organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Ethyl­enediaminium bis­­(2-benzamido­benzoate)

aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: kimyogar8221@mail.ru

(Received 17 June 2013; accepted 28 July 2013; online 7 August 2013)

In the title salt, C2H10N22+·2C14H10NO3, the ethyl­ene­diaminium dication lies on an inversion centre. In the anion, the benzene rings make a dihedral angle of 33.87 (9)° and intramolecular N—H⋯O and C—H⋯O hydrogen bonds occur. All the amino H atoms are involved in N—H⋯O hydrogen bonds. These hydrogen bonds link the ionic units into a three-dimensional network. In addition, the crystal structure also features weak C—H⋯O inter­actions.

Related literature

For the crystal structure of 1,2-ethyl­enedi­ammonium salts of aromatic acids, see: Shen-Tu et al. (2008[Shen-Tu, C., Ma, L.-L., Xu, W., Chen, Y. & Jin, Z.-M. (2008). Acta Cryst. E64, o346.]); Zhao & Feng (2011[Zhao, L. & Feng, L. (2011). Acta Cryst. E67, o1789.]). For the crystal structure of the 2-benzamido­benzoyl acid CuII coordination compound, see: Kaizer et al. (2006[Kaizer, J., Csay, T., Speier, G., Reglier, M. & Giorgi, M. (2006). Inorg. Chem. Commun. 9, 1037-1039.]).

[Scheme 1]

Experimental

Crystal data
  • 0.5C2H10N22+·C14H10NO3

  • Mr = 271.29

  • Monoclinic, P 21 /n

  • a = 5.314 (1) Å

  • b = 13.745 (2) Å

  • c = 18.580 (4) Å

  • β = 93.66 (2)°

  • V = 1354.3 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 293 K

  • 0.6 × 0.3 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.699, Tmax = 1.000

  • 5702 measured reflections

  • 2772 independent reflections

  • 1851 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 0.95

  • 2772 reflections

  • 197 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.90 (2) 1.81 (2) 2.608 (2) 146.8 (19)
N1s—H1A⋯O1 0.94 (2) 1.89 (2) 2.807 (2) 165 (2)
N1s—H1B⋯O3i 0.98 (2) 1.76 (2) 2.729 (2) 170 (2)
N1s—H1C⋯O2ii 0.94 (2) 1.84 (2) 2.753 (2) 163 (2)
C2s—H2B⋯O3iii 0.97 2.59 3.315 (2) 131
C6—H6⋯O3iii 0.93 2.50 3.319 (2) 147
C9—H9⋯O1 0.93 2.25 2.863 (2) 123
Symmetry codes: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The asymmetric unit is composed of one 2-benzamidobenzoate anion and one-half of the ethylenediaminium cation (Fig. 1). In the 2-benzamidobenzoate anion the carboxylate group is slightly rotated with respect to the benzene ring, the dihedral angle between the mean planes is 6.1 (1)°, while the peptide bond exhibits an angle of 6.1 (8)° relative to the benzene ring. The angle between the peptide bond and the second benzene ring is 29.6 (7)°. An intramolecular N—H···O hydrogen bond is observed between the amino group and one O atom of the carboxylate (Table 1). Both amine N atoms of the ethylenediamine are protonated and all nitrogen H atoms are involved in N—H···O hydrogen bonds (Table 1, Fig. 2). In the crystal structure, anions are bridged by diammonium N–H(b) and N–H(c) bonds via the carboxylate O atoms forming centrosymmetrical H-bonded strands along the a axis. Other intermolecular N—H···O hydrogen bonds between the diammonium N–H(a) bonds and the carbonyl O atoms link these strands into sheets parallel to (011) and (0–11) planes forming a three-dimensional network. In addition, C—H···O weak interactions further stabilize the crystal structure. Some related crystal structures of interest were previously reported by Shen-Tu et al. (2008), Zhao and Feng (2011) and Kaizer et al. (2006).

Related literature top

For the crystal structure of 1,2-ethylenediammonium salts of aromatic acids, see: Shen-Tu et al. (2008); Zhao & Feng (2011). For the crystal structure of the 2-benzamidobenzoyl acid CuII coordination compound, see: Kaizer et al. (2006).

Experimental top

A 1:2 mixture of 1,2-ethylenediamine and 2-benzamidobenzoic acid were dissolved in ethanol. Colourless prismatic crystals suitable for a X-ray analysis were obtained after 5 days.

Refinement top

Carbon-bound H atoms were placed geometrically and treated as riding on their parent atoms with C—H = 0.93 Å (aromatic) and 0.97 Å (methylen) with Uiso(H) = 1.2Ueq(C). Nitrogen-bound H atoms, all involved in hydrogen bonds, were located by difference Fourier synthesis and refined isotropically with distance restraints. The refined N–H bonds are in the range of 0.90 (2) - 0.98 (2) Å.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the crystal structure along the a axis showing N—H···O hydrogen bonds (dashed lines).
1,2-Ethylenediaminium bis(2-benzamidobenzoate) top
Crystal data top
0.5C2H10N22+·C14H10NO3F(000) = 572
Mr = 271.29Dx = 1.331 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 753 reflections
a = 5.314 (1) Åθ = 4.0–75.3°
b = 13.745 (2) ŵ = 0.77 mm1
c = 18.580 (4) ÅT = 293 K
β = 93.66 (2)°Prism, colourless
V = 1354.3 (4) Å30.6 × 0.3 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
2772 independent reflections
Radiation source: fine-focus sealed tube1851 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.2576 pixels mm-1θmax = 75.9°, θmin = 4.0°
ω scansh = 56
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1616
Tmin = 0.699, Tmax = 1.000l = 2323
5702 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.068P)2]
where P = (Fo2 + 2Fc2)/3
2772 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.15 e Å3
3 restraintsΔρmin = 0.17 e Å3
Crystal data top
0.5C2H10N22+·C14H10NO3V = 1354.3 (4) Å3
Mr = 271.29Z = 4
Monoclinic, P21/nCu Kα radiation
a = 5.314 (1) ŵ = 0.77 mm1
b = 13.745 (2) ÅT = 293 K
c = 18.580 (4) Å0.6 × 0.3 × 0.2 mm
β = 93.66 (2)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
2772 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1851 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 1.000Rint = 0.029
5702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0423 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.15 e Å3
2772 reflectionsΔρmin = 0.17 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9888 (3)0.12659 (9)0.12307 (7)0.0596 (4)
O21.0308 (2)0.35350 (9)0.32469 (7)0.0589 (4)
O31.3389 (2)0.35553 (9)0.41015 (6)0.0563 (4)
N11.0384 (3)0.22290 (11)0.22300 (7)0.0441 (3)
H10.990 (4)0.2773 (15)0.2457 (11)0.069 (6)*
C10.7412 (3)0.27034 (13)0.12662 (9)0.0441 (4)
C20.5906 (3)0.32616 (14)0.16836 (10)0.0528 (5)
H20.60890.32210.21840.063*
C30.4114 (4)0.38855 (16)0.13553 (13)0.0678 (6)
H30.30840.42560.16350.081*
C40.3873 (4)0.39519 (17)0.06148 (14)0.0761 (7)
H40.26670.43640.03940.091*
C50.5398 (5)0.34150 (18)0.02018 (12)0.0758 (7)
H50.52560.34760.02980.091*
C60.7144 (4)0.27842 (15)0.05216 (10)0.0592 (5)
H60.81480.24100.02370.071*
C70.9329 (3)0.19958 (13)0.15740 (8)0.0440 (4)
C81.2370 (3)0.17703 (12)0.26353 (8)0.0407 (4)
C91.3484 (4)0.09159 (13)0.24163 (9)0.0517 (4)
H91.28730.06110.19940.062*
C101.5489 (4)0.05158 (14)0.28199 (10)0.0582 (5)
H101.62290.00540.26650.070*
C111.6410 (4)0.09508 (15)0.34524 (11)0.0609 (5)
H111.77530.06760.37260.073*
C121.5309 (3)0.17992 (14)0.36727 (9)0.0528 (5)
H121.59310.20920.40990.063*
C131.3301 (3)0.22301 (12)0.32778 (8)0.0405 (4)
C141.2281 (3)0.31706 (13)0.35585 (8)0.0431 (4)
N1S0.7225 (3)0.04084 (12)0.07687 (8)0.0487 (4)
H1A0.784 (4)0.0205 (12)0.0916 (10)0.074 (7)*
H1B0.869 (4)0.0844 (15)0.0810 (12)0.086 (7)*
H1C0.612 (4)0.0677 (16)0.1087 (10)0.081 (7)*
C2S0.6042 (3)0.03697 (13)0.00242 (8)0.0455 (4)
H2A0.53690.10050.01100.055*
H2B0.73030.01990.03090.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0732 (8)0.0542 (8)0.0492 (7)0.0034 (7)0.0132 (6)0.0188 (6)
O20.0714 (9)0.0551 (8)0.0482 (7)0.0153 (7)0.0127 (6)0.0139 (6)
O30.0657 (8)0.0587 (8)0.0432 (6)0.0028 (7)0.0074 (5)0.0163 (6)
N10.0558 (8)0.0405 (8)0.0349 (7)0.0005 (7)0.0062 (6)0.0052 (6)
C10.0458 (9)0.0437 (9)0.0417 (8)0.0107 (7)0.0059 (7)0.0015 (7)
C20.0517 (10)0.0550 (11)0.0515 (10)0.0089 (9)0.0014 (8)0.0004 (9)
C30.0528 (11)0.0610 (13)0.0891 (16)0.0023 (10)0.0010 (10)0.0037 (12)
C40.0657 (13)0.0706 (15)0.0881 (17)0.0003 (12)0.0257 (12)0.0134 (13)
C50.0872 (16)0.0810 (16)0.0556 (12)0.0008 (14)0.0229 (11)0.0081 (11)
C60.0674 (12)0.0656 (12)0.0425 (9)0.0035 (10)0.0127 (8)0.0046 (9)
C70.0515 (9)0.0440 (9)0.0359 (8)0.0081 (8)0.0017 (7)0.0048 (7)
C80.0482 (9)0.0382 (8)0.0352 (8)0.0022 (7)0.0009 (6)0.0007 (7)
C90.0648 (11)0.0439 (9)0.0454 (9)0.0003 (9)0.0052 (8)0.0072 (8)
C100.0667 (12)0.0472 (10)0.0599 (11)0.0112 (9)0.0026 (9)0.0058 (9)
C110.0630 (12)0.0580 (12)0.0595 (11)0.0127 (10)0.0142 (9)0.0045 (10)
C120.0580 (11)0.0560 (11)0.0426 (9)0.0020 (9)0.0108 (8)0.0054 (8)
C130.0469 (9)0.0403 (9)0.0341 (8)0.0035 (7)0.0008 (6)0.0004 (7)
C140.0528 (9)0.0442 (9)0.0320 (7)0.0032 (8)0.0006 (6)0.0015 (7)
N1S0.0525 (9)0.0487 (9)0.0438 (8)0.0061 (8)0.0055 (7)0.0056 (7)
C2S0.0531 (10)0.0462 (9)0.0368 (8)0.0016 (8)0.0000 (7)0.0001 (7)
Geometric parameters (Å, º) top
O1—C71.235 (2)C8—C91.388 (2)
O2—C141.268 (2)C8—C131.412 (2)
O3—C141.2523 (18)C9—C101.377 (2)
N1—C71.3474 (19)C9—H90.9300
N1—C81.406 (2)C10—C111.380 (2)
N1—H10.90 (2)C10—H100.9300
C1—C21.382 (3)C11—C121.378 (3)
C1—C61.386 (2)C11—H110.9300
C1—C71.495 (2)C12—C131.388 (2)
C2—C31.393 (3)C12—H120.9300
C2—H20.9300C13—C141.508 (2)
C3—C41.377 (3)N1S—C2S1.483 (2)
C3—H30.9300N1S—H1A0.940 (15)
C4—C51.367 (3)N1S—H1B0.983 (16)
C4—H40.9300N1S—H1C0.936 (15)
C5—C61.376 (3)C2S—C2Si1.501 (3)
C5—H50.9300C2S—H2A0.9700
C6—H60.9300C2S—H2B0.9700
C7—N1—C8129.24 (16)C8—C9—H9119.7
C7—N1—H1120.3 (13)C9—C10—C11120.70 (18)
C8—N1—H1110.4 (13)C9—C10—H10119.7
C2—C1—C6119.29 (18)C11—C10—H10119.7
C2—C1—C7123.45 (15)C12—C11—C10119.03 (17)
C6—C1—C7117.25 (17)C12—C11—H11120.5
C1—C2—C3120.02 (18)C10—C11—H11120.5
C1—C2—H2120.0C11—C12—C13122.03 (16)
C3—C2—H2120.0C11—C12—H12119.0
C4—C3—C2119.7 (2)C13—C12—H12119.0
C4—C3—H3120.1C12—C13—C8118.15 (16)
C2—C3—H3120.1C12—C13—C14117.66 (14)
C5—C4—C3120.3 (2)C8—C13—C14124.19 (14)
C5—C4—H4119.9O3—C14—O2122.25 (16)
C3—C4—H4119.9O3—C14—C13118.66 (15)
C4—C5—C6120.3 (2)O2—C14—C13119.07 (14)
C4—C5—H5119.8C2S—N1S—H1A111.1 (12)
C6—C5—H5119.8C2S—N1S—H1B112.5 (14)
C5—C6—C1120.3 (2)H1A—N1S—H1B105.2 (18)
C5—C6—H6119.8C2S—N1S—H1C110.9 (13)
C1—C6—H6119.8H1A—N1S—H1C113.1 (19)
O1—C7—N1124.08 (17)H1B—N1S—H1C103.8 (19)
O1—C7—C1120.75 (14)N1S—C2S—C2Si110.32 (17)
N1—C7—C1115.16 (15)N1S—C2S—H2A109.6
C9—C8—N1122.83 (15)C2Si—C2S—H2A109.6
C9—C8—C13119.58 (15)N1S—C2S—H2B109.6
N1—C8—C13117.55 (15)C2Si—C2S—H2B109.6
C10—C9—C8120.52 (16)H2A—C2S—H2B108.1
C10—C9—H9119.7
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.90 (2)1.81 (2)2.608 (2)146.8 (19)
N1s—H1A···O10.94 (2)1.89 (2)2.807 (2)165 (2)
N1s—H1B···O3ii0.98 (2)1.76 (2)2.729 (2)170 (2)
N1s—H1C···O2iii0.94 (2)1.84 (2)2.753 (2)163 (2)
C2s—H2B···O3iv0.972.593.315 (2)131
C6—H6···O3iv0.932.503.319 (2)147
C9—H9···O10.932.252.863 (2)123
C12—H12···O30.932.422.758 (2)101
Symmetry codes: (ii) x+5/2, y1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.90 (2)1.81 (2)2.608 (2)146.8 (19)
N1s—H1A···O10.94 (2)1.89 (2)2.807 (2)165.1 (18)
N1s—H1B···O3i0.98 (2)1.76 (2)2.729 (2)170.4 (19)
N1s—H1C···O2ii0.94 (2)1.84 (2)2.753 (2)163 (2)
C2s—H2B···O3iii0.972.593.315 (2)131
C6—H6···O3iii0.932.503.319 (2)147
C9—H9···O10.932.252.863 (2)123
C12—H12···O30.932.422.758 (2)101
Symmetry codes: (i) x+5/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbek­istan (No. FA–F3–T-141).

References

First citationKaizer, J., Csay, T., Speier, G., Reglier, M. & Giorgi, M. (2006). Inorg. Chem. Commun. 9, 1037–1039.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen-Tu, C., Ma, L.-L., Xu, W., Chen, Y. & Jin, Z.-M. (2008). Acta Cryst. E64, o346.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, L. & Feng, L. (2011). Acta Cryst. E67, o1789.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds