organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­benzoic acid–4,4′-bi­pyridine (2/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 10 August 2013; accepted 13 August 2013; online 17 August 2013)

The asymmetric unit of title co-crystal, C10H8N2·2C7H7NO2, comprises a centrosymmetric 4,4′-bi­pyridine mol­ecule, and a 2-amino­benzoic acid mol­ecule in a general position. The latter is effectively planar [C—C—C—O torsion angle = 5.0 (3)°] owing to an intra­molecular N—H⋯O(carbon­yl) hydrogen bond. Three-mol­ecule aggregates are formed via O—H⋯N(pyrid­yl) hydrogen bonds and these are connected into supra­molecular layers in the bc plane by N—H⋯O(carbon­yl) hydrogen bonds and ππ inter­actions between pyridyl and benzene rings [inter-centroid distance = 3.634 (2) Å]. Layers are connected along the a axis by weak ππ inter­actions between benzene rings [3.964 (2) Å].

Related literature

For co-crystals of 2-amino­benzoic acid with pyridyl derivatives, see: Arman, Kaulgud et al. (2012[Arman, H. D., Kaulgud, T., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. Cryst. Mat. 227, 227-232.]); Arman, Miller & Tiekink (2012[Arman, H. D., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. Cryst. Mat. 227, 825-830.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·2C7H7NO2

  • Mr = 430.46

  • Monoclinic, P 21 /c

  • a = 10.782 (5) Å

  • b = 10.998 (5) Å

  • c = 8.951 (4) Å

  • β = 107.215 (7)°

  • V = 1013.9 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 98 K

  • 0.46 × 0.11 × 0.09 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.723, Tmax = 1.000

  • 7849 measured reflections

  • 2320 independent reflections

  • 1932 reflections with I > 2σ(I)

  • Rint = 0.049

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.159

  • S = 1.11

  • 2320 reflections

  • 154 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2 0.88 (1) 2.02 (2) 2.697 (2) 132 (2)
O1—H1o⋯N2i 0.85 (1) 1.81 (1) 2.655 (2) 174 (2)
N1—H2n⋯O2ii 0.88 (2) 2.14 (2) 3.002 (3) 170 (2)
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title co-crystal, (I), was formed in continuation of on-going structural studies of co-crystals involving 2-aminobenzoic acid with various pyridyl derivatives (Arman, Kaulgud et al., 2012; Arman, Miller & Tiekink, 2012).

The asymmetric unit contains a molecule of 2-aminobenzoic acid in a general position, and half a molecule of 4,4'-bipyridine disposed about a centre of inversion, Fig. 1. The carboxylic acid is planar owing to the presence of an intramolecular N1—H···O2 hydrogen bond, Table 1, as seen in the C1—C2—C7—O2 torsion angle of 5.0 (3)°. The acid and base associate into a centrosymmetric three-molecule aggregate via O1—H···N2 hydrogen bonds, Fig. 2 and Table 1. These assemble into columns along the c axis via ππ interactions between the pyridyl and benzene rings [inter-centroid distance = 3.634 (2) Å], Fig. 2. Supramolecular layers in the bc plane are formed by N1—H···O2 hydrogen bonds, Table 1. Connections between layers along the a axis are weak ππ interactions between benzene rings [inter-centroid distance = 3.964 (2) Å for symmetry operation: -x, - y + 1, -z + 1] (Fig. 3.)

Related literature top

For co-crystals of 2-aminobenzoic acid with pyridyl derivatives, see: Arman, Kaulgud et al. (2012); Arman, Miller & Tiekink (2012).

Experimental top

Crystals of (I) were obtained by the co-crystallization of 2-aminobenzoic acid (Sigma-Aldrich, 0.18 mmol) and 4,4'-bipyridine (Sigma-Aldrich, 0.14 mmol) in chloroform solution. Crystals were obtained by slow evaporation.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O- and N-bound H-atoms were located in a difference Fourier map and were refined with distance restraints of O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O). Owing to being affected by the beam-stop, a reflection, i.e. (1 0 0), was omitted from the final cycles of refinement.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structures of the components of (I), showing atom-labelling scheme and displacement ellipsoids at the 50% probability level: (upper) 2-aminobenzoic acid and (lower) 4,4'-bipyridine. For symmetry code (i): -x + 1, -y + 1, -z + 1.
[Figure 2] Fig. 2. Detail of the ππ interactions between three-molecule aggregates in (I). The O—H···N and ππ interactions are shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. Unit-cell contents of (I) viewed in projection down the c axis. The N—H···O hydrogen bonds are shown blue dashed lines.
2-Aminobenzoic acid–4,4'-bipyridine (2/1) top
Crystal data top
C10H8N2·2C7H7NO2F(000) = 452
Mr = 430.46Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3691 reflections
a = 10.782 (5) Åθ = 2.0–40.7°
b = 10.998 (5) ŵ = 0.10 mm1
c = 8.951 (4) ÅT = 98 K
β = 107.215 (7)°Prism, yellow
V = 1013.9 (8) Å30.46 × 0.11 × 0.09 mm
Z = 2
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
2320 independent reflections
Radiation source: fine-focus sealed tube1932 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.723, Tmax = 1.000k = 1414
7849 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0786P)2 + 0.3371P]
where P = (Fo2 + 2Fc2)/3
2320 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.32 e Å3
4 restraintsΔρmin = 0.26 e Å3
Crystal data top
C10H8N2·2C7H7NO2V = 1013.9 (8) Å3
Mr = 430.46Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.782 (5) ŵ = 0.10 mm1
b = 10.998 (5) ÅT = 98 K
c = 8.951 (4) Å0.46 × 0.11 × 0.09 mm
β = 107.215 (7)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
2320 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1932 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 1.000Rint = 0.049
7849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0614 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.32 e Å3
2320 reflectionsΔρmin = 0.26 e Å3
154 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24135 (13)0.41046 (12)0.79067 (14)0.0227 (3)
H1O0.277 (2)0.426 (2)0.8863 (13)0.034*
O20.28109 (13)0.60804 (12)0.76583 (14)0.0227 (3)
N10.22588 (18)0.69761 (15)0.47292 (19)0.0275 (4)
H1N0.264 (2)0.711 (2)0.5733 (11)0.041*
H2N0.233 (2)0.7512 (18)0.4034 (19)0.041*
N20.35899 (15)0.44351 (14)0.09341 (17)0.0204 (4)
C10.17630 (16)0.58551 (17)0.4277 (2)0.0190 (4)
C20.17652 (16)0.49167 (16)0.53666 (19)0.0174 (4)
C30.11939 (16)0.37885 (17)0.4823 (2)0.0185 (4)
H30.11710.31730.55580.022*
C40.06660 (17)0.35534 (18)0.3247 (2)0.0216 (4)
H40.02910.27840.28970.026*
C50.06951 (17)0.44668 (19)0.2180 (2)0.0225 (4)
H50.03430.43120.10920.027*
C60.12234 (18)0.55891 (17)0.2671 (2)0.0211 (4)
H60.12250.61960.19160.025*
C70.23616 (16)0.51026 (16)0.7065 (2)0.0183 (4)
C80.35778 (17)0.35879 (17)0.2006 (2)0.0209 (4)
H80.31710.28310.16590.025*
C90.41319 (17)0.37652 (16)0.3599 (2)0.0190 (4)
H90.41220.31290.43130.023*
C100.47043 (16)0.48801 (16)0.41530 (18)0.0163 (4)
C110.46902 (18)0.57685 (17)0.3028 (2)0.0210 (4)
H110.50500.65490.33410.025*
C120.41485 (17)0.55033 (18)0.1457 (2)0.0225 (4)
H120.41740.61100.07120.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0326 (7)0.0183 (7)0.0149 (6)0.0019 (6)0.0036 (5)0.0017 (5)
O20.0302 (7)0.0181 (7)0.0193 (6)0.0021 (6)0.0065 (5)0.0038 (5)
N10.0423 (10)0.0171 (8)0.0225 (8)0.0046 (7)0.0087 (7)0.0027 (6)
N20.0229 (7)0.0210 (8)0.0167 (7)0.0022 (6)0.0048 (6)0.0001 (6)
C10.0198 (8)0.0165 (9)0.0216 (9)0.0025 (7)0.0076 (7)0.0007 (7)
C20.0198 (8)0.0162 (9)0.0167 (8)0.0026 (7)0.0064 (7)0.0002 (6)
C30.0193 (8)0.0168 (9)0.0197 (8)0.0015 (7)0.0061 (7)0.0015 (6)
C40.0211 (8)0.0195 (9)0.0227 (9)0.0018 (7)0.0043 (7)0.0028 (7)
C50.0219 (9)0.0276 (10)0.0164 (8)0.0031 (8)0.0030 (7)0.0002 (7)
C60.0246 (9)0.0213 (9)0.0176 (8)0.0056 (7)0.0066 (7)0.0037 (7)
C70.0198 (8)0.0173 (9)0.0185 (8)0.0013 (7)0.0065 (7)0.0016 (6)
C80.0239 (9)0.0186 (9)0.0197 (8)0.0004 (7)0.0059 (7)0.0024 (7)
C90.0227 (8)0.0163 (9)0.0179 (8)0.0010 (7)0.0056 (7)0.0011 (6)
C100.0155 (8)0.0182 (9)0.0156 (8)0.0009 (7)0.0053 (6)0.0015 (6)
C110.0254 (9)0.0186 (9)0.0185 (8)0.0040 (7)0.0054 (7)0.0012 (7)
C120.0259 (9)0.0226 (9)0.0184 (8)0.0008 (8)0.0054 (7)0.0026 (7)
Geometric parameters (Å, º) top
O1—C71.323 (2)C4—C51.393 (3)
O1—H1O0.845 (10)C4—H40.9500
O2—C71.233 (2)C5—C61.376 (3)
N1—C11.357 (2)C5—H50.9500
N1—H1N0.882 (9)C6—H60.9500
N1—H2N0.876 (9)C8—C91.387 (2)
N2—C121.340 (3)C8—H80.9500
N2—C81.341 (2)C9—C101.396 (3)
C1—C61.412 (2)C9—H90.9500
C1—C21.420 (2)C10—C111.400 (2)
C2—C31.407 (3)C10—C10i1.484 (3)
C2—C71.479 (2)C11—C121.385 (2)
C3—C41.380 (2)C11—H110.9500
C3—H30.9500C12—H120.9500
C7—O1—H1O109.8 (17)C5—C6—H6119.4
C1—N1—H1N118.5 (15)C1—C6—H6119.4
C1—N1—H2N120.5 (15)O2—C7—O1122.21 (16)
H1N—N1—H2N120.1 (16)O2—C7—C2123.99 (16)
C12—N2—C8117.25 (15)O1—C7—C2113.76 (15)
N1—C1—C6119.95 (16)N2—C8—C9123.08 (17)
N1—C1—C2122.33 (16)N2—C8—H8118.5
C6—C1—C2117.72 (17)C9—C8—H8118.5
C3—C2—C1119.46 (15)C8—C9—C10119.95 (16)
C3—C2—C7119.36 (15)C8—C9—H9120.0
C1—C2—C7121.18 (16)C10—C9—H9120.0
C4—C3—C2121.65 (16)C9—C10—C11116.62 (16)
C4—C3—H3119.2C9—C10—C10i122.0 (2)
C2—C3—H3119.2C11—C10—C10i121.4 (2)
C3—C4—C5118.65 (18)C12—C11—C10119.66 (17)
C3—C4—H4120.7C12—C11—H11120.2
C5—C4—H4120.7C10—C11—H11120.2
C6—C5—C4121.28 (17)N2—C12—C11123.39 (17)
C6—C5—H5119.4N2—C12—H12118.3
C4—C5—H5119.4C11—C12—H12118.3
C5—C6—C1121.18 (16)
N1—C1—C2—C3177.74 (16)C1—C2—C7—O25.0 (3)
C6—C1—C2—C32.4 (2)C3—C2—C7—O16.9 (2)
N1—C1—C2—C72.5 (3)C1—C2—C7—O1172.86 (16)
C6—C1—C2—C7177.36 (15)C12—N2—C8—C91.2 (3)
C1—C2—C3—C42.2 (3)N2—C8—C9—C101.9 (3)
C7—C2—C3—C4177.63 (16)C8—C9—C10—C110.5 (3)
C2—C3—C4—C50.6 (3)C8—C9—C10—C10i179.24 (19)
C3—C4—C5—C60.7 (3)C9—C10—C11—C121.3 (3)
C4—C5—C6—C10.3 (3)C10i—C10—C11—C12178.92 (19)
N1—C1—C6—C5178.94 (17)C8—N2—C12—C110.7 (3)
C2—C1—C6—C51.2 (3)C10—C11—C12—N22.0 (3)
C3—C2—C7—O2175.22 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O20.88 (1)2.02 (2)2.697 (2)132 (2)
O1—H1o···N2ii0.85 (1)1.81 (1)2.655 (2)174 (2)
N1—H2n···O2iii0.88 (2)2.14 (2)3.002 (3)170 (2)
Symmetry codes: (ii) x, y, z+1; (iii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O20.883 (11)2.024 (15)2.697 (2)132.1 (19)
O1—H1o···N2i0.846 (12)1.813 (12)2.655 (2)174 (2)
N1—H2n···O2ii0.877 (19)2.135 (19)3.002 (3)169.7 (17)
Symmetry codes: (i) x, y, z+1; (ii) x, y+3/2, z1/2.
 

Acknowledgements

We gratefully thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationArman, H. D., Kaulgud, T., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. Cryst. Mat. 227, 227–232.  Web of Science CrossRef CAS Google Scholar
First citationArman, H. D., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. Cryst. Mat. 227, 825–830.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds