organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl N-(thio­phen-2-yl)carbamate

aDepartment of Chemistry & Biochemistry, Texas Tech University, Memorial Circle & Boston, Lubbock, TX 79409, USA
*Correspondence e-mail: michael.findlater@ttu.edu

(Received 26 July 2013; accepted 6 August 2013; online 14 August 2013)

In the title compound, C9H13NO2S, the dihedral angle between the thiophene ring and the carbamate group is 15.79 (14)°. In the crystal structure, intra­molecular C—H⋯O inter­actions in tandem with the tert-butyl groups render the packing of adjacent mol­ecules in the [001] direction nearly perpendicular [the angle between adjacent thio­phene rings is 74.83 (7)°]. An inter­molecular N—H⋯O hydrogen bond gives rise to a chain extending along [001]. The crystal studied was found to be a racemic twin.

Related literature

For the synthesis of the title compound, see: Binder et al. (1977[Binder, D., Habison, G. & Noe, C. R. (1977). Synthesis, pp. 255-256.]); Kruse et al. (1989[Kruse, L. I., Ladd, D. L., Harrsch, P. B., McCabe, F. L., Mong, S.-M., Faucette, L. & Johnson, R. (1989). J. Med. Chem. 32, 409-417.]). For related structures, see: Arsenyan et al. (2008[Arsenyan, P., Petrenko, A. & Belyakov, S. (2008). Tetrahedron Lett. 49, 5255-5257.]); Elshaarawy & Janiak (2011[Elshaarawy, R. F. & Janiak, C. (2011). Z. Naturforsch. Teil B, 66, 1201-1208.]); Low et al. (2009[Low, J. N., Quesada, A., Santos, L. M. N. B. F., Schröder, B. & Gomes, L. R. (2009). J. Chem. Crystallogr. 39, 747-752.]); Hsu et al. (2013[Hsu, G. C., Singer, L. M., Cordes, D. B. & Findlater, M. (2013). Acta Cryst. E69, o1298.]).

[Scheme 1]

Experimental

Crystal data
  • C9H13NO2S

  • Mr = 199.26

  • Orthorhombic, P c a 21

  • a = 11.732 (2) Å

  • b = 8.6513 (17) Å

  • c = 9.879 (2) Å

  • V = 1002.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 153 K

  • 0.20 × 0.10 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.944, Tmax = 0.977

  • 2112 measured reflections

  • 2112 independent reflections

  • 1816 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.078

  • S = 1.04

  • 2112 reflections

  • 125 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack x determined using 703 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: 0.53 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.90 (2) 2.04 (2) 2.920 (3) 165 (3)
C7—H7A⋯O1 0.98 2.33 2.938 (4) 119
C8—H8C⋯O1 0.98 2.55 3.109 (4) 116
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound tert-butyl N-(thiophene-2-yl)carbamate, C9H13NO2S, (Fig. 1) is a precursor in the synthesis of diimine ligands suitable for metal complex formation. This compound exhibits intramolecular methyl C7—H···O1 and C8—H···O1 interactions [2.938 (4) and 3.109 (4), respectively] in addition to bulky tert -butyl groups. These two features in tandem allow the packing in the crystal to be nearly perpendicular [the angle between adjacent thiophene rings = 74.83 (7)°]. An intermolecular N1—H···O1i hydrogen bond (Table 1) gives a one-dimensional chain which extends along [0 0 1]. The compound was synthesized via a typical Curtius Rearrangement from thiophene-2-carbonyl azide (Binder et al., 1977; Kruse et al., 1989).

Related literature top

For the synthesis of the title compound, see: Binder et al. (1977); Kruse et al. (1989). For related structures, see: Arsenyan et al. (2008); Elshaarawy & Janiak (2011); Low et al. (2009); Hsu et al. (2013).

Experimental top

The title compound was prepared by a typical Curtius Rearrangement. Thiophene-2-carbonyl azide (270 mg; 1.77 mmol) was reacted with 1.0 equivalent of tert-butyl alcohol (131 mg; 1.77 mmol) and dissolved in 15 ml of toluene. The solution was heated at 100 °C overnight. Excess solvent and tert-butyl alcohol was removed in vacuo. Crystals suitable for X-ray structure determination were obtained by cooling a toluene solution to -30 °C. 1H NMR (400 MHz, chloroform-d): δ=6.9(br, 1H, –NH), 6.79(m, 2H, –CH), 6.5(dd, 1H, –CH), 1.5(s, 9H, tBu).

Refinement top

The NH hydrogen atom was located from the difference-Fourier map and refined isotropically subject to a distance restraint (N—H = 0.98 Å). Carbon-bound H atoms were included in calculated positions (C—H distances are 0.98 Å for methyl H atoms and 0.95 Å for thiophene H atoms) and refined as riding atoms with Uiso(H) = 1.2 Ueq(thiophene H atom) or Uiso(H) = 1.5 Ueq(methyl H atom).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
tert-Butyl N-(thiophen-2-yl)carbamate top
Crystal data top
C9H13NO2SDx = 1.320 Mg m3
Mr = 199.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 1327 reflections
a = 11.732 (2) Åθ = 1.0–27.5°
b = 8.6513 (17) ŵ = 0.29 mm1
c = 9.879 (2) ÅT = 153 K
V = 1002.7 (3) Å3Rod, colorless
Z = 40.20 × 0.10 × 0.08 mm
F(000) = 424
Data collection top
Nonius KappaCCD
diffractometer
2112 independent reflections
Radiation source: fine-focus sealed tube1816 reflections with I > 2σ(I)
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
h = 1515
Tmin = 0.944, Tmax = 0.977k = 1111
2112 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0301P)2 + 0.2397P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2112 reflectionsΔρmax = 0.25 e Å3
125 parametersΔρmin = 0.19 e Å3
2 restraintsAbsolute structure: Flack x determined using 703 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.53 (4)
Crystal data top
C9H13NO2SV = 1002.7 (3) Å3
Mr = 199.26Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 11.732 (2) ŵ = 0.29 mm1
b = 8.6513 (17) ÅT = 153 K
c = 9.879 (2) Å0.20 × 0.10 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
2112 measured reflections
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
2112 independent reflections
Tmin = 0.944, Tmax = 0.9771816 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078Δρmax = 0.25 e Å3
S = 1.04Δρmin = 0.19 e Å3
2112 reflectionsAbsolute structure: Flack x determined using 703 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004).
125 parametersAbsolute structure parameter: 0.53 (4)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13622 (6)0.05380 (7)0.63359 (7)0.02745 (19)
O10.29399 (16)0.2992 (2)0.61913 (19)0.0273 (4)
O20.32467 (18)0.4564 (2)0.80079 (18)0.0289 (5)
N10.23352 (19)0.2367 (2)0.8305 (2)0.0224 (5)
H1N0.238 (3)0.264 (4)0.919 (2)0.036 (9)*
C10.1713 (2)0.1041 (3)0.7987 (3)0.0209 (5)
C20.1219 (3)0.0067 (3)0.8902 (3)0.0241 (6)
H20.13170.01500.98540.029*
C30.0542 (2)0.1082 (3)0.8269 (3)0.0289 (6)
H30.01370.18550.87540.035*
C40.0533 (3)0.0964 (3)0.6907 (3)0.0306 (7)
H40.01150.16350.63290.037*
C50.2857 (2)0.3295 (3)0.7389 (3)0.0220 (6)
C60.3798 (2)0.5829 (3)0.7233 (3)0.0250 (6)
C70.3034 (3)0.6385 (4)0.6108 (4)0.0438 (9)
H7A0.29280.55540.54460.066*
H7B0.33840.72800.56630.066*
H7C0.22920.66840.64830.066*
C80.4940 (3)0.5271 (4)0.6722 (4)0.0445 (9)
H8A0.53840.48560.74800.067*
H8B0.53540.61350.63100.067*
H8C0.48230.44580.60450.067*
C90.3945 (3)0.7083 (3)0.8284 (4)0.0459 (9)
H9A0.31960.74080.86170.069*
H9B0.43370.79700.78780.069*
H9C0.43990.66850.90400.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0369 (4)0.0261 (3)0.0194 (3)0.0050 (3)0.0003 (3)0.0034 (3)
O10.0377 (11)0.0268 (9)0.0173 (10)0.0043 (8)0.0014 (9)0.0012 (8)
O20.0425 (12)0.0258 (10)0.0182 (9)0.0120 (8)0.0029 (9)0.0003 (8)
N10.0293 (13)0.0232 (11)0.0147 (9)0.0051 (9)0.0006 (10)0.0009 (10)
C10.0234 (13)0.0211 (12)0.0183 (12)0.0033 (11)0.0000 (11)0.0012 (11)
