metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[bis­­(penta­methyl­cyclo­penta­dien­yl)cobalt(III)] tetra­chlorido­cobaltate(II) di­chloro­methane disolvate

aDepartment of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
*Correspondence e-mail: jmerola@vt.edu

(Received 9 August 2013; accepted 10 August 2013; online 17 August 2013)

The title compound, [Co(C10H15)2]2[CoCl4]·2CH2Cl2, was isolated as a dichloromethane solvate and was formed in the reaction between lithium penta­methyl­cyclo­penta­dienide and anyhydrous cobalt(II) chloride in tetra­hydro­furan. There are two deca­methyl­cobaltocenium cations, one tetrachloridocobaltate(II) anion and two di­chloro­methane solvent mol­ecules in the formula unit. There is a slight disorder of the di­chloro­methane solvent which was treated with a two-site model [occupancy rates = 0.765 (4) and 0.235 (4)]. The di­chloro­methane mol­ecules display significant C—H⋯Cl inter­actions with the tetrachloridocobaltate(II) dianion. The cobalt atom of the deca­methyl­cobaltocenium cation sits on a twofold rotation axis, with only one penta­methyl­cyclo­penta­diene ligand being unique and the second generated by symmetry. The cobalt atom of the [CoCl4]−2 ion sits on a special site with -4 symmetry, with one unique chloride ligand and the others generated by the fourfold inversion axis.

Related literature

For a related structure with a (THF)2LiCl2CoCl2 monoanion and the deca­methyl­cobaltocenium cation, see: Dehnen & Zimmermann (2000[Dehnen, S. & Zimmermann, C. (2000). Chem. Eur. J. 6, 2256-2261.]) (CCDC 135478). The structure of a related dimer synthesized by Koelle et al. (1986[Koelle, U., Fuss, B., Belting, M. & Raabe, E. (1986). Organometallics, 5, 980-987.]) was determined by Olson & Dahl (1986[Olson, W. L. & Dahl, L. F. (1986). Acta Cryst. C42, 541-544.]) (CCDC 566220). For a discussion of the role of chloro­form and di­chloro­methane solvent mol­ecules in crystal packing, see: Allen et al. (2013[Allen, F. H., Wood, P. A. & Galek, P. T. A. (2013). Acta Cryst. B69, 379-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H15)2]2[CoCl4]·2CH2Cl2

  • Mr = 1033.35

  • Tetragonal, P 42 /n

  • a = 12.20980 (12) Å

  • c = 16.2811 (3) Å

  • V = 2427.17 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 101 K

  • 0.27 × 0.24 × 0.18 mm

Data collection
  • Agilent Xcalibur Gemini Ultra diffractometer with Eos detector

  • Absorption correction: gaussian (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.755, Tmax = 0.821

  • 26858 measured reflections

  • 4161 independent reflections

  • 3394 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.091

  • S = 1.04

  • 4161 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −1.07 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H⋯Cl1i 0.97 2.71 3.548 (3) 145
C11—HA⋯Cl1ii 0.97 2.71 3.548 (3) 145
Symmetry codes: (i) [-y+{\script{3\over 2}}, x-1, -z+{\script{1\over 2}}]; (ii) [y+1, -x+{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Koelle et al. (1986) reported on the preparation of a pentamethylcyclopentadienylcobalt chloro-bridged dimeric compound that represents an excellent precursor to other mononuclear complexes via bridge-splitting reactions. There is no doubt that Koelle et al. made the described bridged complex since Olson & Dahl (1986) published a crystal structure of the dimer. However, in our laboratories, regardless of the stoichiometry used in attempts to make the chloro bridged dimer described by Koelle et al. (1986), the title compound was the only material isolated. The composition of the title compound consists of two decamethylcobaltocenium cations, one tetrachlorocobalt(II) dianion, and two molecules of dichloromethane. The dichloromethane molecules were slightly disordered and the disorder was treated successfully by a two site model with occupancies of 76.5 (4) and 23.5 (4)%. Dehnen & Zimmerman (2000) noted a similar product in attempts to make selenium-bridged compounds and noted the decamethylcoblatocenium ion was formed depending on the temperature of the reaction. In their case, the CoCl4-2 ion was linked via chloride bridges to a bis-THF Li+ cation.

In the structure reported here, the CoCl4-2 ion shows significant interaction with the dichloromethane of solvation. Recently, Allen et al. (2013) examined the Cambridge Crystallographic Data Base and analyzed crystallographic evidence of C—H···Cl hydrogen bonding for both CH2Cl2 and CHCl3. In that paper, for the specific case of CH2Cl2 interacting with Cl-, they note C—H···Cl interactions with H···Cl distances ranging from 2.33 to 2.95 Å and C—H···Cl angles ranging from 120° to 170° for a set of 63 structures. In the title structure, the H···Cl distance is 2.72 Å with a C—H···Cl angle of 145.0°. These parameters would place the C—H···Cl interaction for the title structure very nearly at the median of the structures analyzed by Allen et al. (2013).

In the structure reported here, the CoCl42- ion is also distorted from perfect tetrahedral geometry with the Cl—Co—Cl angles involved in the hydrogen bonding compressed to 100.04 (2)° and the remaining Cl—Co—Cl angles are 114.385 (12)°. While it is important not to make too much of a qualitative observation, the strength of the C—H···Cl interaction may also be responsible for the relative stability of these crystals in open air. Our experience is that, in the abence of a significant attractive interaction, dichlromethane molecules quite easily evaporate from crystals with loss of crystallinity at room temperature.

Related literature top

For a related structure with a (THF)2LiCl2CoCl2 mono anion and the decamethylcobaltocenium ion, see Dehnen & Zimmermann (2000) (CCDC 135478)·The structure of a related dimer synthesized by Koelle et al. (1986) was determined by Olson & Dahl (1986) (CCDC 566220). Allen et al. (2013) discuss the role of chloroform and dichloromethane solvent molecules in crystal packing.

Experimental top

The procedure described by Koelle et al.(1986) was followed using lithium pentamethylcyclopentadienide (LiCp*) and anhydrous cobalt(II) chloride in tetrahydrofuran. Instead of obtaining the hexane soluble brown dimer as described, the reaction produced a green solid. Dissolution of the solid in dichloromethane followed by slow diffusion of diethyl ether produced well formed green prisms of the title compound that are very air stable and retain the dichloromethane of solvation even after several weeks exposure to the open atmosphere at room temperature.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Plot of the title compound displaying the complete molecular fragments with thermal ellipsoids shown at 50% probability level. Only the major component (76.3 (4)%) of the disordered dichloromethane solvate is shown. Symmetry codes: (1) 3/2 - x, 1/2 - y, z; (2) 3/2 - x, 3/2 - y, z; (3) y, 3/2 - x, 3/2 - z; (4) 3/2 - y, x, 3/2 - z
[Figure 2] Fig. 2. Thermal ellipsoid plot of the CoCl4-2 ion showing C—H···Cl interactions with the dichloromethane solvate. Atoms are named with the symmetry operation that generated them. Only the major component (76.3 (4)%) of the disordered dichloromethane solvate is shown.
Bis[bis(pentamethylcyclopentadienyl)cobalt(III)] tetrachloridocobaltate(II) dichloromethane disolvate top
Crystal data top
[Co(C10H15)2]2[CoCl4]·2CH2Cl2Dx = 1.408 Mg m3
Mr = 1029.32Mo Kα radiation, λ = 0.7107 Å
Tetragonal, P42/nCell parameters from 8251 reflections
a = 12.20980 (12) Åθ = 4.2–32.2°
c = 16.2811 (3) ŵ = 1.48 mm1
V = 2427.17 (7) Å3T = 101 K
Z = 2Prism, clear green
F(000) = 10660.27 × 0.24 × 0.18 mm
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
4161 independent reflections
Radiation source: Enhance (Mo) X-ray Source3394 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.0122 pixels mm-1θmax = 32.5°, θmin = 3.4°
ω scansh = 1817
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2013)
k = 1812
Tmin = 0.755, Tmax = 0.821l = 2421
26858 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: constr
wR(F2) = 0.091H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0319P)2 + 2.9104P]
where P = (Fo2 + 2Fc2)/3
4161 reflections(Δ/σ)max = 0.001
130 parametersΔρmax = 1.21 e Å3
0 restraintsΔρmin = 1.07 e Å3
Crystal data top
[Co(C10H15)2]2[CoCl4]·2CH2Cl2Z = 2
Mr = 1029.32Mo Kα radiation
Tetragonal, P42/nµ = 1.48 mm1
a = 12.20980 (12) ÅT = 101 K
c = 16.2811 (3) Å0.27 × 0.24 × 0.18 mm
V = 2427.17 (7) Å3
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
4161 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2013)
3394 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 0.821Rint = 0.037
26858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.04Δρmax = 1.21 e Å3
4161 reflectionsΔρmin = 1.07 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.75000.25000.361342 (19)0.01381 (8)
C10.86792 (13)0.37038 (14)0.36190 (10)0.0171 (3)
C20.79973 (13)0.38033 (14)0.29066 (10)0.0169 (3)
C30.68885 (14)0.39523 (14)0.31700 (11)0.0193 (3)
C40.68838 (14)0.39480 (15)0.40471 (11)0.0206 (3)
C50.79870 (14)0.37984 (14)0.43257 (10)0.0188 (3)
C60.98932 (14)0.35672 (16)0.36341 (11)0.0221 (3)
H6A1.00950.31020.40850.033*
H6B1.02350.42700.36990.033*
H6C1.01310.32420.31280.033*
C70.83672 (15)0.38171 (16)0.20305 (11)0.0231 (4)
H7A0.90520.34360.19840.035*
H7B0.84590.45610.18530.035*
H7C0.78280.34640.16930.035*
C80.59249 (15)0.41374 (17)0.26198 (13)0.0268 (4)
H8A0.59870.36780.21440.040*
H8B0.59060.48910.24520.040*
H8C0.52630.39620.29100.040*
C90.59133 (16)0.41372 (19)0.45881 (14)0.0318 (4)
H9A0.52560.39660.42920.048*
H9B0.58960.48910.47560.048*
H9C0.59650.36760.50640.048*
C100.83534 (17)0.38163 (18)0.52022 (12)0.0281 (4)
H10A0.78140.34620.55390.042*
H10B0.84430.45610.53790.042*
H10C0.90390.34370.52510.042*
Co21.25000.25000.25000.01550 (10)
Cl11.11315 (3)0.29420 (4)0.15956 (3)0.02050 (9)
C111.25000.25000.5298 (2)0.0505 (9)
H1.21500.19640.49460.061*0.3825 (19)
HA1.28500.30360.49460.061*0.3825 (19)
HB1.24690.18590.49460.061*0.1175 (19)
HC1.25310.31410.49460.061*0.1175 (19)
Cl21.35262 (12)0.1830 (2)0.58797 (8)0.0726 (5)0.765 (4)
Cl2A1.3635 (4)0.2446 (6)0.5851 (3)0.0726 (5)0.235 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01106 (14)0.01787 (15)0.01251 (14)0.00152 (11)0.0000.000
C10.0155 (7)0.0193 (7)0.0167 (7)0.0010 (6)0.0006 (6)0.0008 (6)
C20.0162 (7)0.0183 (7)0.0163 (7)0.0004 (6)0.0001 (6)0.0012 (6)
C30.0172 (7)0.0186 (7)0.0221 (8)0.0032 (6)0.0017 (6)0.0003 (6)
C40.0186 (8)0.0208 (8)0.0224 (8)0.0032 (6)0.0015 (6)0.0042 (6)
C50.0177 (7)0.0217 (8)0.0171 (7)0.0002 (6)0.0007 (6)0.0042 (6)
C60.0151 (7)0.0317 (9)0.0195 (8)0.0029 (7)0.0005 (6)0.0007 (7)
C70.0219 (8)0.0304 (9)0.0169 (8)0.0021 (7)0.0005 (6)0.0031 (7)
C80.0191 (8)0.0298 (9)0.0316 (10)0.0068 (7)0.0050 (7)0.0037 (8)
C90.0223 (9)0.0390 (11)0.0342 (11)0.0054 (8)0.0083 (8)0.0124 (9)
C100.0272 (9)0.0399 (11)0.0171 (8)0.0027 (8)0.0007 (7)0.0060 (8)
Co20.01459 (13)0.01459 (13)0.0173 (2)0.0000.0000.000
Cl10.01695 (18)0.0238 (2)0.02071 (18)0.00320 (14)0.00162 (14)0.00033 (15)
C110.056 (2)0.069 (3)0.0266 (16)0.000 (2)0.0000.000
Cl20.0681 (7)0.0970 (14)0.0527 (5)0.0388 (9)0.0021 (5)0.0055 (8)
Cl2A0.0681 (7)0.0970 (14)0.0527 (5)0.0388 (9)0.0021 (5)0.0055 (8)
Geometric parameters (Å, º) top
Co1—C1i2.0576 (17)C7—H7B0.9600
Co1—C12.0576 (17)C7—H7C0.9600
Co1—C2i2.0556 (17)C8—H8A0.9600
Co1—C22.0556 (17)C8—H8B0.9600
Co1—C32.0550 (17)C8—H8C0.9600
Co1—C3i2.0550 (17)C9—H9A0.9600
Co1—C4i2.0470 (17)C9—H9B0.9600
Co1—C42.0470 (17)C9—H9C0.9600
Co1—C5i2.0521 (17)C10—H10A0.9600
Co1—C52.0522 (17)C10—H10B0.9600
C1—C21.433 (2)C10—H10C0.9600
C1—C51.432 (2)Co2—Cl1ii2.2915 (4)
C1—C61.492 (2)Co2—Cl1iii2.2915 (4)
C2—C31.432 (2)Co2—Cl12.2915 (4)
C2—C71.496 (2)Co2—Cl1iv2.2915 (4)
C3—C41.428 (3)C11—H0.9700
C3—C81.496 (2)C11—HA0.9700
C4—C51.433 (2)C11—HB0.9700
C4—C91.494 (3)C11—HC0.9700
C5—C101.496 (3)C11—Cl2iii1.771 (2)
C6—H6A0.9600C11—Cl21.771 (2)
C6—H6B0.9600C11—Cl2Aiii1.654 (5)
C6—H6C0.9600C11—Cl2A1.654 (5)
C7—H7A0.9600
C1—Co1—C1i179.49 (9)C9—C4—Co1128.93 (14)
C2—Co1—C1i139.66 (7)C1—C5—Co169.81 (9)
C2i—Co1—C1i40.78 (6)C1—C5—C4108.10 (15)
C2—Co1—C140.78 (6)C1—C5—C10126.23 (16)
C2i—Co1—C1139.66 (7)C4—C5—Co169.34 (10)
C2—Co1—C2i111.91 (9)C4—C5—C10125.54 (16)
C3—Co1—C1i111.33 (7)C10—C5—Co1129.57 (14)
C3i—Co1—C1i68.86 (7)C1—C6—H6A109.5
C3i—Co1—C1111.33 (7)C1—C6—H6B109.5
C3—Co1—C168.86 (7)C1—C6—H6C109.5
C3i—Co1—C2111.35 (7)H6A—C6—H6B109.5
C3—Co1—C240.77 (7)H6A—C6—H6C109.5
C3—Co1—C2i111.35 (7)H6B—C6—H6C109.5
C3i—Co1—C2i40.77 (7)C2—C7—H7A109.5
C3—Co1—C3i138.87 (10)C2—C7—H7B109.5
C4i—Co1—C1110.99 (7)C2—C7—H7C109.5
C4—Co1—C168.82 (7)H7A—C7—H7B109.5
C4—Co1—C1i110.99 (7)H7A—C7—H7C109.5
C4i—Co1—C1i68.82 (7)H7B—C7—H7C109.5
C4i—Co1—C2i68.47 (7)C3—C8—H8A109.5
C4i—Co1—C2138.86 (7)C3—C8—H8B109.5
C4—Co1—C268.47 (7)C3—C8—H8C109.5
C4—Co1—C2i138.86 (7)H8A—C8—H8B109.5
C4i—Co1—C3179.56 (8)H8A—C8—H8C109.5
C4—Co1—C340.75 (7)H8B—C8—H8C109.5
C4i—Co1—C3i40.74 (7)C4—C9—H9A109.5
C4—Co1—C3i179.56 (8)C4—C9—H9B109.5
C4i—Co1—C4139.65 (11)C4—C9—H9C109.5
C4i—Co1—C5i40.92 (7)H9A—C9—H9B109.5
C4i—Co1—C5111.46 (7)H9A—C9—H9C109.5
C4—Co1—C5i111.46 (7)H9B—C9—H9C109.5
C4—Co1—C540.92 (7)C5—C10—H10A109.5
C5—Co1—C140.79 (7)C5—C10—H10B109.5
C5i—Co1—C1138.77 (7)C5—C10—H10C109.5
C5i—Co1—C1i40.79 (7)H10A—C10—H10B109.5
C5—Co1—C1i138.77 (7)H10A—C10—H10C109.5
C5—Co1—C2i179.55 (7)H10B—C10—H10C109.5
C5i—Co1—C2i68.45 (7)Cl1iii—Co2—Cl1ii114.385 (12)
C5i—Co1—C2179.55 (7)Cl1iii—Co2—Cl1100.04 (2)
C5—Co1—C268.45 (7)Cl1ii—Co2—Cl1114.385 (11)
C5i—Co1—C3139.45 (7)Cl1iii—Co2—Cl1iv114.386 (11)
C5—Co1—C368.73 (7)Cl1ii—Co2—Cl1iv100.04 (2)
C5—Co1—C3i139.45 (7)Cl1—Co2—Cl1iv114.385 (11)
C5i—Co1—C3i68.72 (7)H—C11—HA107.5
C5i—Co1—C5111.19 (10)H—C11—HC102.2
C2—C1—Co169.54 (9)HA—C11—HB102.2
C2—C1—C6126.87 (15)HB—C11—HC107.6
C5—C1—Co169.40 (10)Cl2iii—C11—H108.4
C5—C1—C2107.49 (14)Cl2—C11—H108.4
C5—C1—C6125.60 (15)Cl2iii—C11—HA108.4
C6—C1—Co1127.98 (13)Cl2—C11—HA108.4
C1—C2—Co169.69 (9)Cl2iii—C11—HB131.4
C1—C2—C7126.67 (15)Cl2—C11—HB88.3
C3—C2—Co169.59 (10)Cl2iii—C11—HC88.3
C3—C2—C1108.52 (14)Cl2—C11—HC131.4
C3—C2—C7124.72 (15)Cl2—C11—Cl2iii115.3 (2)
C7—C2—Co1129.17 (13)Cl2Aiii—C11—H88.8
C2—C3—Co169.64 (9)Cl2A—C11—H131.6
C2—C3—C8125.70 (16)Cl2Aiii—C11—HA131.6
C4—C3—Co169.33 (10)Cl2A—C11—HA88.8
C4—C3—C2107.63 (15)Cl2A—C11—HB108.7
C4—C3—C8126.60 (16)Cl2Aiii—C11—HB108.7
C8—C3—Co1128.79 (13)Cl2A—C11—HC108.7
C3—C4—Co169.93 (10)Cl2Aiii—C11—HC108.7
C3—C4—C5108.25 (15)Cl2A—C11—Cl2iii108.7 (2)
C3—C4—C9126.30 (17)Cl2Aiii—C11—Cl2108.7 (2)
C5—C4—Co169.73 (10)Cl2A—C11—Cl2Aiii114.1 (4)
C5—C4—C9125.35 (17)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) y+1, x+3/2, z+1/2; (iii) x+5/2, y+1/2, z; (iv) y+3/2, x1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H···Cl1iv0.972.713.548 (3)145
C11—HA···Cl1ii0.972.713.548 (3)145
Symmetry codes: (ii) y+1, x+3/2, z+1/2; (iv) y+3/2, x1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H···Cl1i0.972.713.548 (3)145.0
C11—HA···Cl1ii0.972.713.548 (3)145.0
Symmetry codes: (i) y+3/2, x1, z+1/2; (ii) y+1, x+3/2, z+1/2.
 

Acknowledgements

The authors thank the US National Science Foundation for funding (grant No. CHE-01311288) for the purchase of the Oxford Diffraction Xcalibur2 single-crystal diffractometer.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Wood, P. A. & Galek, P. T. A. (2013). Acta Cryst. B69, 379–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDehnen, S. & Zimmermann, C. (2000). Chem. Eur. J. 6, 2256–2261.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKoelle, U., Fuss, B., Belting, M. & Raabe, E. (1986). Organometallics, 5, 980–987.  CSD CrossRef CAS Web of Science Google Scholar
First citationOlson, W. L. & Dahl, L. F. (1986). Acta Cryst. C42, 541–544.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds