metal-organic compounds
(2,2′-Bipyridine)chlorido[diethyl (2,2′:6′,2′′-terpyridin-4-yl)phosphonate]ruthenium(II) hexafluoridophosphate acetonitrile/water solvate
aLos Alamos National Laboratory, Los Alamos, NM 87545, USA
*Correspondence e-mail: rcrocha@lanl.gov
The cationic complex in the title compound, [RuCl(C10H8N2)(C19H20N3O3P)]PF6·0.83CH3CN·0.17H2O, is a water-oxidation precatalyst functionalized for TiO2 attachment via terpyridine phosphonate. The The RuII atom in the complex has a distorted octahedral geometry due to the restricted bite angle [159.50 (18)°] of the terpyridyl ligand. The dihedral angle between the least-squares planes of the terpyridyl and bipyridyl moieties is 86.04 (14)°. The mean Ru—N bond length for bipyridine is 2.064 (5) Å, with the bond opposite to Ru—Cl being 0.068 Å shorter. For the substituted terpyridine, the mean Ru—N distance involving the outer N atoms trans to each other is 2.057 (6) Å, whereas the bond length involving the central N atom is 1.944 (5) Å. The Ru—Cl distance is 2.4073 (15) Å. The P atom of the phosphonate group lies in the same plane as its adjacent pyridyl ring, with the ordinary character of the bond between P and Ctpy [1.801 (6) Å] allowing for of the terpyridine substituent around the P—Ctpy axis. The acetonitrile solvent molecule was refined to be disordered with two water molecules; occupancies for the acetontrile and water molecules were 0.831 (9) and 0.169 (9), respectively. Also disordered was the PF6− counter-ion (over three positions) and one of the ethoxy substituents (with two positions). The shows significant intra- and intermolecular H⋯X contacts, especially some involving the Cl− ligand.
Related literature
For a related et al. (1997). For the structures of terpyridyl/bipyridyl RuII-chlorido compounds relevant to the comparative discussion, see: Chen et al. (2011, 2013); Jude et al. (2008, 2009, 2013). For literature used in the synthetic preparations, see: Evans et al. (1973); Jakubikova et al. (2009); Zakeeruddin et al. (1997). For the catalytic properties of related complexes, see: Chen et al. (2009); Concepcion et al. (2008); Masaoka & Sakai (2009); Tseng et al. (2008); Wasylenko et al. (2010); Yagi et al. (2011).
see: ZakeeruddinExperimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813022940/zl2555sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813022940/zl2555Isup2.hkl
The synthesis of [Ru(Cl)(bpy)(tpy-p)]PF6 was performed stepwise through a procedure involving the intermediate RuCl2(DMSO)(tpy-p). First, this intermediate was obtained by reacting stoichiometric amounts (1.0 mmol) of RuCl2(DMSO)4 (Evans et al., 1973) with diethyl 2,2':6',2"-terpyridine-4'-phosphonate (Zakeeruddin et al., 1997) in 75 ml of dry EtOH/MeOH (4:1) heated at reflux for ~4 h, under an Ar atmosphere. To the intermediate product was then added 2,2'-bipyridine (20% excess) and the next step also proceeded for ~4 h, under the same conditions. The reaction solution was cooled down to room temperature and excess NH4PF6 was added to form the red precipitate, which was collected by filtration and then rinsed with Et2O and dried under vacuum. Further purification was performed by
The overall yield was relatively low (30%). When the same reaction was carried out in the presence of water (EtOH/H2O, 2:1), the partially hydrolized product (i.e. [Ru(Cl)(bpy)(tpy-P(O)(OH)(OEt))]PF6 could be obtained in much higher yields (60%), but this product was not characterized by X-ray crystallography. For the structure of [Ru(Cl)(bpy)(tpy-p)]PF6 reported herein, single crystals suitable for X-ray analysis were grown by slow diffusion of Et2O into MeCN solutions of the complex in a long thin tube.All carbon-bound hydrogen atom positions were idealized, and were set to ride on the atom they were attached to. An acetonitrile solvate molecule was refined to be disordered with two water molecules. C, N and O atoms of these solvate molecules were refined anisotropically without application of restraints or constraints. Water H atoms were restrained to have O—H bonding distances of 0.82 (2) Å, and intramolecular H···H distances of 1.36 Å. Occupancies for the acetontrile and water molecules refined to 0.831 (9) and 0.169 (9), respectively. One of the ethoxy substituents was refined as disordered with two moieties. Bond distances were restrained to be the same as for the not disordered ethoxy group (esd = 0.02 Å), and the P—O distances within the two disordered moieties was restrained to be the same (esd = 0.02 Å). The two oxygen atoms were constrained to have identical ADPs, the Uij components of neighboring disordered atoms were restrained to be similar (esd = 0.01 Å2), and the ADPs of the methyl C atoms were restrained to be approximately isotropic (esd 0.01 Å2). Occupancies refined to 0.793 (13) and 0.207 (13), respectively. The PF6 anion was refined as disordered over two different moieties. All P—F bond distances were restrained to be similar (esd 0.02 Å), as were all intramolecular F···F distances of directly neighboring fluorine atoms. Uij components of P and F atoms were restrained to be similar, as were the components of the ADPs in the direction of the bonds (SIMU and DELU restraints in SHELXL, esd = 0.01 Å2 for both). Occupancies refined to 0.726 (14) and 0.274 (14). The final
included anisotropic temperature factors on all non-hydrogen atoms.Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[RuCl(C10H8N2)(C19H20N3O3P)]PF6·0.83C2H3N·0.17H2O | F(000) = 1710.6 |
Mr = 847.23 | Dx = 1.655 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6367 (14) Å | Cell parameters from 4889 reflections |
b = 31.515 (5) Å | θ = 5.0–49.1° |
c = 12.696 (2) Å | µ = 0.71 mm−1 |
β = 100.155 (2)° | T = 120 K |
V = 3401.5 (9) Å3 | Block, red |
Z = 4 | 0.28 × 0.20 × 0.08 mm |
Bruker D8 with APEXII CCD diffractometer | 6233 independent reflections |
Radiation source: fine-focus sealed tube | 5056 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.055 |
ω scans | θmax = 25.4°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −10→10 |
Tmin = 0.826, Tmax = 0.945 | k = −37→38 |
24414 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: mixed |
wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0274P)2 + 23.9905P] where P = (Fo2 + 2Fc2)/3 |
6233 reflections | (Δ/σ)max = 0.003 |
574 parameters | Δρmax = 0.94 e Å−3 |
394 restraints | Δρmin = −1.20 e Å−3 |
[RuCl(C10H8N2)(C19H20N3O3P)]PF6·0.83C2H3N·0.17H2O | V = 3401.5 (9) Å3 |
Mr = 847.23 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.6367 (14) Å | µ = 0.71 mm−1 |
b = 31.515 (5) Å | T = 120 K |
c = 12.696 (2) Å | 0.28 × 0.20 × 0.08 mm |
β = 100.155 (2)° |
Bruker D8 with APEXII CCD diffractometer | 6233 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 5056 reflections with I > 2σ(I) |
Tmin = 0.826, Tmax = 0.945 | Rint = 0.055 |
24414 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 394 restraints |
wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0274P)2 + 23.9905P] where P = (Fo2 + 2Fc2)/3 |
6233 reflections | Δρmax = 0.94 e Å−3 |
574 parameters | Δρmin = −1.20 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ru1 | 0.11155 (5) | 0.19185 (2) | 0.07673 (4) | 0.01776 (14) | |
Cl1 | −0.03875 (17) | 0.21030 (4) | −0.09533 (11) | 0.0228 (3) | |
P1 | 0.1827 (2) | 0.39059 (5) | 0.20621 (14) | 0.0343 (4) | |
O1 | 0.3502 (6) | 0.40325 (15) | 0.2183 (5) | 0.0492 (14) | |
N1 | 0.3155 (5) | 0.20702 (15) | 0.0232 (4) | 0.0188 (10) | |
N2 | 0.1283 (5) | 0.25162 (14) | 0.1148 (4) | 0.0180 (10) | |
N3 | −0.0819 (5) | 0.19850 (14) | 0.1500 (4) | 0.0200 (10) | |
N4 | 0.2321 (6) | 0.16840 (15) | 0.2163 (4) | 0.0205 (11) | |
N5 | 0.1106 (5) | 0.12661 (15) | 0.0439 (4) | 0.0208 (11) | |
C1 | 0.4122 (7) | 0.18137 (19) | −0.0200 (5) | 0.0251 (14) | |
H1 | 0.3820 | 0.1526 | −0.0336 | 0.030* | |
C2 | 0.5521 (7) | 0.1947 (2) | −0.0452 (5) | 0.0243 (13) | |
H2 | 0.6182 | 0.1753 | −0.0737 | 0.029* | |
C3 | 0.5956 (7) | 0.2366 (2) | −0.0285 (5) | 0.0286 (14) | |
H3 | 0.6914 | 0.2465 | −0.0465 | 0.034* | |
C4 | 0.4985 (7) | 0.2640 (2) | 0.0146 (5) | 0.0249 (13) | |
H4 | 0.5263 | 0.2930 | 0.0260 | 0.030* | |
C5 | 0.3599 (7) | 0.24847 (18) | 0.0409 (5) | 0.0208 (12) | |
C6 | 0.2522 (7) | 0.27427 (18) | 0.0923 (5) | 0.0215 (13) | |
C7 | 0.2689 (7) | 0.31671 (19) | 0.1202 (5) | 0.0249 (13) | |
H7 | 0.3569 | 0.3325 | 0.1065 | 0.030* | |
C8 | 0.1540 (7) | 0.33567 (18) | 0.1686 (5) | 0.0238 (13) | |
C9 | 0.0274 (7) | 0.31249 (18) | 0.1888 (5) | 0.0235 (13) | |
H9 | −0.0523 | 0.3257 | 0.2201 | 0.028* | |
C10 | 0.0168 (7) | 0.26958 (18) | 0.1630 (4) | 0.0196 (12) | |
C11 | −0.1020 (7) | 0.23929 (17) | 0.1854 (4) | 0.0194 (12) | |
C12 | −0.2213 (7) | 0.24910 (19) | 0.2401 (5) | 0.0257 (14) | |
H12 | −0.2356 | 0.2775 | 0.2613 | 0.031* | |
C13 | −0.3200 (7) | 0.2175 (2) | 0.2640 (5) | 0.0296 (15) | |
H13 | −0.4013 | 0.2239 | 0.3031 | 0.036* | |
C14 | −0.2997 (7) | 0.1765 (2) | 0.2308 (5) | 0.0284 (14) | |
H14 | −0.3662 | 0.1543 | 0.2468 | 0.034* | |
C15 | −0.1808 (7) | 0.16847 (18) | 0.1738 (5) | 0.0220 (13) | |
H15 | −0.1682 | 0.1403 | 0.1502 | 0.026* | |
O2 | 0.0733 (6) | 0.41696 (14) | 0.1220 (4) | 0.0476 (14) | |
C16 | 0.1522 (13) | 0.4448 (3) | 0.0503 (7) | 0.073 (3) | |
H16A | 0.2530 | 0.4319 | 0.0401 | 0.088* | |
H16B | 0.0839 | 0.4476 | −0.0207 | 0.088* | |
C17 | 0.1817 (14) | 0.4879 (2) | 0.1013 (8) | 0.077 (3) | |
H17A | 0.2051 | 0.5083 | 0.0480 | 0.116* | |
H17B | 0.2712 | 0.4863 | 0.1605 | 0.116* | |
H17C | 0.0880 | 0.4972 | 0.1287 | 0.116* | |
O3 | 0.068 (3) | 0.3923 (10) | 0.288 (2) | 0.0376 (17) | 0.207 (13) |
C18 | 0.000 (4) | 0.4298 (10) | 0.338 (3) | 0.043 (3) | 0.207 (13) |
H18A | −0.0050 | 0.4550 | 0.2911 | 0.051* | 0.207 (13) |
H18B | −0.1066 | 0.4232 | 0.3514 | 0.051* | 0.207 (13) |
C19 | 0.111 (6) | 0.4375 (16) | 0.442 (3) | 0.079 (17) | 0.207 (13) |
H19A | 0.2185 | 0.4403 | 0.4279 | 0.119* | 0.207 (13) |
H19B | 0.1057 | 0.4135 | 0.4902 | 0.119* | 0.207 (13) |
H19C | 0.0805 | 0.4636 | 0.4747 | 0.119* | 0.207 (13) |
O3B | 0.1198 (10) | 0.3933 (2) | 0.3123 (5) | 0.0376 (17) | 0.793 (13) |
C18B | 0.1154 (12) | 0.4349 (3) | 0.3644 (8) | 0.040 (2) | 0.793 (13) |
H18C | 0.0701 | 0.4565 | 0.3112 | 0.048* | 0.793 (13) |
H18D | 0.2232 | 0.4438 | 0.3968 | 0.048* | 0.793 (13) |
C19B | 0.0162 (14) | 0.4307 (3) | 0.4489 (8) | 0.050 (3) | 0.793 (13) |
H19D | 0.0083 | 0.4583 | 0.4831 | 0.075* | 0.793 (13) |
H19E | 0.0643 | 0.4101 | 0.5027 | 0.075* | 0.793 (13) |
H19F | −0.0891 | 0.4209 | 0.4164 | 0.075* | 0.793 (13) |
C20 | 0.2890 (7) | 0.19166 (19) | 0.3034 (5) | 0.0260 (13) | |
H20 | 0.2796 | 0.2217 | 0.2986 | 0.031* | |
C21 | 0.3592 (8) | 0.1744 (2) | 0.3978 (5) | 0.0298 (15) | |
H21 | 0.3961 | 0.1921 | 0.4575 | 0.036* | |
C22 | 0.3761 (9) | 0.1312 (2) | 0.4060 (6) | 0.0406 (18) | |
H22 | 0.4244 | 0.1185 | 0.4714 | 0.049* | |
C23 | 0.3218 (9) | 0.1067 (2) | 0.3179 (5) | 0.0382 (17) | |
H23 | 0.3341 | 0.0768 | 0.3217 | 0.046* | |
C24 | 0.2493 (7) | 0.12545 (18) | 0.2234 (5) | 0.0253 (14) | |
C25 | 0.1897 (7) | 0.10225 (18) | 0.1243 (5) | 0.0245 (13) | |
C26 | 0.2106 (8) | 0.05900 (19) | 0.1113 (5) | 0.0324 (15) | |
H26 | 0.2660 | 0.0423 | 0.1680 | 0.039* | |
C27 | 0.1489 (8) | 0.0409 (2) | 0.0138 (5) | 0.0320 (15) | |
H27 | 0.1618 | 0.0113 | 0.0029 | 0.038* | |
C28 | 0.0690 (7) | 0.0655 (2) | −0.0675 (5) | 0.0317 (15) | |
H28 | 0.0270 | 0.0533 | −0.1350 | 0.038* | |
C29 | 0.0510 (7) | 0.10805 (19) | −0.0493 (5) | 0.0270 (14) | |
H29 | −0.0059 | 0.1250 | −0.1050 | 0.032* | |
P2 | 0.7996 (7) | 0.04256 (16) | 0.2491 (4) | 0.0514 (14) | 0.726 (14) |
F1 | 0.9091 (15) | 0.0792 (2) | 0.3042 (7) | 0.102 (4) | 0.726 (14) |
F2 | 0.7768 (19) | 0.0239 (2) | 0.3607 (7) | 0.124 (5) | 0.726 (14) |
F3 | 0.6949 (13) | 0.0053 (3) | 0.1890 (9) | 0.092 (3) | 0.726 (14) |
F4 | 0.8227 (9) | 0.0618 (2) | 0.1346 (5) | 0.048 (2) | 0.726 (14) |
F5 | 0.6492 (13) | 0.0715 (3) | 0.2426 (9) | 0.092 (3) | 0.726 (14) |
F6 | 0.9482 (10) | 0.0134 (2) | 0.2475 (7) | 0.083 (3) | 0.726 (14) |
P2B | 0.755 (2) | 0.0482 (6) | 0.2461 (15) | 0.109 (6) | 0.274 (14) |
F1B | 0.800 (4) | 0.0835 (7) | 0.3349 (18) | 0.118 (8) | 0.274 (14) |
F2B | 0.637 (4) | 0.0278 (7) | 0.313 (2) | 0.130 (9) | 0.274 (14) |
F3B | 0.712 (4) | 0.0119 (8) | 0.159 (2) | 0.136 (9) | 0.274 (14) |
F4B | 0.872 (3) | 0.0681 (8) | 0.177 (3) | 0.134 (10) | 0.274 (14) |
F5B | 0.620 (3) | 0.0777 (8) | 0.185 (2) | 0.110 (8) | 0.274 (14) |
F6B | 0.895 (3) | 0.0194 (8) | 0.307 (3) | 0.181 (10) | 0.274 (14) |
N6 | 0.6748 (10) | 0.3516 (3) | 0.1400 (10) | 0.072 (3) | 0.831 (9) |
C30 | 0.6579 (11) | 0.3871 (3) | 0.1224 (10) | 0.056 (3) | 0.831 (9) |
C31 | 0.6410 (14) | 0.4298 (3) | 0.1053 (12) | 0.081 (4) | 0.831 (9) |
H31A | 0.5756 | 0.4417 | 0.1537 | 0.121* | 0.831 (9) |
H31B | 0.5906 | 0.4350 | 0.0310 | 0.121* | 0.831 (9) |
H31C | 0.7447 | 0.4434 | 0.1188 | 0.121* | 0.831 (9) |
O4 | 0.680 (3) | 0.3472 (7) | 0.254 (2) | 0.055 (11) | 0.169 (9) |
H4A | 0.679 (6) | 0.3723 (8) | 0.271 (6) | 0.066* | 0.169 (9) |
H4B | 0.592 (4) | 0.3385 (13) | 0.228 (7) | 0.066* | 0.169 (9) |
O5 | 0.505 (5) | 0.3723 (8) | −0.026 (2) | 0.101 (19) | 0.169 (9) |
H5A | 0.462 (8) | 0.3767 (17) | −0.088 (2) | 0.122* | 0.169 (9) |
H5B | 0.541 (9) | 0.3941 (10) | 0.004 (3) | 0.122* | 0.169 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.0167 (2) | 0.0161 (2) | 0.0199 (2) | 0.00053 (19) | 0.00165 (17) | −0.00016 (19) |
Cl1 | 0.0219 (7) | 0.0231 (7) | 0.0227 (7) | 0.0017 (6) | 0.0021 (6) | 0.0014 (6) |
P1 | 0.0517 (12) | 0.0200 (8) | 0.0308 (10) | −0.0051 (8) | 0.0062 (8) | −0.0059 (7) |
O1 | 0.050 (3) | 0.027 (3) | 0.070 (4) | −0.012 (2) | 0.010 (3) | −0.014 (2) |
N1 | 0.017 (2) | 0.023 (2) | 0.016 (2) | 0.0008 (19) | 0.001 (2) | −0.004 (2) |
N2 | 0.018 (2) | 0.019 (2) | 0.017 (2) | 0.0009 (19) | 0.001 (2) | 0.0020 (19) |
N3 | 0.019 (2) | 0.020 (2) | 0.020 (2) | 0.001 (2) | 0.000 (2) | 0.000 (2) |
N4 | 0.020 (3) | 0.022 (3) | 0.020 (3) | 0.001 (2) | 0.003 (2) | 0.004 (2) |
N5 | 0.017 (2) | 0.020 (2) | 0.026 (3) | 0.0003 (19) | 0.003 (2) | 0.002 (2) |
C1 | 0.024 (3) | 0.027 (3) | 0.022 (3) | 0.005 (3) | −0.001 (3) | 0.000 (3) |
C2 | 0.020 (3) | 0.033 (3) | 0.019 (3) | 0.006 (3) | 0.004 (2) | 0.004 (3) |
C3 | 0.022 (3) | 0.037 (4) | 0.026 (3) | −0.002 (3) | 0.004 (3) | 0.006 (3) |
C4 | 0.020 (3) | 0.030 (3) | 0.024 (3) | −0.004 (3) | 0.004 (3) | 0.001 (3) |
C5 | 0.017 (3) | 0.026 (3) | 0.018 (3) | 0.002 (2) | −0.001 (2) | 0.000 (2) |
C6 | 0.022 (3) | 0.023 (3) | 0.020 (3) | 0.001 (2) | 0.003 (2) | 0.003 (2) |
C7 | 0.025 (3) | 0.027 (3) | 0.023 (3) | −0.004 (3) | 0.004 (3) | −0.002 (3) |
C8 | 0.033 (3) | 0.018 (3) | 0.018 (3) | −0.001 (3) | 0.001 (3) | −0.001 (2) |
C9 | 0.027 (3) | 0.024 (3) | 0.018 (3) | 0.004 (3) | 0.001 (2) | −0.002 (2) |
C10 | 0.017 (3) | 0.022 (3) | 0.019 (3) | 0.006 (2) | 0.003 (2) | 0.004 (2) |
C11 | 0.019 (3) | 0.020 (3) | 0.018 (3) | 0.002 (2) | 0.001 (2) | 0.001 (2) |
C12 | 0.024 (3) | 0.024 (3) | 0.027 (3) | 0.006 (3) | −0.001 (3) | −0.004 (3) |
C13 | 0.022 (3) | 0.034 (4) | 0.034 (4) | −0.001 (3) | 0.009 (3) | 0.001 (3) |
C14 | 0.019 (3) | 0.034 (3) | 0.032 (4) | 0.000 (3) | 0.004 (3) | 0.008 (3) |
C15 | 0.020 (3) | 0.022 (3) | 0.023 (3) | 0.002 (2) | 0.002 (3) | 0.002 (2) |
O2 | 0.067 (4) | 0.022 (2) | 0.046 (3) | −0.004 (2) | −0.009 (3) | 0.000 (2) |
C16 | 0.128 (9) | 0.042 (5) | 0.041 (5) | −0.012 (5) | −0.011 (5) | 0.016 (4) |
C17 | 0.117 (9) | 0.032 (4) | 0.078 (7) | −0.020 (5) | 0.003 (6) | −0.004 (4) |
O3 | 0.055 (4) | 0.026 (2) | 0.033 (3) | 0.002 (3) | 0.010 (3) | −0.011 (3) |
C18 | 0.058 (7) | 0.028 (6) | 0.041 (6) | −0.001 (6) | 0.009 (6) | −0.007 (6) |
C19 | 0.08 (2) | 0.08 (2) | 0.08 (2) | −0.021 (18) | 0.018 (18) | −0.008 (18) |
O3B | 0.055 (4) | 0.026 (2) | 0.033 (3) | 0.002 (3) | 0.010 (3) | −0.011 (3) |
C18B | 0.056 (5) | 0.024 (4) | 0.042 (4) | −0.008 (4) | 0.016 (4) | −0.011 (3) |
C19B | 0.060 (7) | 0.038 (5) | 0.056 (6) | −0.006 (5) | 0.024 (5) | −0.020 (5) |
C20 | 0.025 (3) | 0.022 (3) | 0.029 (3) | 0.003 (3) | −0.002 (3) | −0.002 (3) |
C21 | 0.032 (4) | 0.033 (3) | 0.021 (3) | 0.001 (3) | −0.003 (3) | −0.002 (3) |
C22 | 0.051 (5) | 0.034 (4) | 0.030 (4) | 0.005 (3) | −0.010 (3) | −0.001 (3) |
C23 | 0.055 (5) | 0.022 (3) | 0.034 (4) | 0.008 (3) | −0.002 (3) | 0.009 (3) |
C24 | 0.027 (3) | 0.018 (3) | 0.031 (4) | 0.000 (2) | 0.006 (3) | 0.000 (3) |
C25 | 0.015 (3) | 0.024 (3) | 0.034 (4) | 0.001 (2) | 0.005 (3) | 0.001 (3) |
C26 | 0.042 (4) | 0.018 (3) | 0.036 (4) | 0.003 (3) | 0.002 (3) | 0.005 (3) |
C27 | 0.040 (4) | 0.019 (3) | 0.037 (4) | 0.003 (3) | 0.007 (3) | 0.000 (3) |
C28 | 0.026 (3) | 0.032 (4) | 0.035 (4) | −0.002 (3) | −0.001 (3) | −0.010 (3) |
C29 | 0.026 (3) | 0.029 (3) | 0.024 (3) | 0.003 (3) | −0.003 (3) | 0.002 (3) |
P2 | 0.078 (3) | 0.023 (2) | 0.057 (2) | 0.0126 (18) | 0.022 (2) | 0.0061 (15) |
F1 | 0.167 (9) | 0.049 (4) | 0.071 (6) | 0.001 (5) | −0.027 (6) | −0.013 (4) |
F2 | 0.274 (15) | 0.048 (4) | 0.075 (5) | 0.056 (7) | 0.102 (7) | 0.021 (4) |
F3 | 0.134 (7) | 0.044 (4) | 0.115 (7) | −0.035 (5) | 0.067 (6) | −0.008 (5) |
F4 | 0.058 (4) | 0.037 (4) | 0.051 (4) | −0.003 (3) | 0.011 (3) | 0.008 (3) |
F5 | 0.115 (7) | 0.067 (5) | 0.111 (9) | 0.039 (5) | 0.068 (6) | 0.021 (5) |
F6 | 0.121 (6) | 0.051 (4) | 0.081 (6) | 0.038 (4) | 0.028 (5) | 0.014 (4) |
P2B | 0.141 (13) | 0.029 (7) | 0.187 (13) | 0.024 (7) | 0.109 (9) | 0.014 (6) |
F1B | 0.16 (2) | 0.069 (12) | 0.123 (15) | 0.005 (13) | 0.016 (14) | 0.037 (9) |
F2B | 0.19 (2) | 0.071 (15) | 0.16 (2) | −0.012 (14) | 0.121 (17) | −0.003 (13) |
F3B | 0.22 (2) | 0.050 (12) | 0.184 (18) | −0.037 (12) | 0.161 (15) | −0.002 (12) |
F4B | 0.148 (18) | 0.079 (17) | 0.20 (2) | −0.031 (14) | 0.093 (18) | 0.013 (16) |
F5B | 0.124 (15) | 0.061 (13) | 0.14 (2) | −0.022 (11) | 0.025 (14) | −0.010 (13) |
F6B | 0.199 (19) | 0.119 (18) | 0.25 (2) | 0.077 (17) | 0.098 (18) | 0.061 (17) |
N6 | 0.040 (5) | 0.039 (5) | 0.137 (11) | 0.003 (4) | 0.014 (6) | 0.004 (6) |
C30 | 0.041 (6) | 0.039 (6) | 0.091 (9) | −0.003 (4) | 0.021 (5) | −0.014 (5) |
C31 | 0.080 (9) | 0.023 (5) | 0.150 (13) | −0.007 (5) | 0.052 (9) | −0.011 (6) |
O4 | 0.06 (2) | 0.05 (2) | 0.06 (2) | 0.023 (17) | 0.039 (19) | 0.027 (17) |
O5 | 0.18 (5) | 0.04 (2) | 0.08 (3) | −0.01 (3) | 0.00 (3) | 0.00 (2) |
Ru1—N2 | 1.944 (5) | O3—C18 | 1.509 (17) |
Ru1—N4 | 2.030 (5) | C18—C19 | 1.502 (18) |
Ru1—N1 | 2.053 (5) | C18—H18A | 0.9900 |
Ru1—N3 | 2.061 (5) | C18—H18B | 0.9900 |
Ru1—N5 | 2.098 (5) | C19—H19A | 0.9800 |
Ru1—Cl1 | 2.4073 (15) | C19—H19B | 0.9800 |
P1—O1 | 1.483 (5) | C19—H19C | 0.9800 |
P1—O2 | 1.540 (5) | O3B—C18B | 1.472 (9) |
P1—O3B | 1.541 (6) | C18B—C19B | 1.491 (11) |
P1—O3 | 1.554 (17) | C18B—H18C | 0.9900 |
P1—C8 | 1.801 (6) | C18B—H18D | 0.9900 |
N1—C1 | 1.347 (8) | C19B—H19D | 0.9800 |
N1—C5 | 1.369 (7) | C19B—H19E | 0.9800 |
N2—C10 | 1.353 (7) | C19B—H19F | 0.9800 |
N2—C6 | 1.358 (7) | C20—C21 | 1.358 (8) |
N3—C15 | 1.345 (7) | C20—H20 | 0.9500 |
N3—C11 | 1.383 (7) | C21—C22 | 1.371 (9) |
N4—C20 | 1.345 (7) | C21—H21 | 0.9500 |
N4—C24 | 1.363 (7) | C22—C23 | 1.372 (9) |
N5—C29 | 1.340 (8) | C22—H22 | 0.9500 |
N5—C25 | 1.361 (7) | C23—C24 | 1.383 (9) |
C1—C2 | 1.369 (8) | C23—H23 | 0.9500 |
C1—H1 | 0.9500 | C24—C25 | 1.468 (9) |
C2—C3 | 1.378 (9) | C25—C26 | 1.389 (8) |
C2—H2 | 0.9500 | C26—C27 | 1.382 (9) |
C3—C4 | 1.381 (9) | C26—H26 | 0.9500 |
C3—H3 | 0.9500 | C27—C28 | 1.376 (9) |
C4—C5 | 1.387 (8) | C27—H27 | 0.9500 |
C4—H4 | 0.9500 | C28—C29 | 1.375 (9) |
C5—C6 | 1.472 (8) | C28—H28 | 0.9500 |
C6—C7 | 1.385 (8) | C29—H29 | 0.9500 |
C7—C8 | 1.391 (9) | P2—F1 | 1.575 (8) |
C7—H7 | 0.9500 | P2—F5 | 1.577 (8) |
C8—C9 | 1.376 (9) | P2—F2 | 1.578 (8) |
C9—C10 | 1.391 (8) | P2—F6 | 1.581 (8) |
C9—H9 | 0.9500 | P2—F3 | 1.592 (8) |
C10—C11 | 1.465 (8) | P2—F4 | 1.620 (7) |
C11—C12 | 1.375 (8) | P2B—F2B | 1.577 (16) |
C12—C13 | 1.379 (9) | P2B—F1B | 1.582 (16) |
C12—H12 | 0.9500 | P2B—F5B | 1.583 (16) |
C13—C14 | 1.380 (9) | P2B—F3B | 1.586 (17) |
C13—H13 | 0.9500 | P2B—F4B | 1.586 (16) |
C14—C15 | 1.379 (9) | P2B—F6B | 1.597 (16) |
C14—H14 | 0.9500 | N6—C30 | 1.144 (12) |
C15—H15 | 0.9500 | C30—C31 | 1.369 (13) |
O2—C16 | 1.511 (9) | C31—H31A | 0.9800 |
C16—C17 | 1.507 (10) | C31—H31B | 0.9800 |
C16—H16A | 0.9900 | C31—H31C | 0.9800 |
C16—H16B | 0.9900 | O4—H4A | 0.8200 (11) |
C17—H17A | 0.9800 | O4—H4B | 0.8200 (11) |
C17—H17B | 0.9800 | O5—H5A | 0.8200 (11) |
C17—H17C | 0.9800 | O5—H5B | 0.8200 (11) |
N2—Ru1—N4 | 97.55 (19) | H17B—C17—H17C | 109.5 |
N2—Ru1—N1 | 79.99 (19) | C18—O3—P1 | 131 (3) |
N4—Ru1—N1 | 92.05 (19) | C19—C18—O3 | 105 (2) |
N2—Ru1—N3 | 79.62 (19) | C19—C18—H18A | 110.7 |
N4—Ru1—N3 | 88.54 (19) | O3—C18—H18A | 110.7 |
N1—Ru1—N3 | 159.50 (18) | C19—C18—H18B | 110.7 |
N2—Ru1—N5 | 175.42 (19) | O3—C18—H18B | 110.7 |
N4—Ru1—N5 | 78.45 (19) | H18A—C18—H18B | 108.8 |
N1—Ru1—N5 | 97.82 (18) | C18—C19—H19A | 109.5 |
N3—Ru1—N5 | 102.37 (18) | C18—C19—H19B | 109.5 |
N2—Ru1—Cl1 | 89.79 (14) | H19A—C19—H19B | 109.5 |
N4—Ru1—Cl1 | 172.62 (14) | C18—C19—H19C | 109.5 |
N1—Ru1—Cl1 | 90.03 (13) | H19A—C19—H19C | 109.5 |
N3—Ru1—Cl1 | 92.00 (13) | H19B—C19—H19C | 109.5 |
N5—Ru1—Cl1 | 94.25 (13) | C18B—O3B—P1 | 118.9 (6) |
O1—P1—O2 | 113.2 (3) | O3B—C18B—C19B | 107.9 (7) |
O1—P1—O3B | 112.5 (4) | O3B—C18B—H18C | 110.1 |
O2—P1—O3B | 108.0 (4) | C19B—C18B—H18C | 110.1 |
O1—P1—O3 | 130.2 (12) | O3B—C18B—H18D | 110.1 |
O2—P1—O3 | 93.4 (13) | C19B—C18B—H18D | 110.1 |
O1—P1—C8 | 111.8 (3) | H18C—C18B—H18D | 108.4 |
O2—P1—C8 | 107.2 (3) | C18B—C19B—H19D | 109.5 |
O3B—P1—C8 | 103.4 (4) | C18B—C19B—H19E | 109.5 |
O3—P1—C8 | 97.8 (11) | H19D—C19B—H19E | 109.5 |
C1—N1—C5 | 117.6 (5) | C18B—C19B—H19F | 109.5 |
C1—N1—Ru1 | 128.7 (4) | H19D—C19B—H19F | 109.5 |
C5—N1—Ru1 | 113.6 (4) | H19E—C19B—H19F | 109.5 |
C10—N2—C6 | 121.7 (5) | N4—C20—C21 | 123.3 (6) |
C10—N2—Ru1 | 119.4 (4) | N4—C20—H20 | 118.4 |
C6—N2—Ru1 | 118.9 (4) | C21—C20—H20 | 118.4 |
C15—N3—C11 | 117.4 (5) | C20—C21—C22 | 119.4 (6) |
C15—N3—Ru1 | 128.9 (4) | C20—C21—H21 | 120.3 |
C11—N3—Ru1 | 113.5 (4) | C22—C21—H21 | 120.3 |
C20—N4—C24 | 117.8 (5) | C21—C22—C23 | 118.6 (6) |
C20—N4—Ru1 | 125.2 (4) | C21—C22—H22 | 120.7 |
C24—N4—Ru1 | 116.9 (4) | C23—C22—H22 | 120.7 |
C29—N5—C25 | 118.7 (5) | C22—C23—C24 | 120.3 (6) |
C29—N5—Ru1 | 126.2 (4) | C22—C23—H23 | 119.8 |
C25—N5—Ru1 | 114.8 (4) | C24—C23—H23 | 119.8 |
N1—C1—C2 | 123.2 (6) | N4—C24—C23 | 120.6 (6) |
N1—C1—H1 | 118.4 | N4—C24—C25 | 114.9 (5) |
C2—C1—H1 | 118.4 | C23—C24—C25 | 124.6 (5) |
C1—C2—C3 | 119.0 (6) | N5—C25—C26 | 121.5 (6) |
C1—C2—H2 | 120.5 | N5—C25—C24 | 114.6 (5) |
C3—C2—H2 | 120.5 | C26—C25—C24 | 123.9 (6) |
C2—C3—C4 | 119.4 (6) | C27—C26—C25 | 118.4 (6) |
C2—C3—H3 | 120.3 | C27—C26—H26 | 120.8 |
C4—C3—H3 | 120.3 | C25—C26—H26 | 120.8 |
C3—C4—C5 | 119.0 (6) | C28—C27—C26 | 120.1 (6) |
C3—C4—H4 | 120.5 | C28—C27—H27 | 119.9 |
C5—C4—H4 | 120.5 | C26—C27—H27 | 119.9 |
N1—C5—C4 | 121.7 (5) | C29—C28—C27 | 118.7 (6) |
N1—C5—C6 | 114.8 (5) | C29—C28—H28 | 120.6 |
C4—C5—C6 | 123.5 (5) | C27—C28—H28 | 120.6 |
N2—C6—C7 | 120.3 (5) | N5—C29—C28 | 122.5 (6) |
N2—C6—C5 | 112.7 (5) | N5—C29—H29 | 118.8 |
C7—C6—C5 | 127.0 (5) | C28—C29—H29 | 118.8 |
C6—C7—C8 | 118.5 (6) | F1—P2—F5 | 91.4 (5) |
C6—C7—H7 | 120.7 | F1—P2—F2 | 92.0 (5) |
C8—C7—H7 | 120.7 | F5—P2—F2 | 91.8 (5) |
C9—C8—C7 | 120.4 (5) | F1—P2—F6 | 90.3 (5) |
C9—C8—P1 | 122.5 (5) | F5—P2—F6 | 176.3 (6) |
C7—C8—P1 | 117.1 (5) | F2—P2—F6 | 91.4 (5) |
C8—C9—C10 | 119.6 (6) | F1—P2—F3 | 177.0 (7) |
C8—C9—H9 | 120.2 | F5—P2—F3 | 90.5 (6) |
C10—C9—H9 | 120.2 | F2—P2—F3 | 90.3 (6) |
N2—C10—C9 | 119.4 (5) | F6—P2—F3 | 87.7 (5) |
N2—C10—C11 | 113.2 (5) | F1—P2—F4 | 88.0 (5) |
C9—C10—C11 | 127.4 (5) | F5—P2—F4 | 88.1 (4) |
C12—C11—N3 | 121.4 (5) | F2—P2—F4 | 179.9 (7) |
C12—C11—C10 | 124.3 (5) | F6—P2—F4 | 88.7 (4) |
N3—C11—C10 | 114.2 (5) | F3—P2—F4 | 89.7 (5) |
C11—C12—C13 | 119.7 (6) | F2B—P2B—F1B | 90.1 (10) |
C11—C12—H12 | 120.1 | F2B—P2B—F5B | 90.6 (11) |
C13—C12—H12 | 120.1 | F1B—P2B—F5B | 90.1 (10) |
C12—C13—C14 | 119.5 (6) | F2B—P2B—F3B | 89.1 (10) |
C12—C13—H13 | 120.3 | F1B—P2B—F3B | 178.5 (13) |
C14—C13—H13 | 120.3 | F5B—P2B—F3B | 91.3 (11) |
C15—C14—C13 | 118.5 (6) | F2B—P2B—F4B | 178.7 (14) |
C15—C14—H14 | 120.7 | F1B—P2B—F4B | 91.1 (11) |
C13—C14—H14 | 120.7 | F5B—P2B—F4B | 89.1 (11) |
N3—C15—C14 | 123.4 (6) | F3B—P2B—F4B | 89.7 (11) |
N3—C15—H15 | 118.3 | F2B—P2B—F6B | 91.0 (11) |
C14—C15—H15 | 118.3 | F1B—P2B—F6B | 89.3 (11) |
C16—O2—P1 | 116.5 (5) | F5B—P2B—F6B | 178.3 (14) |
C17—C16—O2 | 109.0 (7) | F3B—P2B—F6B | 89.4 (10) |
C17—C16—H16A | 109.9 | F4B—P2B—F6B | 89.3 (11) |
O2—C16—H16A | 109.9 | N6—C30—C31 | 177.7 (14) |
C17—C16—H16B | 109.9 | C30—C31—H31A | 109.5 |
O2—C16—H16B | 109.9 | C30—C31—H31B | 109.5 |
H16A—C16—H16B | 108.3 | H31A—C31—H31B | 109.5 |
C16—C17—H17A | 109.5 | C30—C31—H31C | 109.5 |
C16—C17—H17B | 109.5 | H31A—C31—H31C | 109.5 |
H17A—C17—H17B | 109.5 | H31B—C31—H31C | 109.5 |
C16—C17—H17C | 109.5 | H4A—O4—H4B | 112.0 (2) |
H17A—C17—H17C | 109.5 | H5A—O5—H5B | 112.0 (2) |
C5—N1—C1—C2 | 1.0 (8) | C10—C11—C12—C13 | −175.1 (6) |
Ru1—N1—C1—C2 | −174.8 (4) | C11—C12—C13—C14 | −1.3 (9) |
N1—C1—C2—C3 | −1.7 (9) | C12—C13—C14—C15 | −0.3 (9) |
C1—C2—C3—C4 | 1.0 (9) | C11—N3—C15—C14 | 0.2 (8) |
C2—C3—C4—C5 | 0.5 (9) | Ru1—N3—C15—C14 | 174.8 (4) |
C1—N1—C5—C4 | 0.6 (8) | C13—C14—C15—N3 | 0.9 (9) |
Ru1—N1—C5—C4 | 177.0 (4) | O1—P1—O2—C16 | 11.7 (6) |
C1—N1—C5—C6 | −177.6 (5) | O3B—P1—O2—C16 | 137.0 (6) |
Ru1—N1—C5—C6 | −1.2 (6) | O3—P1—O2—C16 | 148.6 (12) |
C3—C4—C5—N1 | −1.3 (9) | C8—P1—O2—C16 | −112.2 (5) |
C3—C4—C5—C6 | 176.7 (5) | P1—O2—C16—C17 | −90.4 (8) |
C10—N2—C6—C7 | 1.1 (8) | O1—P1—O3—C18 | 67 (4) |
Ru1—N2—C6—C7 | −178.8 (4) | O2—P1—O3—C18 | −58 (3) |
C10—N2—C6—C5 | 179.4 (5) | O3B—P1—O3—C18 | 85 (5) |
Ru1—N2—C6—C5 | −0.5 (6) | C8—P1—O3—C18 | −166 (3) |
N1—C5—C6—N2 | 1.1 (7) | P1—O3—C18—C19 | −93 (4) |
C4—C5—C6—N2 | −177.0 (5) | O1—P1—O3B—C18B | 62.8 (8) |
N1—C5—C6—C7 | 179.3 (6) | O2—P1—O3B—C18B | −62.9 (8) |
C4—C5—C6—C7 | 1.2 (9) | O3—P1—O3B—C18B | −102 (4) |
N2—C6—C7—C8 | −1.9 (9) | C8—P1—O3B—C18B | −176.3 (7) |
C5—C6—C7—C8 | −179.9 (5) | P1—O3B—C18B—C19B | 166.6 (9) |
C6—C7—C8—C9 | 0.4 (9) | C24—N4—C20—C21 | −1.4 (9) |
C6—C7—C8—P1 | 178.7 (4) | Ru1—N4—C20—C21 | 175.1 (5) |
O1—P1—C8—C9 | 156.3 (5) | N4—C20—C21—C22 | 1.0 (10) |
O2—P1—C8—C9 | −79.0 (6) | C20—C21—C22—C23 | 0.3 (11) |
O3B—P1—C8—C9 | 35.0 (6) | C21—C22—C23—C24 | −1.1 (12) |
O3—P1—C8—C9 | 17.0 (14) | C20—N4—C24—C23 | 0.6 (9) |
O1—P1—C8—C7 | −21.9 (6) | Ru1—N4—C24—C23 | −176.2 (5) |
O2—P1—C8—C7 | 102.8 (5) | C20—N4—C24—C25 | −177.8 (5) |
O3B—P1—C8—C7 | −143.2 (5) | Ru1—N4—C24—C25 | 5.3 (7) |
O3—P1—C8—C7 | −161.1 (14) | C22—C23—C24—N4 | 0.6 (11) |
C7—C8—C9—C10 | 1.7 (9) | C22—C23—C24—C25 | 178.9 (7) |
P1—C8—C9—C10 | −176.4 (4) | C29—N5—C25—C26 | 0.5 (9) |
C6—N2—C10—C9 | 1.0 (8) | Ru1—N5—C25—C26 | −174.6 (5) |
Ru1—N2—C10—C9 | −179.0 (4) | C29—N5—C25—C24 | −179.5 (5) |
C6—N2—C10—C11 | −176.9 (5) | Ru1—N5—C25—C24 | 5.4 (6) |
Ru1—N2—C10—C11 | 3.0 (6) | N4—C24—C25—N5 | −7.0 (8) |
C8—C9—C10—N2 | −2.4 (8) | C23—C24—C25—N5 | 174.6 (6) |
C8—C9—C10—C11 | 175.2 (5) | N4—C24—C25—C26 | 172.9 (6) |
C15—N3—C11—C12 | −1.8 (8) | C23—C24—C25—C26 | −5.4 (10) |
Ru1—N3—C11—C12 | −177.2 (4) | N5—C25—C26—C27 | 0.1 (10) |
C15—N3—C11—C10 | 175.9 (5) | C24—C25—C26—C27 | −179.9 (6) |
Ru1—N3—C11—C10 | 0.5 (6) | C25—C26—C27—C28 | 0.0 (10) |
N2—C10—C11—C12 | 175.5 (5) | C26—C27—C28—C29 | −0.5 (10) |
C9—C10—C11—C12 | −2.3 (9) | C25—N5—C29—C28 | −1.1 (9) |
N2—C10—C11—N3 | −2.2 (7) | Ru1—N5—C29—C28 | 173.4 (5) |
C9—C10—C11—N3 | −179.9 (5) | C27—C28—C29—N5 | 1.2 (10) |
N3—C11—C12—C13 | 2.4 (9) |
Ru1—N2 | 1.944 (5) | P1—O1 | 1.483 (5) |
Ru1—N4 | 2.030 (5) | P1—O2 | 1.540 (5) |
Ru1—N1 | 2.053 (5) | P1—O3B | 1.541 (6) |
Ru1—N3 | 2.061 (5) | P1—O3 | 1.554 (17) |
Ru1—N5 | 2.098 (5) | P1—C8 | 1.801 (6) |
Ru1—Cl1 | 2.4073 (15) |
Acknowledgements
This work was supported by the US Department of Energy through the Laboratory Directed Research and Development (LDRD) program at LANL.
References
Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, W., Rein, F. N. & Rocha, R. C. (2009). Angew. Chem. Int. Ed. 48, 9672–9675. Web of Science CrossRef CAS Google Scholar
Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595–5604. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m79–m80. CSD CrossRef CAS IUCr Journals Google Scholar
Concepcion, J. J., Jurss, J. W., Templeton, J. L. & Meyer, T. J. (2008). J. Am. Chem. Soc. 130, 16462–16463. Web of Science CrossRef PubMed CAS Google Scholar
Evans, I. P., Spencer, A. & Wilkinson, G. (1973). J. Chem. Soc. Dalton Trans. pp. 204–209. CrossRef Web of Science Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Jakubikova, E., Chen, W., Dattelbaum, D. M., Rein, F. N., Rocha, R. C., Martin, R. L. & Batista, E. R. (2009). Inorg. Chem. 48, 10720–10725. Web of Science CrossRef PubMed CAS Google Scholar
Jude, H., Rein, F. N., Chen, W., Scott, B. L., Dattelbaum, D. M. & Rocha, R. C. (2009). Eur. J. Inorg. Chem. pp. 683–690. CSD CrossRef Google Scholar
Jude, H., Rein, F. N., White, P. S., Dattelbaum, D. M. & Rocha, R. C. (2008). Inorg. Chem. 47, 7695–7702. Web of Science CSD CrossRef PubMed CAS Google Scholar
Jude, H., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m81–m82. CSD CrossRef CAS IUCr Journals Google Scholar
Masaoka, S. & Sakai, K. (2009). Chem. Lett. 38, 182–183. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tseng, H.-W., Zong, R., Muckerman, J. T. & Thummel, R. (2008). Inorg. Chem. 47, 11763–11773. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wasylenko, D. J., Ganesamoorthy, C., Koivisto, B. D., Henderson, M. A. & Berlinguette, C. P. (2010). Inorg. Chem. 49, 2202–2209. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yagi, M., Tajima, S., Komia, M. & Yamazakia, H. (2011). Dalton Trans. 40, 3802–3804. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zakeeruddin, S. M., Nazeeruddin, M. K., Pechy, P., Rotzinger, F. P., Humphry-Baker, R., Kalyanasundaram, K. & Grätzel, M. (1997). Inorg. Chem. 36, 5937–5946. CSD CrossRef PubMed CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A crucial challenge to renewable energy technologies based on artificial photosynthesis and production of solar fuels has been the development of efficient catalysts for splitting water, with evolution of H2 and O2. The complete four-electron oxidation of water into dioxygen, in particular, is a semi-reaction of tremendous complexity. Recently, mononuclear ruthenium complexes such as [RuII(OH2)(bpy)(tpy)]2+ (bpy = 2,2'-bipyridine; tpy = 2,2':6',2"-terpyridine) and its structural analogues have emerged as catalysts for water oxidation (for example, see: Concepcion et al., 2008; Masaoka & Sakai, 2009; Tseng et al., 2008; Wasylenko et al., 2010; Yagi et al., 2011). In these systems, the catalytic aquo species is readily prepared in water by ligand substitution at the chloro precursor/precatalyst, [RuII(Cl)(bpy)(tpy)]+ (Jakubikova et al., 2009). In order to heterogenize this precatalyst by attachment onto TiO2 surfaces, we have synthesized the title complex [RuII(Cl)(bpy)(tpy-p)]+ (I; tpy-p = diethyl 2,2':6',2"-terpyridine-4'-phosphonate). The phosphonate group in its diethyl ester form can then be hydrolized in acidic medium to yield its phosphonic acid, which is well known as an efficient TiO2 anchoring group upon deprotonation. This approach has also been well demonstrated for related complexes as photosensitizers in dye-sensitized solar cells (Zakeeruddin et al., 1997). Despite the relevance of such phosphonated terpyridyl Ru complexes to these energy-related research areas, crystallographically characterized structures containing the tpy-PO3 ligand moiety are still scarce (Zakeeruddin et al., 1997).
The hexafluorophosphate salt of I crystallized in the monoclinic space group (P21/n) from an acetonitrile solution. Its crystal structure is shown in Figs. 1 and 2. The cationic complex has a distorted octahedral geometry due to the restricted bite angle of the meridionally coordinated tridendate terpyridyl ligand. The N1—Ru—N3 angle of 159.50 (18)° is very similar to those recently reported for bis-terpyridyl Ru(II) complexes (Chen et al., 2013; Jude et al., 2013), and far from the ideal angle of 180° in an octahedral geometry. The bpy ligand has a cis configuration, with the N4—Ru—N5 angle of 78.45 (19)° consistent with those typically found in RuII-bpy complexes (Chen et al., 2011; Jude et al., 2008). The bpy-N4 atom is arranged trans to the chloride ligand in a nearly linear N—Ru—Cl fashion (172.62 (14)°). The Ru center and atoms N2, N4, N5, and Cl1 form an equatorial plane with a maximum deviation of 0.031 (4) Å from ideal planarity (N5). The bipyridyl and terpyridyl moieties are approximately planar (with maximum deviations of 0.087 (6) Å and 0.146 (6) Å, respectively) and their mean planes are essentially perpendicular to each other with a dihedral angle of 86.04 (14)°. Although Ru is practically coplanar with the bpy plane (deviation of 0.002 (1) Å), it deviates significantly from the tpy plane (0.143 (1) Å).
For the tpy-p ligand, the mean Ru—N distance involving the outer nitrogen atoms trans to each other is 2.057 (5) Å whereas the bond distance involving the central nitrogen is much shorter (1.944 (5) Å), as a result of the structural constraint imposed by these mer-arranged tridendate ligands (Chen et al., 2013; Jude et al., 2013). For the bpy ligand, the Ru—N bond distance is 2.098 (5) Å for N5 but only 2.030 (5) for N4, reflecting the increased RuII→Nbpy π-backbonding interaction at the coordinating atom trans to the π-donor Cl- ligand. The Ru—Cl distance of 2.4073 (15) Å is nearly the same as those observed in related structures (Jude et al., 2009). An intramolecular H···Cl contact of 2.71 Å exists between Cl1 and the hydrogen atom of the nearest C atom (H29), similar to our previous observations (Chen et al., 2011; Jude et al., 2009). Significant intermolecular contacts of 2.76 Å, 2.81 Å, and 2.85 Å betwen Cl and H3, H13, and H20 are also found, but these are closer to the sum of the van der Waals radii for hydrogen and chlorine (2.95 Å).
The P atom of the anchoring phosphonate substituent lies in the same plane as its adjacent pyridyl ring, with a maximum deviation of 0.023 (2) Å from coplanarity. The length of the formally P═O bond between P1 and O1 (1.483 (5) Å) is only about 0.06 Å shorter than that of P—O(Et) involving P1 and O2(C16H2C17H3) and O3(C18H2C19H3). That is partly attributed to the multiple intermolecular interactions involving these O atoms. The bond lengths and angles involving the P and O atoms are compiled along with the selected data in Table 1. The observed P1—C8 bond length of 1.801 (6) Å is typical of ordinary P—C(aromatic) bonds. As pointed earlier (Zakeeruddin et al., 1997), this ordinary character of the P—C bond allows for free rotation of the phosphonate group around the P—Ctpy axis.
The acetonitrile solvate molecule was refined to be disordered with two water molecules; occupancies for the acetontrile and water molecules were 0.831 (9) and 0.169 (9), respectively. One of the ethoxy substituents (O3(C18H2C19H3)) was refined as disordered with two moieties; occupancies were 0.793 (13) and 0.207 (13). Also disordered was the PF6- counterion, which was refined over two different moieties (Figs. 1 and 2), occupancies refined to 0.726 (14) and 0.274 (14). Although classic H bonds are not found in the crystal structure of I(PF6)×MeCN, several intermolecular contacts (i.e., distances shorter than the sum of van der Waals radii) exist between cations (I) as well as between the cation and its counterion (PF6-) or solvate molecules. Those that appear to be more relevant to the crystal-packing driving forces are explicitly shown in Fig. 2.
The identity of the cation [Ru(Cl)(bpy)(tpy-p)]+ (I) was also characterized in MeCN solutions by several techniques. Mass spectra (ESI-MS: m/z 660.3) are in agreement with the formulation as [(M—PF6-)+] for the cation I (calcd for C29H28ClN5O3PRu, m/z 662.1). Electrochemical measurements by cyclic voltammetry gave a redox potential of 0.88 V versus SCE for the reversible RuII/RuIII couple. This potential is positively shifted by 70 mV relative to the unmodified [Ru(Cl)(bpy)(tpy)]+ complex (0.81 V versus SCE; Chen et al., 2009), which is consistent with the electron-withdrawing nature of the phosphonate substituent in tpy-p. Upon surface tethering, this is a desirable feature because it facilitates pulling the metal→ligand charge toward the functionalized tpy ligand for injection into the conduction band of TiO2.