C20.0277 (16)0.0226 (13)0.0221 (13)0.0002 (11)0.0017 (11)0.0006 (11)
C30.0300 (16)0.0227 (14)0.0340 (15)0.0037 (12)0.0002 (13)0.0029 (13)
C40.0329 (18)0.0259 (15)0.0330 (15)0.0030 (12)0.0029 (14)0.0039 (13)
C50.0238 (15)0.0227 (14)0.0195 (15)0.0016 (11)0.0023 (11)0.0005 (11)
C60.0288 (17)0.0228 (14)0.0234 (13)0.0047 (12)0.0053 (11)0.0019 (11)
C70.0453 (19)0.0306 (15)0.056 (2)0.0046 (14)0.0128 (18)0.0135 (16)
C80.0299 (17)0.0339 (16)0.070 (2)0.0022 (13)0.0128 (18)0.0021 (16)
C90.070 (2)0.0327 (17)0.0347 (17)0.0212 (17)0.0122 (17)0.0068 (15)
Geometric parameters (Å, º) top
S1—C41.718 (3)C4—H40.9500
S1—C11.737 (3)C6—C71.507 (4)
O1—C51.216 (3)C6—C81.511 (4)
O2—C51.337 (3)C6—C91.512 (4)
O2—C61.484 (3)C7—H7A0.9800
N1—C51.356 (3)C7—H7B0.9800
N1—C11.396 (3)C7—H7C0.9800
N1—H1N0.90 (2)C8—H8A0.9800
C1—C21.365 (4)C8—H8B0.9800
C2—C31.418 (4)C8—H8C0.9800
C2—H20.9500C9—H9A0.9800
C3—C41.350 (4)C9—H9B0.9800
C3—H30.9500C9—H9C0.9800
C4—S1—C190.88 (14)C7—C6—C8112.6 (3)
C5—O2—C6121.3 (2)O2—C6—C9103.0 (2)
C5—N1—C1124.9 (2)C7—C6—C9110.2 (3)
C5—N1—H1N117 (2)C8—C6—C9111.0 (3)
C1—N1—H1N118 (2)C6—C7—H7A109.5
C2—C1—N1125.4 (2)C6—C7—H7B109.5
C2—C1—S1111.5 (2)H7A—C7—H7B109.5
N1—C1—S1122.77 (19)C6—C7—H7C109.5
C1—C2—C3112.2 (3)H7A—C7—H7C109.5
C1—C2—H2123.9H7B—C7—H7C109.5
C3—C2—H2123.9C6—C8—H8A109.5
C4—C3—C2113.0 (3)C6—C8—H8B109.5
C4—C3—H3123.5H8A—C8—H8B109.5
C2—C3—H3123.5C6—C8—H8C109.5
C3—C4—S1112.3 (2)H8A—C8—H8C109.5
C3—C4—H4123.8H8B—C8—H8C109.5
S1—C4—H4123.8C6—C9—H9A109.5
O1—C5—O2126.4 (2)C6—C9—H9B109.5
O1—C5—N1123.9 (2)H9A—C9—H9B109.5
O2—C5—N1109.6 (2)C6—C9—H9C109.5
O2—C6—C7110.9 (2)H9A—C9—H9C109.5
O2—C6—C8108.8 (2)H9B—C9—H9C109.5
C5—N1—C1—C2177.5 (3)C1—S1—C4—C30.9 (3)
C5—N1—C1—S18.9 (4)C6—O2—C5—O13.3 (4)
C4—S1—C1—C20.9 (2)C6—O2—C5—N1176.4 (2)
C4—S1—C1—N1173.5 (2)C1—N1—C5—O17.8 (4)
N1—C1—C2—C3173.6 (2)C1—N1—C5—O2171.9 (2)
S1—C1—C2—C30.7 (3)C5—O2—C6—C754.5 (3)
C1—C2—C3—C40.0 (4)C5—O2—C6—C869.8 (3)
C2—C3—C4—S10.7 (4)C5—O2—C6—C9172.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.90 (2)2.04 (2)2.920 (3)165 (3)
C7—H7A···O10.982.332.938 (4)119
C8—H8C···O10.982.553.109 (4)116
Symmetry code: (i) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.90 (2)2.04 (2)2.920 (3)165 (3)
C7—H7A···O10.982.332.938 (4)119.0
C8—H8C···O10.982.553.109 (4)116.0
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the Robert A. Welch Foundation for their support of GCH via the Welch Summer Scholars Program, and Texas Tech University for start-up funds.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArsenyan, P., Petrenko, A. & Belyakov, S. (2008). Tetrahedron Lett. 49, 5255–5257.  Web of Science CSD CrossRef CAS Google Scholar
First citationBinder, D., Habison, G. & Noe, C. R. (1977). Synthesis, pp. 255–256.  CrossRef Google Scholar
First citationElshaarawy, R. F. & Janiak, C. (2011). Z. Naturforsch. Teil B, 66, 1201–1208.  Google Scholar
First citationHsu, G. C., Singer, L. M., Cordes, D. B. & Findlater, M. (2013). Acta Cryst. E69, o1298.  CSD CrossRef IUCr Journals Google Scholar
First citationKruse, L. I., Ladd, D. L., Harrsch, P. B., McCabe, F. L., Mong, S.-M., Faucette, L. & Johnson, R. (1989). J. Med. Chem. 32, 409–417.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLow, J. N., Quesada, A., Santos, L. M. N. B. F., Schröder, B. & Gomes, L. R. (2009). J. Chem. Crystallogr. 39, 747–752.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds