. deviation for the 16 non-hydrogen atoms being 0.037 and 0.036 Å, respectively.

The prominent feature of the crystal packing is the formation of linear supramolecular chains along [0 0 1] comprising alternating LH4 and LH22- species connected via charge-assisted O6—H···O2 hydrogen bonding, Table 1. The hydroxyl-O8 forms an O—H···N4 hydrogen bond with the neutral Me2Phen molecules, one to either side of the carboxylic acid/carboxylate chain. The O3,O4 carboxylic acid residue accepts hydrogen bonds from the N1—H1n atom of the Me2PhenH+ cation, again, from symmetry, one to either side, leading to the supramolecular chain shown in Fig. 2a; an end-on view is shown in Fig. 2b. The Me2Phen and Me2PhenH+ cations inter-digitate along the c axis and are connected by ππ [Cg(C15–C20)···Cg(C29—C34)i = 3.5337 (17) Å for i: x, 1 + y, z] interactions between Me2PhenH+ and Me2Phen. Additional contacts are of the type C—H···O, Table 1, as illustrated in the crystal packing diagram, Fig. 3.

Related literature top

For salt formation with benzene-1,2,4,5-tetracarboxylic acid, see: Arman & Tiekink (2013). For a co-crystal involving 2,9-dimethyl-1,10-phenanthroline, see: Arman et al. (2010). For a structure of a 2,9-dimethyl-1,10-phenanthrolin-1-ium carboxylate salt, see: Derikvand & Olmstead (2011).

Experimental top

Crystals of (I) were obtained by the co-crystallization of benzene-1,2,4,5-tetracarboxylic acid (Sigma-Aldrich), 0.06 mmol) and 2,9-dimethylphenanthroline (ACROS, 0.09 mmol) in ethanol solution. Crystals were obtained by slow evaporation.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O-and N-bound H-atoms were located in a difference Fourier map and were refined with a distance restraints of O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O). Owing to being affected by the beam-stop, three reflections, i.e. (0 0 1), (1 0 1) and (-6 0 2), were omitted from the final cycles of refinement.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structures of the components of (I), showing atom-labelling scheme and displacement ellipsoids at the 50% probability level: (a) LH22-, (b) LH4, (c) Me2PhenH+ and (d) Me2Phen.
[Figure 2] Fig. 2. Views (a) side-on and (b) end-on of the supramolecular chain in (I). The O—H···O (orange), O—H···N (blue) and N—H···O (blue) hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Unit-cell contents in (I) viewed in projection down the c axis. The C—H···O interactions are shown green dashed lines.
Bis(2,9-dimethyl-1,10-phenanthrolin-1-ium) 2,5-dicarboxybenzene-1,4-dicarboxylate–2,9-dimethyl-1,10-phenanthroline–benzene-1,2,4,5-tetracarboxylic acid (1/2/1) top
Crystal data top
2C14H13N2+·C10H4O82·2C14H12N2·C10H6O8F(000) = 1400
Mr = 1341.32Dx = 1.419 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 12762 reflections
a = 11.798 (4) Åθ = 2.0–40.7°
b = 13.893 (4) ŵ = 0.10 mm1
c = 19.163 (6) ÅT = 98 K
β = 92.216 (5)°Prism, colourless
V = 3138.8 (16) Å30.48 × 0.37 × 0.09 mm
Z = 2
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
7181 independent reflections
Radiation source: fine-focus sealed tube6007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1515
Tmin = 0.723, Tmax = 1.000k = 1818
22006 measured reflectionsl = 1824
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0555P)2 + 1.3348P]
where P = (Fo2 + 2Fc2)/3
7181 reflections(Δ/σ)max < 0.001
467 parametersΔρmax = 0.29 e Å3
4 restraintsΔρmin = 0.25 e Å3
Crystal data top
2C14H13N2+·C10H4O82·2C14H12N2·C10H6O8V = 3138.8 (16) Å3
Mr = 1341.32Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.798 (4) ŵ = 0.10 mm1
b = 13.893 (4) ÅT = 98 K
c = 19.163 (6) Å0.48 × 0.37 × 0.09 mm
β = 92.216 (5)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
7181 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6007 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 1.000Rint = 0.056
22006 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0624 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.29 e Å3
7181 reflectionsΔρmin = 0.25 e Å3
467 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60101 (12)0.56642 (11)0.32029 (7)0.0298 (3)
O20.42698 (12)0.50799 (11)0.31498 (7)0.0271 (3)
O30.80815 (11)0.52832 (11)0.50668 (7)0.0276 (3)
O40.75764 (12)0.58534 (11)0.40310 (7)0.0275 (3)
H1O0.7039 (17)0.5802 (19)0.3723 (11)0.041*
O51.04388 (12)0.10773 (11)0.67551 (7)0.0279 (3)
O60.93416 (12)0.02423 (10)0.68129 (6)0.0225 (3)
H2O0.941 (2)0.0150 (17)0.7251 (5)0.034*
O70.78053 (11)0.10681 (9)0.60744 (6)0.0217 (3)
O80.69585 (11)0.03734 (10)0.51309 (7)0.0225 (3)
H3O0.6399 (14)0.0441 (18)0.5394 (10)0.034*
N10.49493 (13)1.05719 (11)0.10595 (8)0.0216 (3)
H1N0.5525 (13)1.0368 (16)0.0816 (10)0.026*
N20.59146 (14)0.87982 (12)0.11607 (8)0.0242 (4)
N30.38546 (15)0.11239 (12)0.39446 (8)0.0251 (4)
N40.48691 (13)0.06451 (12)0.41450 (8)0.0212 (3)
C10.51592 (16)0.51633 (13)0.42769 (9)0.0183 (4)
C20.61045 (15)0.52086 (13)0.47597 (9)0.0174 (3)
C30.59041 (15)0.50468 (13)0.54626 (9)0.0185 (4)
H30.65330.50820.57870.022*
C40.51495 (16)0.53048 (14)0.34896 (9)0.0206 (4)
C50.73412 (16)0.54460 (14)0.46160 (10)0.0215 (4)
C60.99235 (15)0.02306 (12)0.57069 (9)0.0172 (3)
C70.89506 (15)0.02660 (12)0.52636 (9)0.0170 (3)
C80.90372 (15)0.00341 (13)0.45593 (9)0.0177 (4)
H80.83800.00570.42570.021*
C90.99120 (15)0.04220 (13)0.64807 (9)0.0191 (4)
C100.78392 (15)0.06034 (13)0.55334 (9)0.0182 (4)
C110.51318 (18)1.21161 (15)0.04831 (11)0.0287 (4)
H11A0.57371.24740.07330.043*
H11B0.45771.25690.02770.043*
H11C0.54571.17310.01120.043*
C120.45601 (16)1.14676 (14)0.09806 (10)0.0234 (4)
C130.36476 (17)1.17594 (14)0.13837 (10)0.0261 (4)
H130.33401.23880.13280.031*
C140.32018 (17)1.11385 (15)0.18567 (10)0.0258 (4)
H140.25901.13430.21280.031*
C150.36416 (16)1.01985 (14)0.19451 (10)0.0220 (4)
C160.45351 (16)0.99289 (13)0.15246 (10)0.0206 (4)
C170.32532 (16)0.95298 (15)0.24508 (10)0.0245 (4)
H170.26580.97080.27440.029*
C180.37276 (17)0.86434 (15)0.25149 (10)0.0253 (4)
H180.34590.82090.28540.030*
C190.46257 (16)0.83521 (13)0.20811 (10)0.0225 (4)
C200.50465 (16)0.89957 (13)0.15806 (10)0.0214 (4)
C210.51552 (18)0.74414 (15)0.21224 (11)0.0284 (4)
H210.49100.69750.24460.034*
C220.60207 (18)0.72363 (15)0.16957 (11)0.0301 (5)
H220.63710.66210.17170.036*
C230.64006 (17)0.79384 (15)0.12197 (11)0.0271 (4)
C240.73845 (19)0.77429 (16)0.07645 (12)0.0353 (5)
H24A0.73110.81380.03420.053*
H24B0.73890.70610.06350.053*
H24C0.80950.79030.10200.053*
C250.2311 (2)0.21602 (17)0.42569 (13)0.0394 (6)
H25A0.16570.18880.39950.059*
H25B0.22020.28550.43140.059*
H25C0.23850.18540.47170.059*
C260.3371 (2)0.19826 (15)0.38637 (11)0.0310 (5)
C270.3831 (2)0.27008 (16)0.34338 (12)0.0391 (6)
H270.34870.33180.34000.047*
C280.4769 (2)0.24996 (18)0.30682 (12)0.0421 (6)
H280.50700.29730.27690.051*
C290.5297 (2)0.15893 (17)0.31328 (11)0.0347 (5)
C300.48077 (17)0.09257 (15)0.35951 (9)0.0253 (4)
C310.6265 (2)0.1311 (2)0.27508 (11)0.0434 (7)
H310.65790.17560.24350.052*
C320.6740 (2)0.0432 (2)0.28292 (11)0.0418 (6)
H320.73770.02650.25660.050*
C330.62883 (17)0.02531 (18)0.33100 (11)0.0322 (5)
C340.53289 (16)0.00081 (15)0.36943 (10)0.0239 (4)
C350.67628 (18)0.11709 (18)0.34117 (12)0.0379 (6)
H350.74160.13530.31690.045*
C360.62834 (18)0.18028 (17)0.38602 (12)0.0342 (5)
H360.65980.24270.39290.041*
C370.53169 (17)0.15191 (14)0.42193 (11)0.0256 (4)
C380.47268 (19)0.22145 (15)0.46823 (12)0.0326 (5)
H38A0.44800.18770.50990.049*
H38B0.52500.27340.48220.049*
H38C0.40650.24870.44280.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0286 (8)0.0431 (9)0.0180 (7)0.0085 (6)0.0034 (6)0.0057 (6)
O20.0271 (8)0.0398 (8)0.0145 (6)0.0042 (6)0.0010 (5)0.0001 (6)
O30.0188 (7)0.0367 (8)0.0272 (7)0.0001 (6)0.0012 (6)0.0025 (6)
O40.0218 (7)0.0401 (8)0.0208 (7)0.0060 (6)0.0042 (5)0.0038 (6)
O50.0260 (7)0.0373 (8)0.0204 (7)0.0079 (6)0.0032 (5)0.0083 (6)
O60.0290 (7)0.0263 (7)0.0122 (6)0.0009 (5)0.0024 (5)0.0003 (5)
O70.0234 (7)0.0229 (7)0.0191 (6)0.0006 (5)0.0035 (5)0.0034 (5)
O80.0170 (6)0.0313 (7)0.0193 (7)0.0010 (5)0.0029 (5)0.0039 (5)
N10.0181 (8)0.0210 (8)0.0256 (8)0.0010 (6)0.0007 (6)0.0010 (6)
N20.0229 (8)0.0232 (8)0.0264 (8)0.0045 (6)0.0002 (6)0.0027 (6)
N30.0280 (9)0.0243 (9)0.0229 (8)0.0006 (7)0.0024 (7)0.0001 (6)
N40.0174 (7)0.0246 (8)0.0215 (8)0.0004 (6)0.0010 (6)0.0052 (6)
C10.0231 (9)0.0168 (8)0.0152 (8)0.0017 (7)0.0010 (7)0.0004 (6)
C20.0190 (9)0.0181 (8)0.0152 (8)0.0010 (6)0.0022 (6)0.0010 (6)
C30.0190 (9)0.0212 (9)0.0152 (8)0.0024 (7)0.0002 (6)0.0006 (7)
C40.0229 (9)0.0235 (9)0.0155 (8)0.0028 (7)0.0027 (7)0.0003 (7)
C50.0211 (9)0.0223 (9)0.0212 (9)0.0010 (7)0.0027 (7)0.0035 (7)
C60.0208 (9)0.0177 (8)0.0133 (8)0.0016 (7)0.0036 (6)0.0010 (6)
C70.0188 (8)0.0166 (8)0.0156 (8)0.0012 (6)0.0026 (6)0.0005 (6)
C80.0164 (8)0.0204 (9)0.0160 (8)0.0008 (6)0.0018 (6)0.0004 (6)
C90.0170 (8)0.0252 (9)0.0153 (8)0.0024 (7)0.0013 (6)0.0013 (7)
C100.0205 (9)0.0172 (8)0.0172 (8)0.0000 (7)0.0020 (7)0.0016 (6)
C110.0310 (11)0.0250 (10)0.0300 (11)0.0021 (8)0.0003 (8)0.0029 (8)
C120.0221 (9)0.0220 (9)0.0257 (10)0.0010 (7)0.0033 (7)0.0006 (7)
C130.0245 (10)0.0218 (10)0.0318 (11)0.0062 (7)0.0020 (8)0.0048 (8)
C140.0216 (9)0.0276 (10)0.0283 (10)0.0037 (7)0.0022 (8)0.0062 (8)
C150.0187 (9)0.0249 (9)0.0221 (9)0.0004 (7)0.0027 (7)0.0041 (7)
C160.0173 (9)0.0228 (9)0.0213 (9)0.0015 (7)0.0029 (7)0.0016 (7)
C170.0205 (9)0.0316 (11)0.0214 (9)0.0034 (8)0.0002 (7)0.0025 (8)
C180.0268 (10)0.0267 (10)0.0222 (9)0.0051 (8)0.0023 (8)0.0012 (7)
C190.0241 (9)0.0206 (9)0.0223 (9)0.0021 (7)0.0049 (7)0.0026 (7)
C200.0212 (9)0.0207 (9)0.0222 (9)0.0010 (7)0.0036 (7)0.0032 (7)
C210.0315 (11)0.0226 (10)0.0303 (11)0.0020 (8)0.0085 (8)0.0010 (8)
C220.0328 (11)0.0211 (10)0.0357 (11)0.0050 (8)0.0072 (9)0.0024 (8)
C230.0249 (10)0.0258 (10)0.0302 (10)0.0035 (8)0.0038 (8)0.0056 (8)
C240.0323 (12)0.0307 (11)0.0432 (13)0.0112 (9)0.0034 (10)0.0051 (9)
C250.0454 (14)0.0277 (11)0.0444 (13)0.0117 (10)0.0056 (11)0.0029 (10)
C260.0396 (12)0.0256 (10)0.0268 (10)0.0002 (9)0.0113 (9)0.0008 (8)
C270.0559 (16)0.0267 (11)0.0334 (12)0.0054 (10)0.0178 (11)0.0059 (9)
C280.0616 (17)0.0373 (13)0.0263 (11)0.0224 (12)0.0150 (11)0.0104 (9)
C290.0425 (13)0.0411 (13)0.0202 (10)0.0199 (10)0.0035 (9)0.0016 (9)
C300.0283 (10)0.0304 (10)0.0168 (9)0.0091 (8)0.0024 (7)0.0017 (7)
C310.0448 (14)0.0651 (18)0.0203 (10)0.0326 (13)0.0019 (9)0.0003 (10)
C320.0334 (12)0.0664 (18)0.0265 (11)0.0236 (12)0.0105 (9)0.0155 (11)
C330.0211 (10)0.0505 (14)0.0252 (10)0.0123 (9)0.0036 (8)0.0151 (9)
C340.0183 (9)0.0321 (11)0.0215 (9)0.0074 (8)0.0015 (7)0.0055 (8)
C350.0176 (10)0.0558 (15)0.0404 (13)0.0023 (9)0.0035 (9)0.0252 (11)
C360.0228 (10)0.0381 (12)0.0412 (12)0.0078 (9)0.0039 (9)0.0193 (10)
C370.0200 (9)0.0268 (10)0.0297 (10)0.0030 (7)0.0044 (8)0.0090 (8)
C380.0321 (11)0.0244 (10)0.0408 (12)0.0035 (8)0.0062 (9)0.0006 (9)
Geometric parameters (Å, º) top
O1—C41.275 (2)C15—C161.402 (3)
O2—C41.244 (2)C15—C171.431 (3)
O3—C51.226 (2)C16—C201.432 (3)
O4—C51.295 (2)C17—C181.356 (3)
O4—H1O0.853 (10)C17—H170.9500
O5—C91.211 (2)C18—C191.430 (3)
O6—C91.320 (2)C18—H180.9500
O6—H2O0.850 (10)C19—C211.412 (3)
O7—C101.223 (2)C19—C201.415 (3)
O8—C101.309 (2)C21—C221.363 (3)
O8—H3O0.851 (10)C21—H210.9500
N1—C121.333 (2)C22—C231.420 (3)
N1—C161.366 (2)C22—H220.9500
N1—H1N0.886 (10)C23—C241.503 (3)
N2—C231.328 (3)C24—H24A0.9800
N2—C201.355 (3)C24—H24B0.9800
N3—C261.329 (3)C24—H24C0.9800
N3—C301.359 (3)C25—C261.505 (3)
N4—C371.330 (3)C25—H25A0.9800
N4—C341.364 (3)C25—H25B0.9800
C1—C3i1.399 (3)C25—H25C0.9800
C1—C21.423 (2)C26—C271.415 (3)
C1—C41.521 (2)C27—C281.362 (4)
C2—C31.395 (2)C27—H270.9500
C2—C51.531 (3)C28—C291.413 (4)
C3—C1i1.399 (3)C28—H280.9500
C3—H30.9500C29—C301.417 (3)
C6—C8ii1.396 (3)C29—C311.433 (4)
C6—C71.402 (2)C30—C341.445 (3)
C6—C91.507 (2)C31—C321.349 (4)
C7—C81.395 (2)C31—H310.9500
C7—C101.503 (3)C32—C331.442 (3)
C8—C6ii1.396 (3)C32—H320.9500
C8—H80.9500C33—C351.403 (3)
C11—C121.492 (3)C33—C341.415 (3)
C11—H11A0.9800C35—C361.366 (3)
C11—H11B0.9800C35—H350.9500
C11—H11C0.9800C36—C371.411 (3)
C12—C131.409 (3)C36—H360.9500
C13—C141.371 (3)C37—C381.501 (3)
C13—H130.9500C38—H38A0.9800
C14—C151.413 (3)C38—H38B0.9800
C14—H140.9500C38—H38C0.9800
C5—O4—H1O112.6 (18)C20—C19—C18120.15 (17)
C9—O6—H2O109.7 (17)N2—C20—C19124.58 (18)
C10—O8—H3O103.9 (16)N2—C20—C16117.70 (18)
C12—N1—C16123.66 (17)C19—C20—C16117.71 (18)
C12—N1—H1N120.4 (15)C22—C21—C19119.6 (2)
C16—N1—H1N115.9 (15)C22—C21—H21120.2
C23—N2—C20117.74 (18)C19—C21—H21120.2
C26—N3—C30118.95 (19)C21—C22—C23120.28 (19)
C37—N4—C34119.62 (18)C21—C22—H22119.9
C3i—C1—C2117.94 (16)C23—C22—H22119.9
C3i—C1—C4114.11 (15)N2—C23—C22121.8 (2)
C2—C1—C4127.95 (17)N2—C23—C24116.98 (19)
C3—C2—C1117.58 (17)C22—C23—C24121.24 (19)
C3—C2—C5114.00 (15)C23—C24—H24A109.5
C1—C2—C5128.39 (16)C23—C24—H24B109.5
C2—C3—C1i124.48 (16)H24A—C24—H24B109.5
C2—C3—H3117.8C23—C24—H24C109.5
C1i—C3—H3117.8H24A—C24—H24C109.5
O2—C4—O1122.35 (17)H24B—C24—H24C109.5
O2—C4—C1117.46 (17)C26—C25—H25A109.5
O1—C4—C1120.17 (16)C26—C25—H25B109.5
O3—C5—O4121.32 (18)H25A—C25—H25B109.5
O3—C5—C2119.44 (17)C26—C25—H25C109.5
O4—C5—C2119.17 (16)H25A—C25—H25C109.5
C8ii—C6—C7119.87 (16)H25B—C25—H25C109.5
C8ii—C6—C9116.60 (15)N3—C26—C27121.9 (2)
C7—C6—C9123.48 (16)N3—C26—C25116.8 (2)
C8—C7—C6119.28 (17)C27—C26—C25121.4 (2)
C8—C7—C10120.16 (15)C28—C27—C26119.5 (2)
C6—C7—C10120.47 (16)C28—C27—H27120.3
C7—C8—C6ii120.85 (16)C26—C27—H27120.3
C7—C8—H8119.6C27—C28—C29120.2 (2)
C6ii—C8—H8119.6C27—C28—H28119.9
O5—C9—O6125.37 (17)C29—C28—H28119.9
O5—C9—C6122.40 (17)C28—C29—C30116.7 (2)
O6—C9—C6112.04 (15)C28—C29—C31123.6 (2)
O7—C10—O8125.23 (17)C30—C29—C31119.7 (2)
O7—C10—C7120.91 (16)N3—C30—C29122.7 (2)
O8—C10—C7113.84 (15)N3—C30—C34118.23 (18)
C12—C11—H11A109.5C29—C30—C34119.0 (2)
C12—C11—H11B109.5C32—C31—C29121.5 (2)
H11A—C11—H11B109.5C32—C31—H31119.2
C12—C11—H11C109.5C29—C31—H31119.2
H11A—C11—H11C109.5C31—C32—C33120.4 (2)
H11B—C11—H11C109.5C31—C32—H32119.8
N1—C12—C13118.27 (18)C33—C32—H32119.8
N1—C12—C11118.29 (18)C35—C33—C34118.0 (2)
C13—C12—C11123.41 (18)C35—C33—C32122.3 (2)
C14—C13—C12120.16 (18)C34—C33—C32119.8 (2)
C14—C13—H13119.9N4—C34—C33121.3 (2)
C12—C13—H13119.9N4—C34—C30119.23 (18)
C13—C14—C15120.83 (18)C33—C34—C30119.49 (19)
C13—C14—H14119.6C36—C35—C33119.9 (2)
C15—C14—H14119.6C36—C35—H35120.0
C16—C15—C14117.30 (18)C33—C35—H35120.0
C16—C15—C17118.90 (18)C35—C36—C37119.3 (2)
C14—C15—C17123.76 (19)C35—C36—H36120.4
N1—C16—C15119.75 (17)C37—C36—H36120.4
N1—C16—C20118.73 (18)N4—C37—C36121.9 (2)
C15—C16—C20121.51 (18)N4—C37—C38117.36 (18)
C18—C17—C15120.61 (19)C36—C37—C38120.71 (19)
C18—C17—H17119.7C37—C38—H38A109.5
C15—C17—H17119.7C37—C38—H38B109.5
C17—C18—C19121.10 (19)H38A—C38—H38B109.5
C17—C18—H18119.4C37—C38—H38C109.5
C19—C18—H18119.4H38A—C38—H38C109.5
C21—C19—C20115.99 (19)H38B—C38—H38C109.5
C21—C19—C18123.85 (19)
C3i—C1—C2—C30.5 (3)C18—C19—C20—N2177.97 (17)
C4—C1—C2—C3179.62 (17)C21—C19—C20—C16179.72 (16)
C3i—C1—C2—C5178.40 (17)C18—C19—C20—C160.6 (3)
C4—C1—C2—C52.4 (3)N1—C16—C20—N20.6 (2)
C1—C2—C3—C1i0.5 (3)C15—C16—C20—N2179.19 (16)
C5—C2—C3—C1i178.73 (17)N1—C16—C20—C19178.12 (15)
C3i—C1—C4—O210.8 (2)C15—C16—C20—C190.5 (3)
C2—C1—C4—O2168.41 (18)C20—C19—C21—C220.4 (3)
C3i—C1—C4—O1167.52 (17)C18—C19—C21—C22178.69 (18)
C2—C1—C4—O113.3 (3)C19—C21—C22—C231.0 (3)
C3—C2—C5—O315.2 (3)C20—N2—C23—C221.1 (3)
C1—C2—C5—O3166.75 (18)C20—N2—C23—C24178.25 (17)
C3—C2—C5—O4161.82 (17)C21—C22—C23—N21.8 (3)
C1—C2—C5—O416.2 (3)C21—C22—C23—C24177.49 (19)
C8ii—C6—C7—C80.0 (3)C30—N3—C26—C271.1 (3)
C9—C6—C7—C8177.05 (16)C30—N3—C26—C25179.39 (17)
C8ii—C6—C7—C10176.53 (16)N3—C26—C27—C282.7 (3)
C9—C6—C7—C106.4 (3)C25—C26—C27—C28177.8 (2)
C6—C7—C8—C6ii0.0 (3)C26—C27—C28—C291.7 (3)
C10—C7—C8—C6ii176.54 (16)C27—C28—C29—C300.8 (3)
C8ii—C6—C9—O564.4 (2)C27—C28—C29—C31178.0 (2)
C7—C6—C9—O5118.4 (2)C26—N3—C30—C291.5 (3)
C8ii—C6—C9—O6110.89 (18)C26—N3—C30—C34179.41 (16)
C7—C6—C9—O666.3 (2)C28—C29—C30—N32.5 (3)
C8—C7—C10—O7158.38 (17)C31—C29—C30—N3176.38 (18)
C6—C7—C10—O718.2 (3)C28—C29—C30—C34178.51 (17)
C8—C7—C10—O820.0 (2)C31—C29—C30—C342.7 (3)
C6—C7—C10—O8163.44 (16)C28—C29—C31—C32180.0 (2)
C16—N1—C12—C132.0 (3)C30—C29—C31—C321.2 (3)
C16—N1—C12—C11176.50 (16)C29—C31—C32—C330.6 (3)
N1—C12—C13—C141.8 (3)C31—C32—C33—C35179.5 (2)
C11—C12—C13—C14176.64 (18)C31—C32—C33—C341.0 (3)
C12—C13—C14—C150.4 (3)C37—N4—C34—C331.0 (3)
C13—C14—C15—C160.8 (3)C37—N4—C34—C30177.42 (16)
C13—C14—C15—C17176.99 (17)C35—C33—C34—N40.6 (3)
C12—N1—C16—C150.8 (3)C32—C33—C34—N4178.94 (17)
C12—N1—C16—C20177.88 (16)C35—C33—C34—C30179.09 (17)
C14—C15—C16—N10.7 (3)C32—C33—C34—C300.5 (3)
C17—C15—C16—N1177.25 (16)N3—C30—C34—N41.7 (3)
C14—C15—C16—C20179.30 (16)C29—C30—C34—N4179.23 (16)
C17—C15—C16—C201.4 (3)N3—C30—C34—C33176.79 (16)
C16—C15—C17—C181.1 (3)C29—C30—C34—C332.3 (3)
C14—C15—C17—C18178.89 (18)C34—C33—C35—C361.3 (3)
C15—C17—C18—C190.0 (3)C32—C33—C35—C36178.27 (19)
C17—C18—C19—C21179.92 (18)C33—C35—C36—C370.4 (3)
C17—C18—C19—C200.9 (3)C34—N4—C37—C362.0 (3)
C23—N2—C20—C190.4 (3)C34—N4—C37—C38175.67 (16)
C23—N2—C20—C16179.00 (16)C35—C36—C37—N41.4 (3)
C21—C19—C20—N21.1 (3)C35—C36—C37—C38176.27 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1o···O10.85 (2)1.55 (2)2.403 (2)176 (3)
O6—H2o···O2iii0.85 (1)1.74 (1)2.577 (2)168 (2)
O8—H3o···N4iv0.85 (2)1.79 (2)2.636 (2)173 (2)
N1—H1n···O3v0.89 (2)2.41 (2)3.257 (2)161 (2)
N1—H1n···O4v0.89 (2)2.35 (2)2.957 (2)126 (2)
C13—H13···O7vi0.952.283.225 (3)171
C28—H28···O5vii0.952.403.320 (3)162
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z+1; (v) x+3/2, y+1/2, z+1/2; (vi) x1/2, y+3/2, z1/2; (vii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1o···O10.85 (2)1.55 (2)2.403 (2)176 (3)
O6—H2o···O2i0.850 (10)1.739 (10)2.577 (2)168 (2)
O8—H3o···N4ii0.851 (18)1.789 (17)2.636 (2)172.9 (18)
N1—H1n···O3iii0.885 (17)2.407 (17)3.257 (2)160.9 (18)
N1—H1n···O4iii0.885 (17)2.347 (16)2.957 (2)126.2 (16)
C13—H13···O7iv0.952.283.225 (3)171
C28—H28···O5v0.952.403.320 (3)162
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x1/2, y+3/2, z1/2; (v) x1/2, y+1/2, z1/2.
 

Acknowledgements

We gratefully thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2602.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArman, H. D. & Tiekink, E. R. T. (2013). Z. Kristallogr. Cryst. Mat. 228, 289–294.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDerikvand, Z. & Olmstead, M. M. (2011). Acta Cryst. E67, o87–o88.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1445-o1446
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds