organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1396-o1397

(3R,3aR,6R,6aR)-Hexa­hydro­furo[3,2-b]furan-3,6-diyl dibenzoate

aDipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy, and bDipartimento di Farmacia, Università degli Studi di Napoli 'Federico II', Via D. Montesano 49, 80131 Napoli, Italy
*Correspondence e-mail: vinpicci@unina.it, angela.tuzi@unina.it

(Received 24 July 2013; accepted 2 August 2013; online 7 August 2013)

The title compound, C20H18O6, prepared from D-mannitol by a two-step procedure, is a functionalized fused bis-tetra­hydro­furan. In the central fragment, consisting of two fused tetra­hydro­furan rings, one O atom and its two adjacent C atoms, a methyl­ene and a bridgehead C atom, are disordered over two sets of sites with an occupancy ratio of 0.735 (9):0.265 (9). In the major component, the ring containing the disordered O atom is a half-chair conformation with twisted methylene and benzoate-substituted C atoms, whereas the other ring has a half-chair or T-form conformation. In the minor component, the ring with the disordered O atom has an envelope conformation, with the O atom as the flap, and the other ring has a half-chair conformation, with the O atom and the other bridgehead CH atom being twisted. The two aromatic rings are inclined to one another by 20.00 (12)°. In the crystal, adjacent molecules are linked via C—H⋯π interactions, forming chains propagating along [010].

Related literature

For the use of carbohydrates in the synthesis of complex natural chiral substances, see: Hanessian (1993[Hanessian, S. (1993). Total synthesis of natural products "Chiron approach". Organic Chemistry Series, edited by J. E. Baldwin. New York: Pergamon Press.]). For mannitol as a chiral reagent and for its biologically active derivatives, see: Babjak et al. (2002[Babjak, M., Kapitan, P. & Gracza, T. (2002). Tetrahedron Lett. 43, 6983-6985.]); Masaki et al. (1999[Masaki, Y., Arasaki, H. & Itoh, A. (1999). Tetrahedron Lett. 40, 4829-4832.]); Lohray et al. (1999[Lohray, B. B., Baskaran, S., Rao, B. S., Reddy, B. Y. & Rao, I. N. (1999). Tetrahedron Lett. 40, 4855-4856.]). For oxidative processes mediated by transition of oxo-species, see: Piccialli, Oliviero et al. (2013[Piccialli, V., Oliviero, G., Borbone, N., Centore, R. & Tuzi, A. (2013). Acta Cryst. E69, o879-o880.]); Piccialli, Tuzi et al. (2013[Piccialli, V., Tuzi, A., Oliviero, G., Borbone, N. & Centore, R. (2013). Acta Cryst. E69, o1109-o1110.]); Piccialli, D'Errico et al. (2013[Piccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. pp. 1781-1789.]); Piccialli et al. (2012[Piccialli, V., Zaccaria, S., Oliviero, G., D'Errico, S., D'Atri, V. & Borbone, N. (2012). Eur. J. Org. Chem. pp. 4293-4305.]). For the synthesis of the title compound, see: Hockett et al. (1946[Hockett, R. C., Fletcher, H. G. Jr, Sheffield, E., Goepp, R. M. Jr & Soltzberg, S. (1946). J. Am. Chem. Soc. pp. 930-935.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18O6

  • Mr = 354.34

  • Monoclinic, P 21

  • a = 10.0914 (15) Å

  • b = 8.2388 (11) Å

  • c = 10.7592 (10) Å

  • β = 108.913 (10)°

  • V = 846.24 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.50 × 0.20 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.990

  • 7903 measured reflections

  • 2059 independent reflections

  • 1757 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.073

  • S = 1.11

  • 2059 reflections

  • 263 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1ACgi 0.99 2.60 3.419 (3) 149
Symmetry code: (i) x, y+1, z.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Carbohydrate-based synthons have been used in a number of syntheses of complex natural chiral substances (Hanessian, 1993). Manipulation of the oxygenation pattern and stereochemistry of simple sugars proved to be a powerful mean to use nature-generated chirality. In this context D-mannitol plays an important role as a readily available chiral building block in organic synthesis (Babjak et al., 2002). In addition, mannitol and its derivatives are widely used as chiral reagents and chiral auxiliaries (Masaki et al., 1999) and can be transformed into biologically active and pharmaceutically important compounds (Lohray et al., 1999). As a continuation of our interest in oxidative processes mediated by transition metals oxo-species (Piccialli, Oliviero, Borbone et al., 2013; Piccialli, Tuzi, Oliviero et al., 2013; Piccialli, D'Errico, Borbone et al., 2013; Piccialli et al., 2012) we were interested in the synthesis and reactivity of functionalized fused bis-tetrahydrofurans.

In the title compound, molecule consists of two cis–fused tetrahydrofurane rings substituted at C2 and C5 positions (Fig.1). A local C2 symmetry of the molecule is observed at the junction. Tetrahydrofurane rings are disordered in two different positions (occupancy factor refined to 0.735 (9) for the A position and 0.265 (9) for the B position). Both disordered O1/C1/C2/C3A/C4 and O1/C1/C2/C3B/C4 rings adopt an envelope conformation with O1 at the flap. The disordered O2A/C3A/C4/C5/C6A and O2B/C3B/C4/C5/C6B rings are both in the envelope conformation that differ for the atom at the flap (C6A and O2B, respectively). The molecule of the title compound does not contain strong H–bonding donor and the crystal packing is stabilized by normal weak intermolecular interactions.

Related literature top

For the use of carbohydrate in the synthesis of complex natural chiral substances, see: Hanessian (1993). For mannitol as chiral reagent and its biologically active derivatives, see: Babjak et al. (2002); Masaki et al. (1999); Lohray et al. (1999). For oxidative processes mediated by transition of oxo-species, see: Piccialli, Oliviero, Borbone et al. (2013); Piccialli, Tuzi, Oliviero et al. (2013); Piccialli, D'Errico, Borbone et al. (2013); Piccialli, Zaccaria, Oliviero et al. (2012). For the synthesis of the compound, see: Hockett et al. (1946).

Experimental top

The title compound was prepared according to a two-steps procedure starting from D-mannitol. Treatment of the latter with benzoyl chloride in pyridine for 16 h, followed by reaction with catalytic amounts of p-toluenesulfonic acid in 1,1,2,2-tetrachloroethane at reflux (Hockett et al., 1946) led to title compound as an amorphous white powder, after chromatography (CHCl3 to CHCl3–MeOH, 95:5). The whole process consists of a double migration of the primary benzoates to the adjacent alcoholic functions followed by double water elimination and bis-cyclization (C1/C4 and C3/C6 ether ring closure). Recrystallization from methanol gave elongated white crystals suitable for X-ray analysis.

1,4:3,6-dianhydro-2,5-di-O-benzoyl-D-mannitol: 1H-NMR (200 MHz, CDCl3) δ 8.10 (4H, d, J = 7.0 Hz), 7.58 (2H, t, J = 7.3 Hz), 7.45 (4H, t, J = 7.3 Hz), 5.42–5.27 (m, 2H), 4.95–4.83 (m, 2H), 4.15 (2H, dd, J = 9.4, 6.3 Hz), 4.02 (2H, dd, J = 9.4, 6.7 Hz); 13C-NMR (50 MHz, CDCl3) δ 165.9, 133.2, 129.8, 129.4, 128.4, 80.6, 74.1, 70.7.

Refinement top

All H atoms were generated stereochemically and refined by the riding model with Uiso=1.2×Ueq of the carrier atom. Some constraints were introduced in the last stage of refinement to handle the disorder of one furane group (SAME and ISOR command of SHELXL program). In the absence of strong anomalous scatterer the Flack parameter is not meaningful. Data were merged using MERG 3 instruction and the absolute configuration was assigned on the assumption that the original mannitol configuration had been preserved during the acid-catalysed process.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound, with the atom labelling scheme. Thermal ellipsoids are drawn at 30% probability level. The disordered part with the minor occupancy factor is drawn by dashed lines.
(3R,3aR,6R,6aR)-Hexahydrofuro[3,2-b]furan-3,6-diyl dibenzoate top
Crystal data top
C20H18O6F(000) = 372
Mr = 354.34Dx = 1.391 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 446 reflections
a = 10.0914 (15) Åθ = 3.8–23.5°
b = 8.2388 (11) ŵ = 0.10 mm1
c = 10.7592 (10) ÅT = 173 K
β = 108.913 (10)°Block, white
V = 846.24 (19) Å30.50 × 0.20 × 0.10 mm
Z = 2
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2059 independent reflections
Radiation source: normal-focus sealed tube1757 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD rotation images, thick slices scansh = 1213
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 109
Tmin = 0.950, Tmax = 0.990l = 1313
7903 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0287P)2 + 0.1292P]
where P = (Fo2 + 2Fc2)/3
2059 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.14 e Å3
12 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H18O6V = 846.24 (19) Å3
Mr = 354.34Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.0914 (15) ŵ = 0.10 mm1
b = 8.2388 (11) ÅT = 173 K
c = 10.7592 (10) Å0.50 × 0.20 × 0.10 mm
β = 108.913 (10)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2059 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1757 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.990Rint = 0.033
7903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03512 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.11Δρmax = 0.14 e Å3
2059 reflectionsΔρmin = 0.20 e Å3
263 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.64835 (16)0.0655 (2)0.86046 (14)0.0337 (4)
O30.77544 (15)0.3383 (2)0.73544 (16)0.0351 (4)
O40.68459 (17)0.4767 (2)0.54748 (17)0.0449 (5)
O50.69994 (15)0.22410 (18)0.78559 (13)0.0282 (3)
O60.51687 (15)0.2810 (2)0.85248 (15)0.0385 (4)
C10.6475 (3)0.2374 (3)0.8702 (2)0.0381 (6)
H1A0.73480.27620.93660.046*
H1B0.56680.27410.89610.046*
C20.6365 (2)0.3022 (3)0.7353 (2)0.0322 (5)
H20.57770.40270.71620.039*
C40.5552 (2)0.0247 (3)0.73299 (19)0.0252 (4)
H40.45760.00780.73430.030*
C50.6094 (2)0.1245 (3)0.68230 (19)0.0267 (5)
H50.53160.18900.62070.032*
C70.7845 (2)0.4329 (3)0.6365 (2)0.0305 (5)
C80.9319 (2)0.4765 (3)0.6514 (2)0.0278 (4)
C90.9560 (2)0.5661 (3)0.5518 (2)0.0339 (5)
H90.88000.59720.47690.041*
C101.0912 (3)0.6098 (3)0.5623 (2)0.0422 (6)
H101.10820.67040.49380.051*
C111.2014 (3)0.5664 (3)0.6708 (3)0.0436 (6)
H111.29410.59730.67740.052*
C121.1774 (2)0.4781 (4)0.7702 (3)0.0459 (6)
H121.25370.44900.84560.055*
C131.0429 (2)0.4318 (3)0.7606 (2)0.0362 (6)
H131.02660.36960.82860.043*
C140.6400 (2)0.2914 (3)0.8676 (2)0.0277 (5)
C150.7421 (2)0.3791 (3)0.97809 (19)0.0271 (5)
C160.6933 (2)0.4500 (3)1.0721 (2)0.0301 (5)
H160.59820.43671.06680.036*
C170.7827 (2)0.5397 (3)1.1732 (2)0.0355 (5)
H170.74890.58801.23730.043*
C180.9210 (3)0.5593 (3)1.1812 (2)0.0391 (6)
H180.98220.62181.25030.047*
C190.9706 (2)0.4876 (3)1.0884 (2)0.0381 (6)
H191.06600.50031.09450.046*
C200.8815 (2)0.3974 (3)0.9868 (2)0.0302 (5)
H200.91570.34830.92340.036*
C3A0.5619 (7)0.1641 (7)0.6404 (6)0.0262 (11)0.735 (9)
H3A0.46500.19860.58730.031*0.735 (9)
C6A0.7006 (7)0.0439 (7)0.6118 (7)0.0287 (14)0.735 (9)
H6A0.79490.02130.67450.034*0.735 (9)
H6B0.71080.11610.54190.034*0.735 (9)
O2A0.6338 (4)0.1033 (3)0.5563 (3)0.0297 (9)0.735 (9)
C3B0.5953 (15)0.150 (2)0.650 (2)0.040 (6)0.265 (9)
H3B0.51620.17240.56760.048*0.265 (9)
C6B0.687 (2)0.0796 (14)0.587 (2)0.039 (6)0.265 (9)
H6C0.77460.14220.60410.047*0.265 (9)
H6D0.62760.09330.49460.047*0.265 (9)
O2B0.7130 (10)0.0860 (10)0.6220 (9)0.032 (3)0.265 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0432 (9)0.0322 (9)0.0240 (7)0.0038 (7)0.0085 (6)0.0056 (7)
O30.0256 (8)0.0375 (9)0.0432 (9)0.0012 (7)0.0124 (7)0.0140 (8)
O40.0315 (9)0.0482 (11)0.0457 (9)0.0019 (8)0.0005 (7)0.0154 (9)
O50.0292 (7)0.0308 (8)0.0247 (7)0.0038 (6)0.0089 (6)0.0030 (6)
O60.0261 (8)0.0441 (10)0.0437 (9)0.0019 (8)0.0090 (7)0.0120 (8)
C10.0452 (14)0.0340 (14)0.0420 (13)0.0139 (11)0.0237 (11)0.0139 (11)
C20.0268 (11)0.0274 (12)0.0467 (13)0.0037 (9)0.0177 (10)0.0038 (11)
C40.0222 (10)0.0274 (11)0.0261 (10)0.0028 (8)0.0080 (8)0.0003 (9)
C50.0280 (11)0.0297 (12)0.0200 (9)0.0010 (9)0.0045 (8)0.0010 (9)
C70.0305 (11)0.0249 (12)0.0346 (11)0.0017 (9)0.0087 (9)0.0018 (10)
C80.0292 (10)0.0259 (11)0.0286 (10)0.0026 (9)0.0097 (8)0.0005 (9)
C90.0425 (13)0.0308 (13)0.0302 (11)0.0025 (11)0.0140 (10)0.0022 (10)
C100.0555 (15)0.0351 (14)0.0491 (14)0.0068 (12)0.0349 (13)0.0006 (12)
C110.0352 (13)0.0444 (15)0.0590 (15)0.0105 (12)0.0260 (12)0.0118 (14)
C120.0294 (12)0.0591 (18)0.0469 (14)0.0013 (13)0.0090 (10)0.0015 (14)
C130.0303 (11)0.0452 (15)0.0331 (11)0.0011 (11)0.0103 (9)0.0079 (11)
C140.0308 (11)0.0235 (11)0.0280 (10)0.0030 (9)0.0087 (9)0.0030 (9)
C150.0299 (10)0.0233 (11)0.0270 (10)0.0002 (9)0.0076 (8)0.0037 (9)
C160.0302 (11)0.0302 (12)0.0317 (11)0.0038 (10)0.0125 (9)0.0014 (10)
C170.0407 (13)0.0367 (13)0.0325 (11)0.0058 (11)0.0164 (10)0.0058 (11)
C180.0381 (13)0.0402 (15)0.0364 (12)0.0090 (11)0.0084 (10)0.0104 (11)
C190.0287 (12)0.0403 (14)0.0446 (13)0.0046 (10)0.0108 (10)0.0031 (12)
C200.0300 (11)0.0297 (12)0.0314 (10)0.0010 (9)0.0107 (9)0.0004 (10)
C3A0.027 (2)0.025 (2)0.028 (2)0.0013 (19)0.012 (2)0.0032 (17)
C6A0.034 (2)0.034 (3)0.021 (3)0.009 (2)0.0130 (18)0.000 (2)
O2A0.0313 (19)0.0332 (13)0.0277 (15)0.0016 (10)0.0137 (15)0.0044 (10)
C3B0.041 (7)0.036 (7)0.041 (7)0.006 (4)0.010 (5)0.002 (4)
C6B0.068 (11)0.029 (7)0.024 (8)0.006 (6)0.020 (7)0.009 (6)
O2B0.026 (5)0.040 (5)0.033 (5)0.001 (3)0.014 (4)0.001 (3)
Geometric parameters (Å, º) top
O1—C11.421 (3)C11—C121.378 (4)
O1—C41.429 (2)C11—H110.9500
O3—C71.345 (3)C12—C131.381 (3)
O3—C21.433 (2)C12—H120.9500
O4—C71.199 (3)C13—H130.9500
O5—C141.341 (3)C14—C151.485 (3)
O5—C51.444 (2)C15—C201.387 (3)
O6—C141.203 (3)C15—C161.389 (3)
C1—C21.516 (3)C16—C171.381 (3)
C1—H1A0.9900C16—H160.9500
C1—H1B0.9900C17—C181.379 (3)
C2—C3B1.530 (13)C17—H170.9500
C2—C3A1.551 (5)C18—C191.386 (3)
C2—H21.0000C18—H180.9500
C4—C3B1.50 (2)C19—C201.384 (3)
C4—C51.516 (3)C19—H190.9500
C4—C3A1.536 (7)C20—H200.9500
C4—H41.0000C3A—O2A1.422 (5)
C5—C6B1.520 (6)C3A—H3A1.0000
C5—C6A1.522 (4)C6A—O2A1.421 (6)
C5—H51.0000C6A—H6A0.9900
C7—C81.489 (3)C6A—H6B0.9900
C8—C131.385 (3)C3B—O2B1.418 (9)
C8—C91.386 (3)C3B—H3B1.0000
C9—C101.380 (3)C6B—O2B1.416 (10)
C9—H90.9500C6B—H6C0.9900
C10—C111.373 (4)C6B—H6D0.9900
C10—H100.9500
C1—O1—C4106.71 (18)C11—C12—H12119.9
C7—O3—C2115.89 (17)C13—C12—H12119.9
C14—O5—C5115.68 (16)C12—C13—C8119.7 (2)
O1—C1—C2106.30 (19)C12—C13—H13120.2
O1—C1—H1A110.5C8—C13—H13120.2
C2—C1—H1A110.5O6—C14—O5123.3 (2)
O1—C1—H1B110.5O6—C14—C15124.1 (2)
C2—C1—H1B110.5O5—C14—C15112.60 (17)
H1A—C1—H1B108.7C20—C15—C16119.72 (19)
O3—C2—C1107.69 (19)C20—C15—C14122.18 (19)
O3—C2—C3B104.2 (5)C16—C15—C14118.04 (18)
C1—C2—C3B101.9 (10)C17—C16—C15120.2 (2)
O3—C2—C3A114.8 (3)C17—C16—H16119.9
C1—C2—C3A104.0 (3)C15—C16—H16119.9
O3—C2—H2110.1C18—C17—C16120.0 (2)
C1—C2—H2110.1C18—C17—H17120.0
C3B—C2—H2121.9C16—C17—H17120.0
C3A—C2—H2110.1C17—C18—C19120.0 (2)
O1—C4—C3B100.9 (7)C17—C18—H18120.0
O1—C4—C5109.53 (17)C19—C18—H18120.0
C3B—C4—C598.3 (4)C20—C19—C18120.2 (2)
O1—C4—C3A107.1 (3)C20—C19—H19119.9
C5—C4—C3A106.0 (2)C18—C19—H19119.9
O1—C4—H4111.3C19—C20—C15119.8 (2)
C3B—C4—H4124.1C19—C20—H20120.1
C5—C4—H4111.3C15—C20—H20120.1
C3A—C4—H4111.3O2A—C3A—C4106.7 (4)
O5—C5—C4113.31 (16)O2A—C3A—C2116.0 (4)
O5—C5—C6B108.7 (9)C4—C3A—C2103.6 (4)
C4—C5—C6B111.6 (5)O2A—C3A—H3A110.1
O5—C5—C6A107.3 (3)C4—C3A—H3A110.1
C4—C5—C6A99.9 (3)C2—C3A—H3A110.1
O5—C5—H5111.9O2A—C6A—C5107.5 (3)
C4—C5—H5111.9O2A—C6A—H6A110.2
C6B—C5—H598.5C5—C6A—H6A110.2
C6A—C5—H5111.9O2A—C6A—H6B110.2
O4—C7—O3123.5 (2)C5—C6A—H6B110.2
O4—C7—C8124.4 (2)H6A—C6A—H6B108.5
O3—C7—C8112.14 (18)C6A—O2A—C3A107.7 (4)
C13—C8—C9120.1 (2)O2B—C3B—C4106.1 (13)
C13—C8—C7122.15 (19)O2B—C3B—C2110.4 (9)
C9—C8—C7117.73 (19)C4—C3B—C2106.3 (13)
C10—C9—C8119.5 (2)O2B—C3B—H3B111.3
C10—C9—H9120.3C4—C3B—H3B111.3
C8—C9—H9120.3C2—C3B—H3B111.3
C11—C10—C9120.6 (2)O2B—C6B—C598.6 (6)
C11—C10—H10119.7O2B—C6B—H6C112.0
C9—C10—H10119.7C5—C6B—H6C112.0
C10—C11—C12120.0 (2)O2B—C6B—H6D112.0
C10—C11—H11120.0C5—C6B—H6D112.0
C12—C11—H11120.0H6C—C6B—H6D109.7
C11—C12—C13120.2 (2)C6B—O2B—C3B108.5 (8)
C4—O1—C1—C236.6 (2)C14—C15—C16—C17176.8 (2)
C7—O3—C2—C1164.35 (19)C15—C16—C17—C180.0 (4)
C7—O3—C2—C3B87.9 (10)C16—C17—C18—C190.6 (4)
C7—O3—C2—C3A80.4 (4)C17—C18—C19—C200.6 (4)
O1—C1—C2—O395.8 (2)C18—C19—C20—C150.1 (4)
O1—C1—C2—C3B13.5 (5)C16—C15—C20—C190.7 (3)
O1—C1—C2—C3A26.3 (3)C14—C15—C20—C19176.7 (2)
C1—O1—C4—C3B43.2 (4)O1—C4—C3A—O2A108.9 (3)
C1—O1—C4—C5146.16 (18)C3B—C4—C3A—O2A46 (3)
C1—O1—C4—C3A31.6 (3)C5—C4—C3A—O2A8.0 (4)
C14—O5—C5—C463.8 (2)O1—C4—C3A—C214.1 (4)
C14—O5—C5—C6B171.5 (7)C3B—C4—C3A—C277 (3)
C14—O5—C5—C6A173.1 (3)C5—C4—C3A—C2130.9 (3)
O1—C4—C5—O523.7 (2)O3—C2—C3A—O2A6.4 (6)
C3B—C4—C5—O5128.4 (7)C1—C2—C3A—O2A123.8 (4)
C3A—C4—C5—O5138.9 (3)C3B—C2—C3A—O2A42 (5)
O1—C4—C5—C6B99.4 (11)O3—C2—C3A—C4110.2 (3)
C3B—C4—C5—C6B5.3 (13)C1—C2—C3A—C47.2 (4)
C3A—C4—C5—C6B15.8 (11)C3B—C2—C3A—C475 (5)
O1—C4—C5—C6A90.2 (3)O5—C5—C6A—O2A153.4 (4)
C3B—C4—C5—C6A14.6 (8)C4—C5—C6A—O2A35.0 (6)
C3A—C4—C5—C6A25.0 (4)C6B—C5—C6A—O2A109 (5)
C2—O3—C7—O45.1 (3)C5—C6A—O2A—C3A32.0 (7)
C2—O3—C7—C8174.68 (19)C4—C3A—O2A—C6A14.5 (6)
O4—C7—C8—C13175.5 (2)C2—C3A—O2A—C6A100.3 (6)
O3—C7—C8—C134.2 (3)O1—C4—C3B—O2B84.2 (10)
O4—C7—C8—C93.9 (3)C5—C4—C3B—O2B27.7 (11)
O3—C7—C8—C9176.4 (2)C3A—C4—C3B—O2B156 (4)
C13—C8—C9—C100.2 (4)O1—C4—C3B—C233.4 (9)
C7—C8—C9—C10179.6 (2)C5—C4—C3B—C2145.2 (7)
C8—C9—C10—C110.6 (4)C3A—C4—C3B—C287 (3)
C9—C10—C11—C120.2 (4)O3—C2—C3B—O2B9.7 (18)
C10—C11—C12—C130.5 (4)C1—C2—C3B—O2B102.2 (15)
C11—C12—C13—C80.9 (4)C3A—C2—C3B—O2B157 (7)
C9—C8—C13—C120.5 (4)O3—C2—C3B—C4124.4 (6)
C7—C8—C13—C12178.9 (2)C1—C2—C3B—C412.4 (9)
C5—O5—C14—O65.3 (3)C3A—C2—C3B—C488 (5)
C5—O5—C14—C15174.67 (17)O5—C5—C6B—O2B107.4 (12)
O6—C14—C15—C20175.5 (2)C4—C5—C6B—O2B18.3 (17)
O5—C14—C15—C204.5 (3)C6A—C5—C6B—O2B20 (3)
O6—C14—C15—C161.9 (3)C5—C6B—O2B—C3B37 (2)
O5—C14—C15—C16178.10 (19)C4—C3B—O2B—C6B44.0 (17)
C20—C15—C16—C170.6 (3)C2—C3B—O2B—C6B158.7 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cgi0.992.603.419 (3)149
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cgi0.992.603.419 (3)149
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the Centro Inter­dipartimentale di Metodologie Chimico–Fisiche, Università degli Studi di Napoli "Federico II" for X-ray and NMR facilities.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBabjak, M., Kapitan, P. & Gracza, T. (2002). Tetrahedron Lett. 43, 6983–6985.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHanessian, S. (1993). Total synthesis of natural products "Chiron approach". Organic Chemistry Series, edited by J. E. Baldwin. New York: Pergamon Press.  Google Scholar
First citationHockett, R. C., Fletcher, H. G. Jr, Sheffield, E., Goepp, R. M. Jr & Soltzberg, S. (1946). J. Am. Chem. Soc. pp. 930–935.  CrossRef Web of Science Google Scholar
First citationLohray, B. B., Baskaran, S., Rao, B. S., Reddy, B. Y. & Rao, I. N. (1999). Tetrahedron Lett. 40, 4855–4856.  Web of Science CrossRef CAS Google Scholar
First citationMasaki, Y., Arasaki, H. & Itoh, A. (1999). Tetrahedron Lett. 40, 4829–4832.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationPiccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. pp. 1781–1789.  Web of Science CSD CrossRef Google Scholar
First citationPiccialli, V., Oliviero, G., Borbone, N., Centore, R. & Tuzi, A. (2013). Acta Cryst. E69, o879–o880.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPiccialli, V., Tuzi, A., Oliviero, G., Borbone, N. & Centore, R. (2013). Acta Cryst. E69, o1109–o1110.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPiccialli, V., Zaccaria, S., Oliviero, G., D'Errico, S., D'Atri, V. & Borbone, N. (2012). Eur. J. Org. Chem. pp. 4293–4305.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1396-o1397
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds