organic compounds
(3R,3aR,6R,6aR)-Hexahydrofuro[3,2-b]furan-3,6-diyl dibenzoate
aDipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy, and bDipartimento di Farmacia, Università degli Studi di Napoli 'Federico II', Via D. Montesano 49, 80131 Napoli, Italy
*Correspondence e-mail: vinpicci@unina.it, angela.tuzi@unina.it
The title compound, C20H18O6, prepared from D-mannitol by a two-step procedure, is a functionalized fused bis-tetrahydrofuran. In the central fragment, consisting of two fused tetrahydrofuran rings, one O atom and its two adjacent C atoms, a methylene and a bridgehead C atom, are disordered over two sets of sites with an occupancy ratio of 0.735 (9):0.265 (9). In the major component, the ring containing the disordered O atom is a half-chair conformation with twisted methylene and benzoate-substituted C atoms, whereas the other ring has a half-chair or T-form conformation. In the minor component, the ring with the disordered O atom has an with the O atom as the flap, and the other ring has a half-chair conformation, with the O atom and the other bridgehead CH atom being twisted. The two aromatic rings are inclined to one another by 20.00 (12)°. In the crystal, adjacent molecules are linked via C—H⋯π interactions, forming chains propagating along [010].
Related literature
For the use of ). For mannitol as a chiral reagent and for its biologically active derivatives, see: Babjak et al. (2002); Masaki et al. (1999); Lohray et al. (1999). For oxidative processes mediated by transition of oxo-species, see: Piccialli, Oliviero et al. (2013); Piccialli, Tuzi et al. (2013); Piccialli, D'Errico et al. (2013); Piccialli et al. (2012). For the synthesis of the title compound, see: Hockett et al. (1946).
in the synthesis of complex natural chiral substances, see: Hanessian (1993Experimental
Crystal data
|
|
Data collection: COLLECT (Nonius, 1999); cell DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536813021612/yk2098sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813021612/yk2098Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813021612/yk2098Isup3.cml
The title compound was prepared according to a two-steps procedure starting from D-mannitol. Treatment of the latter with benzoyl chloride in pyridine for 16 h, followed by reaction with catalytic amounts of p-toluenesulfonic acid in 1,1,2,2-tetrachloroethane at reflux (Hockett et al., 1946) led to title compound as an amorphous white powder, after
(CHCl3 to CHCl3–MeOH, 95:5). The whole process consists of a double migration of the primary benzoates to the adjacent alcoholic functions followed by double water elimination and bis-cyclization (C1/C4 and C3/C6 ether ring closure). Recrystallization from methanol gave elongated white crystals suitable for X-ray analysis.1,4:3,6-dianhydro-2,5-di-O-benzoyl-D-mannitol: 1H-NMR (200 MHz, CDCl3) δ 8.10 (4H, d, J = 7.0 Hz), 7.58 (2H, t, J = 7.3 Hz), 7.45 (4H, t, J = 7.3 Hz), 5.42–5.27 (m, 2H), 4.95–4.83 (m, 2H), 4.15 (2H, dd, J = 9.4, 6.3 Hz), 4.02 (2H, dd, J = 9.4, 6.7 Hz); 13C-NMR (50 MHz, CDCl3) δ 165.9, 133.2, 129.8, 129.4, 128.4, 80.6, 74.1, 70.7.
All H atoms were generated stereochemically and refined by the riding model with Uiso=1.2×Ueq of the
Some constraints were introduced in the last stage of to handle the disorder of one furane group (SAME and ISOR command of SHELXL program). In the absence of strong anomalous scatterer the is not meaningful. Data were merged using MERG 3 instruction and the was assigned on the assumption that the original mannitol configuration had been preserved during the acid-catalysed process.Data collection: COLLECT (Nonius, 1999); cell
DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).C20H18O6 | F(000) = 372 |
Mr = 354.34 | Dx = 1.391 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 446 reflections |
a = 10.0914 (15) Å | θ = 3.8–23.5° |
b = 8.2388 (11) Å | µ = 0.10 mm−1 |
c = 10.7592 (10) Å | T = 173 K |
β = 108.913 (10)° | Block, white |
V = 846.24 (19) Å3 | 0.50 × 0.20 × 0.10 mm |
Z = 2 |
Bruker–Nonius KappaCCD diffractometer | 2059 independent reflections |
Radiation source: normal-focus sealed tube | 1757 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
CCD rotation images, thick slices scans | h = −12→13 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | k = −10→9 |
Tmin = 0.950, Tmax = 0.990 | l = −13→13 |
7903 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0287P)2 + 0.1292P] where P = (Fo2 + 2Fc2)/3 |
2059 reflections | (Δ/σ)max = 0.001 |
263 parameters | Δρmax = 0.14 e Å−3 |
12 restraints | Δρmin = −0.20 e Å−3 |
C20H18O6 | V = 846.24 (19) Å3 |
Mr = 354.34 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 10.0914 (15) Å | µ = 0.10 mm−1 |
b = 8.2388 (11) Å | T = 173 K |
c = 10.7592 (10) Å | 0.50 × 0.20 × 0.10 mm |
β = 108.913 (10)° |
Bruker–Nonius KappaCCD diffractometer | 2059 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1757 reflections with I > 2σ(I) |
Tmin = 0.950, Tmax = 0.990 | Rint = 0.033 |
7903 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 12 restraints |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.14 e Å−3 |
2059 reflections | Δρmin = −0.20 e Å−3 |
263 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.64835 (16) | 0.0655 (2) | 0.86046 (14) | 0.0337 (4) | |
O3 | 0.77544 (15) | 0.3383 (2) | 0.73544 (16) | 0.0351 (4) | |
O4 | 0.68459 (17) | 0.4767 (2) | 0.54748 (17) | 0.0449 (5) | |
O5 | 0.69994 (15) | −0.22410 (18) | 0.78559 (13) | 0.0282 (3) | |
O6 | 0.51687 (15) | −0.2810 (2) | 0.85248 (15) | 0.0385 (4) | |
C1 | 0.6475 (3) | 0.2374 (3) | 0.8702 (2) | 0.0381 (6) | |
H1A | 0.7348 | 0.2762 | 0.9366 | 0.046* | |
H1B | 0.5668 | 0.2741 | 0.8961 | 0.046* | |
C2 | 0.6365 (2) | 0.3022 (3) | 0.7353 (2) | 0.0322 (5) | |
H2 | 0.5777 | 0.4027 | 0.7162 | 0.039* | |
C4 | 0.5552 (2) | 0.0247 (3) | 0.73299 (19) | 0.0252 (4) | |
H4 | 0.4576 | 0.0078 | 0.7343 | 0.030* | |
C5 | 0.6094 (2) | −0.1245 (3) | 0.68230 (19) | 0.0267 (5) | |
H5 | 0.5316 | −0.1890 | 0.6207 | 0.032* | |
C7 | 0.7845 (2) | 0.4329 (3) | 0.6365 (2) | 0.0305 (5) | |
C8 | 0.9319 (2) | 0.4765 (3) | 0.6514 (2) | 0.0278 (4) | |
C9 | 0.9560 (2) | 0.5661 (3) | 0.5518 (2) | 0.0339 (5) | |
H9 | 0.8800 | 0.5972 | 0.4769 | 0.041* | |
C10 | 1.0912 (3) | 0.6098 (3) | 0.5623 (2) | 0.0422 (6) | |
H10 | 1.1082 | 0.6704 | 0.4938 | 0.051* | |
C11 | 1.2014 (3) | 0.5664 (3) | 0.6708 (3) | 0.0436 (6) | |
H11 | 1.2941 | 0.5973 | 0.6774 | 0.052* | |
C12 | 1.1774 (2) | 0.4781 (4) | 0.7702 (3) | 0.0459 (6) | |
H12 | 1.2537 | 0.4490 | 0.8456 | 0.055* | |
C13 | 1.0429 (2) | 0.4318 (3) | 0.7606 (2) | 0.0362 (6) | |
H13 | 1.0266 | 0.3696 | 0.8286 | 0.043* | |
C14 | 0.6400 (2) | −0.2914 (3) | 0.8676 (2) | 0.0277 (5) | |
C15 | 0.7421 (2) | −0.3791 (3) | 0.97809 (19) | 0.0271 (5) | |
C16 | 0.6933 (2) | −0.4500 (3) | 1.0721 (2) | 0.0301 (5) | |
H16 | 0.5982 | −0.4367 | 1.0668 | 0.036* | |
C17 | 0.7827 (2) | −0.5397 (3) | 1.1732 (2) | 0.0355 (5) | |
H17 | 0.7489 | −0.5880 | 1.2373 | 0.043* | |
C18 | 0.9210 (3) | −0.5593 (3) | 1.1812 (2) | 0.0391 (6) | |
H18 | 0.9822 | −0.6218 | 1.2503 | 0.047* | |
C19 | 0.9706 (2) | −0.4876 (3) | 1.0884 (2) | 0.0381 (6) | |
H19 | 1.0660 | −0.5003 | 1.0945 | 0.046* | |
C20 | 0.8815 (2) | −0.3974 (3) | 0.9868 (2) | 0.0302 (5) | |
H20 | 0.9157 | −0.3483 | 0.9234 | 0.036* | |
C3A | 0.5619 (7) | 0.1641 (7) | 0.6404 (6) | 0.0262 (11) | 0.735 (9) |
H3A | 0.4650 | 0.1986 | 0.5873 | 0.031* | 0.735 (9) |
C6A | 0.7006 (7) | −0.0439 (7) | 0.6118 (7) | 0.0287 (14) | 0.735 (9) |
H6A | 0.7949 | −0.0213 | 0.6745 | 0.034* | 0.735 (9) |
H6B | 0.7108 | −0.1161 | 0.5419 | 0.034* | 0.735 (9) |
O2A | 0.6338 (4) | 0.1033 (3) | 0.5563 (3) | 0.0297 (9) | 0.735 (9) |
C3B | 0.5953 (15) | 0.150 (2) | 0.650 (2) | 0.040 (6) | 0.265 (9) |
H3B | 0.5162 | 0.1724 | 0.5676 | 0.048* | 0.265 (9) |
C6B | 0.687 (2) | −0.0796 (14) | 0.587 (2) | 0.039 (6) | 0.265 (9) |
H6C | 0.7746 | −0.1422 | 0.6041 | 0.047* | 0.265 (9) |
H6D | 0.6276 | −0.0933 | 0.4946 | 0.047* | 0.265 (9) |
O2B | 0.7130 (10) | 0.0860 (10) | 0.6220 (9) | 0.032 (3) | 0.265 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0432 (9) | 0.0322 (9) | 0.0240 (7) | −0.0038 (7) | 0.0085 (6) | −0.0056 (7) |
O3 | 0.0256 (8) | 0.0375 (9) | 0.0432 (9) | −0.0012 (7) | 0.0124 (7) | 0.0140 (8) |
O4 | 0.0315 (9) | 0.0482 (11) | 0.0457 (9) | −0.0019 (8) | −0.0005 (7) | 0.0154 (9) |
O5 | 0.0292 (7) | 0.0308 (8) | 0.0247 (7) | 0.0038 (6) | 0.0089 (6) | 0.0030 (6) |
O6 | 0.0261 (8) | 0.0441 (10) | 0.0437 (9) | −0.0019 (8) | 0.0090 (7) | 0.0120 (8) |
C1 | 0.0452 (14) | 0.0340 (14) | 0.0420 (13) | −0.0139 (11) | 0.0237 (11) | −0.0139 (11) |
C2 | 0.0268 (11) | 0.0274 (12) | 0.0467 (13) | −0.0037 (9) | 0.0177 (10) | −0.0038 (11) |
C4 | 0.0222 (10) | 0.0274 (11) | 0.0261 (10) | −0.0028 (8) | 0.0080 (8) | −0.0003 (9) |
C5 | 0.0280 (11) | 0.0297 (12) | 0.0200 (9) | 0.0010 (9) | 0.0045 (8) | 0.0010 (9) |
C7 | 0.0305 (11) | 0.0249 (12) | 0.0346 (11) | −0.0017 (9) | 0.0087 (9) | 0.0018 (10) |
C8 | 0.0292 (10) | 0.0259 (11) | 0.0286 (10) | −0.0026 (9) | 0.0097 (8) | −0.0005 (9) |
C9 | 0.0425 (13) | 0.0308 (13) | 0.0302 (11) | −0.0025 (11) | 0.0140 (10) | 0.0022 (10) |
C10 | 0.0555 (15) | 0.0351 (14) | 0.0491 (14) | −0.0068 (12) | 0.0349 (13) | 0.0006 (12) |
C11 | 0.0352 (13) | 0.0444 (15) | 0.0590 (15) | −0.0105 (12) | 0.0260 (12) | −0.0118 (14) |
C12 | 0.0294 (12) | 0.0591 (18) | 0.0469 (14) | −0.0013 (13) | 0.0090 (10) | −0.0015 (14) |
C13 | 0.0303 (11) | 0.0452 (15) | 0.0331 (11) | −0.0011 (11) | 0.0103 (9) | 0.0079 (11) |
C14 | 0.0308 (11) | 0.0235 (11) | 0.0280 (10) | −0.0030 (9) | 0.0087 (9) | −0.0030 (9) |
C15 | 0.0299 (10) | 0.0233 (11) | 0.0270 (10) | −0.0002 (9) | 0.0076 (8) | −0.0037 (9) |
C16 | 0.0302 (11) | 0.0302 (12) | 0.0317 (11) | 0.0038 (10) | 0.0125 (9) | −0.0014 (10) |
C17 | 0.0407 (13) | 0.0367 (13) | 0.0325 (11) | 0.0058 (11) | 0.0164 (10) | 0.0058 (11) |
C18 | 0.0381 (13) | 0.0402 (15) | 0.0364 (12) | 0.0090 (11) | 0.0084 (10) | 0.0104 (11) |
C19 | 0.0287 (12) | 0.0403 (14) | 0.0446 (13) | 0.0046 (10) | 0.0108 (10) | 0.0031 (12) |
C20 | 0.0300 (11) | 0.0297 (12) | 0.0314 (10) | −0.0010 (9) | 0.0107 (9) | 0.0004 (10) |
C3A | 0.027 (2) | 0.025 (2) | 0.028 (2) | 0.0013 (19) | 0.012 (2) | 0.0032 (17) |
C6A | 0.034 (2) | 0.034 (3) | 0.021 (3) | 0.009 (2) | 0.0130 (18) | 0.000 (2) |
O2A | 0.0313 (19) | 0.0332 (13) | 0.0277 (15) | 0.0016 (10) | 0.0137 (15) | 0.0044 (10) |
C3B | 0.041 (7) | 0.036 (7) | 0.041 (7) | 0.006 (4) | 0.010 (5) | 0.002 (4) |
C6B | 0.068 (11) | 0.029 (7) | 0.024 (8) | 0.006 (6) | 0.020 (7) | −0.009 (6) |
O2B | 0.026 (5) | 0.040 (5) | 0.033 (5) | 0.001 (3) | 0.014 (4) | −0.001 (3) |
O1—C1 | 1.421 (3) | C11—C12 | 1.378 (4) |
O1—C4 | 1.429 (2) | C11—H11 | 0.9500 |
O3—C7 | 1.345 (3) | C12—C13 | 1.381 (3) |
O3—C2 | 1.433 (2) | C12—H12 | 0.9500 |
O4—C7 | 1.199 (3) | C13—H13 | 0.9500 |
O5—C14 | 1.341 (3) | C14—C15 | 1.485 (3) |
O5—C5 | 1.444 (2) | C15—C20 | 1.387 (3) |
O6—C14 | 1.203 (3) | C15—C16 | 1.389 (3) |
C1—C2 | 1.516 (3) | C16—C17 | 1.381 (3) |
C1—H1A | 0.9900 | C16—H16 | 0.9500 |
C1—H1B | 0.9900 | C17—C18 | 1.379 (3) |
C2—C3B | 1.530 (13) | C17—H17 | 0.9500 |
C2—C3A | 1.551 (5) | C18—C19 | 1.386 (3) |
C2—H2 | 1.0000 | C18—H18 | 0.9500 |
C4—C3B | 1.50 (2) | C19—C20 | 1.384 (3) |
C4—C5 | 1.516 (3) | C19—H19 | 0.9500 |
C4—C3A | 1.536 (7) | C20—H20 | 0.9500 |
C4—H4 | 1.0000 | C3A—O2A | 1.422 (5) |
C5—C6B | 1.520 (6) | C3A—H3A | 1.0000 |
C5—C6A | 1.522 (4) | C6A—O2A | 1.421 (6) |
C5—H5 | 1.0000 | C6A—H6A | 0.9900 |
C7—C8 | 1.489 (3) | C6A—H6B | 0.9900 |
C8—C13 | 1.385 (3) | C3B—O2B | 1.418 (9) |
C8—C9 | 1.386 (3) | C3B—H3B | 1.0000 |
C9—C10 | 1.380 (3) | C6B—O2B | 1.416 (10) |
C9—H9 | 0.9500 | C6B—H6C | 0.9900 |
C10—C11 | 1.373 (4) | C6B—H6D | 0.9900 |
C10—H10 | 0.9500 | ||
C1—O1—C4 | 106.71 (18) | C11—C12—H12 | 119.9 |
C7—O3—C2 | 115.89 (17) | C13—C12—H12 | 119.9 |
C14—O5—C5 | 115.68 (16) | C12—C13—C8 | 119.7 (2) |
O1—C1—C2 | 106.30 (19) | C12—C13—H13 | 120.2 |
O1—C1—H1A | 110.5 | C8—C13—H13 | 120.2 |
C2—C1—H1A | 110.5 | O6—C14—O5 | 123.3 (2) |
O1—C1—H1B | 110.5 | O6—C14—C15 | 124.1 (2) |
C2—C1—H1B | 110.5 | O5—C14—C15 | 112.60 (17) |
H1A—C1—H1B | 108.7 | C20—C15—C16 | 119.72 (19) |
O3—C2—C1 | 107.69 (19) | C20—C15—C14 | 122.18 (19) |
O3—C2—C3B | 104.2 (5) | C16—C15—C14 | 118.04 (18) |
C1—C2—C3B | 101.9 (10) | C17—C16—C15 | 120.2 (2) |
O3—C2—C3A | 114.8 (3) | C17—C16—H16 | 119.9 |
C1—C2—C3A | 104.0 (3) | C15—C16—H16 | 119.9 |
O3—C2—H2 | 110.1 | C18—C17—C16 | 120.0 (2) |
C1—C2—H2 | 110.1 | C18—C17—H17 | 120.0 |
C3B—C2—H2 | 121.9 | C16—C17—H17 | 120.0 |
C3A—C2—H2 | 110.1 | C17—C18—C19 | 120.0 (2) |
O1—C4—C3B | 100.9 (7) | C17—C18—H18 | 120.0 |
O1—C4—C5 | 109.53 (17) | C19—C18—H18 | 120.0 |
C3B—C4—C5 | 98.3 (4) | C20—C19—C18 | 120.2 (2) |
O1—C4—C3A | 107.1 (3) | C20—C19—H19 | 119.9 |
C5—C4—C3A | 106.0 (2) | C18—C19—H19 | 119.9 |
O1—C4—H4 | 111.3 | C19—C20—C15 | 119.8 (2) |
C3B—C4—H4 | 124.1 | C19—C20—H20 | 120.1 |
C5—C4—H4 | 111.3 | C15—C20—H20 | 120.1 |
C3A—C4—H4 | 111.3 | O2A—C3A—C4 | 106.7 (4) |
O5—C5—C4 | 113.31 (16) | O2A—C3A—C2 | 116.0 (4) |
O5—C5—C6B | 108.7 (9) | C4—C3A—C2 | 103.6 (4) |
C4—C5—C6B | 111.6 (5) | O2A—C3A—H3A | 110.1 |
O5—C5—C6A | 107.3 (3) | C4—C3A—H3A | 110.1 |
C4—C5—C6A | 99.9 (3) | C2—C3A—H3A | 110.1 |
O5—C5—H5 | 111.9 | O2A—C6A—C5 | 107.5 (3) |
C4—C5—H5 | 111.9 | O2A—C6A—H6A | 110.2 |
C6B—C5—H5 | 98.5 | C5—C6A—H6A | 110.2 |
C6A—C5—H5 | 111.9 | O2A—C6A—H6B | 110.2 |
O4—C7—O3 | 123.5 (2) | C5—C6A—H6B | 110.2 |
O4—C7—C8 | 124.4 (2) | H6A—C6A—H6B | 108.5 |
O3—C7—C8 | 112.14 (18) | C6A—O2A—C3A | 107.7 (4) |
C13—C8—C9 | 120.1 (2) | O2B—C3B—C4 | 106.1 (13) |
C13—C8—C7 | 122.15 (19) | O2B—C3B—C2 | 110.4 (9) |
C9—C8—C7 | 117.73 (19) | C4—C3B—C2 | 106.3 (13) |
C10—C9—C8 | 119.5 (2) | O2B—C3B—H3B | 111.3 |
C10—C9—H9 | 120.3 | C4—C3B—H3B | 111.3 |
C8—C9—H9 | 120.3 | C2—C3B—H3B | 111.3 |
C11—C10—C9 | 120.6 (2) | O2B—C6B—C5 | 98.6 (6) |
C11—C10—H10 | 119.7 | O2B—C6B—H6C | 112.0 |
C9—C10—H10 | 119.7 | C5—C6B—H6C | 112.0 |
C10—C11—C12 | 120.0 (2) | O2B—C6B—H6D | 112.0 |
C10—C11—H11 | 120.0 | C5—C6B—H6D | 112.0 |
C12—C11—H11 | 120.0 | H6C—C6B—H6D | 109.7 |
C11—C12—C13 | 120.2 (2) | C6B—O2B—C3B | 108.5 (8) |
C4—O1—C1—C2 | −36.6 (2) | C14—C15—C16—C17 | 176.8 (2) |
C7—O3—C2—C1 | −164.35 (19) | C15—C16—C17—C18 | 0.0 (4) |
C7—O3—C2—C3B | 87.9 (10) | C16—C17—C18—C19 | 0.6 (4) |
C7—O3—C2—C3A | 80.4 (4) | C17—C18—C19—C20 | −0.6 (4) |
O1—C1—C2—O3 | −95.8 (2) | C18—C19—C20—C15 | −0.1 (4) |
O1—C1—C2—C3B | 13.5 (5) | C16—C15—C20—C19 | 0.7 (3) |
O1—C1—C2—C3A | 26.3 (3) | C14—C15—C20—C19 | −176.7 (2) |
C1—O1—C4—C3B | 43.2 (4) | O1—C4—C3A—O2A | 108.9 (3) |
C1—O1—C4—C5 | 146.16 (18) | C3B—C4—C3A—O2A | 46 (3) |
C1—O1—C4—C3A | 31.6 (3) | C5—C4—C3A—O2A | −8.0 (4) |
C14—O5—C5—C4 | 63.8 (2) | O1—C4—C3A—C2 | −14.1 (4) |
C14—O5—C5—C6B | −171.5 (7) | C3B—C4—C3A—C2 | −77 (3) |
C14—O5—C5—C6A | 173.1 (3) | C5—C4—C3A—C2 | −130.9 (3) |
O1—C4—C5—O5 | 23.7 (2) | O3—C2—C3A—O2A | −6.4 (6) |
C3B—C4—C5—O5 | 128.4 (7) | C1—C2—C3A—O2A | −123.8 (4) |
C3A—C4—C5—O5 | 138.9 (3) | C3B—C2—C3A—O2A | −42 (5) |
O1—C4—C5—C6B | −99.4 (11) | O3—C2—C3A—C4 | 110.2 (3) |
C3B—C4—C5—C6B | 5.3 (13) | C1—C2—C3A—C4 | −7.2 (4) |
C3A—C4—C5—C6B | 15.8 (11) | C3B—C2—C3A—C4 | 75 (5) |
O1—C4—C5—C6A | −90.2 (3) | O5—C5—C6A—O2A | −153.4 (4) |
C3B—C4—C5—C6A | 14.6 (8) | C4—C5—C6A—O2A | −35.0 (6) |
C3A—C4—C5—C6A | 25.0 (4) | C6B—C5—C6A—O2A | 109 (5) |
C2—O3—C7—O4 | −5.1 (3) | C5—C6A—O2A—C3A | 32.0 (7) |
C2—O3—C7—C8 | 174.68 (19) | C4—C3A—O2A—C6A | −14.5 (6) |
O4—C7—C8—C13 | 175.5 (2) | C2—C3A—O2A—C6A | 100.3 (6) |
O3—C7—C8—C13 | −4.2 (3) | O1—C4—C3B—O2B | 84.2 (10) |
O4—C7—C8—C9 | −3.9 (3) | C5—C4—C3B—O2B | −27.7 (11) |
O3—C7—C8—C9 | 176.4 (2) | C3A—C4—C3B—O2B | −156 (4) |
C13—C8—C9—C10 | 0.2 (4) | O1—C4—C3B—C2 | −33.4 (9) |
C7—C8—C9—C10 | 179.6 (2) | C5—C4—C3B—C2 | −145.2 (7) |
C8—C9—C10—C11 | −0.6 (4) | C3A—C4—C3B—C2 | 87 (3) |
C9—C10—C11—C12 | 0.2 (4) | O3—C2—C3B—O2B | 9.7 (18) |
C10—C11—C12—C13 | 0.5 (4) | C1—C2—C3B—O2B | −102.2 (15) |
C11—C12—C13—C8 | −0.9 (4) | C3A—C2—C3B—O2B | 157 (7) |
C9—C8—C13—C12 | 0.5 (4) | O3—C2—C3B—C4 | 124.4 (6) |
C7—C8—C13—C12 | −178.9 (2) | C1—C2—C3B—C4 | 12.4 (9) |
C5—O5—C14—O6 | 5.3 (3) | C3A—C2—C3B—C4 | −88 (5) |
C5—O5—C14—C15 | −174.67 (17) | O5—C5—C6B—O2B | −107.4 (12) |
O6—C14—C15—C20 | 175.5 (2) | C4—C5—C6B—O2B | 18.3 (17) |
O5—C14—C15—C20 | −4.5 (3) | C6A—C5—C6B—O2B | −20 (3) |
O6—C14—C15—C16 | −1.9 (3) | C5—C6B—O2B—C3B | −37 (2) |
O5—C14—C15—C16 | 178.10 (19) | C4—C3B—O2B—C6B | 44.0 (17) |
C20—C15—C16—C17 | −0.6 (3) | C2—C3B—O2B—C6B | 158.7 (14) |
Cg is the centroid of the C15–C20 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cgi | 0.99 | 2.60 | 3.419 (3) | 149 |
Symmetry code: (i) x, y+1, z. |
Cg is the centroid of the C15–C20 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cgi | 0.99 | 2.60 | 3.419 (3) | 149 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
The authors thank the Centro Interdipartimentale di Metodologie Chimico–Fisiche, Università degli Studi di Napoli "Federico II" for X-ray and NMR facilities.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Babjak, M., Kapitan, P. & Gracza, T. (2002). Tetrahedron Lett. 43, 6983–6985. Web of Science CrossRef CAS Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hanessian, S. (1993). Total synthesis of natural products "Chiron approach". Organic Chemistry Series, edited by J. E. Baldwin. New York: Pergamon Press. Google Scholar
Hockett, R. C., Fletcher, H. G. Jr, Sheffield, E., Goepp, R. M. Jr & Soltzberg, S. (1946). J. Am. Chem. Soc. pp. 930–935. CrossRef Web of Science Google Scholar
Lohray, B. B., Baskaran, S., Rao, B. S., Reddy, B. Y. & Rao, I. N. (1999). Tetrahedron Lett. 40, 4855–4856. Web of Science CrossRef CAS Google Scholar
Masaki, Y., Arasaki, H. & Itoh, A. (1999). Tetrahedron Lett. 40, 4829–4832. Web of Science CSD CrossRef CAS Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Piccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. pp. 1781–1789. Web of Science CSD CrossRef Google Scholar
Piccialli, V., Oliviero, G., Borbone, N., Centore, R. & Tuzi, A. (2013). Acta Cryst. E69, o879–o880. CSD CrossRef CAS IUCr Journals Google Scholar
Piccialli, V., Tuzi, A., Oliviero, G., Borbone, N. & Centore, R. (2013). Acta Cryst. E69, o1109–o1110. CSD CrossRef CAS IUCr Journals Google Scholar
Piccialli, V., Zaccaria, S., Oliviero, G., D'Errico, S., D'Atri, V. & Borbone, N. (2012). Eur. J. Org. Chem. pp. 4293–4305. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Carbohydrate-based synthons have been used in a number of syntheses of complex natural chiral substances (Hanessian, 1993). Manipulation of the oxygenation pattern and stereochemistry of simple sugars proved to be a powerful mean to use nature-generated chirality. In this context D-mannitol plays an important role as a readily available chiral building block in organic synthesis (Babjak et al., 2002). In addition, mannitol and its derivatives are widely used as chiral reagents and chiral auxiliaries (Masaki et al., 1999) and can be transformed into biologically active and pharmaceutically important compounds (Lohray et al., 1999). As a continuation of our interest in oxidative processes mediated by transition metals oxo-species (Piccialli, Oliviero, Borbone et al., 2013; Piccialli, Tuzi, Oliviero et al., 2013; Piccialli, D'Errico, Borbone et al., 2013; Piccialli et al., 2012) we were interested in the synthesis and reactivity of functionalized fused bis-tetrahydrofurans.
In the title compound, molecule consists of two cis–fused tetrahydrofurane rings substituted at C2 and C5 positions (Fig.1). A local C2 symmetry of the molecule is observed at the junction. Tetrahydrofurane rings are disordered in two different positions (occupancy factor refined to 0.735 (9) for the A position and 0.265 (9) for the B position). Both disordered O1/C1/C2/C3A/C4 and O1/C1/C2/C3B/C4 rings adopt an envelope conformation with O1 at the flap. The disordered O2A/C3A/C4/C5/C6A and O2B/C3B/C4/C5/C6B rings are both in the envelope conformation that differ for the atom at the flap (C6A and O2B, respectively). The molecule of the title compound does not contain strong H–bonding donor and the crystal packing is stabilized by normal weak intermolecular interactions.