organic compounds
3-Chloro-N-[N-(furan-2-carbonyl)hydrazinocarbothioyl]benzamide
aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: Aishah80@ukm.my
In the title compound C13H10ClN3O3S, the benzoyl group maintains its trans conformation against the thiono group about the C—N bond and the intramolecular hydrogen bond between the benzoyl O atom and thioamide H atom. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link the molecules, forming chains along the b-axis direction. In addition, C—H⋯π interactions occur between a phenyl H atom and the furan ring.
CCDC reference: 960925
Related literature
For bond-lengths data, see: Allen et al. (1987) and for a description of the Cambridge Structural Database, see: Allen (2002). For related structures of thiourea derivatives, see: Yamin & Yusof (2003); Yusof et al. (2003); Ali et al. (2004); Venkatachalam et al. (2004); Saeed et al. (2011); Wilson et al. (2010).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
CCDC reference: 960925
10.1107/S1600536813025440/bg2516sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813025440/bg2516Isup2.hkl
An acetone (30 ml) solution of tetrahydrofuran-2-carboxamide (0.18 g, 2 mmol) was added into a round-bottom flask containing 3-chlorobenzoyl isothiocyanate (0.58 g,2 mmol). The mixture was refluxed for 3h. After cooling, the solution was filtered off and the filtrate was left to evaporate at room temperature. The solid formed was washed with water and cold ethanol. Crystals suitable for X-ray study were obtained by recrystallization from DMSO.
Crystal data, data collection and structure
details are summarized in Table 1. All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H= 0.93-0.97Å and N–H = 0.86Å with Uiso(H)= 1.2Ueq(C and N).Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level. The dashed line indicates intramolecular hydrogen bond. | |
Fig. 2. Molecular packing of (I) viewed down the c-axis. Dashed lines indicate intermolecular hydrogen bonds. |
C13H10ClN3O3S | F(000) = 1328 |
Mr = 323.75 | Dx = 1.508 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 1801 reflections |
a = 7.286 (4) Å | θ = 1.5–25.0° |
b = 15.148 (8) Å | µ = 0.43 mm−1 |
c = 25.840 (14) Å | T = 298 K |
V = 2852 (3) Å3 | Block, colourless |
Z = 8 | 0.50 × 0.49 × 0.12 mm |
Bruker SMART APEX CCD area-detector diffractometer | 2507 independent reflections |
Radiation source: fine-focus sealed tube | 1723 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
Detector resolution: 83.66 pixels mm-1 | θmax = 25.0°, θmin = 1.6° |
ω scan | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | k = −18→18 |
Tmin = 0.815, Tmax = 0.951 | l = −30→20 |
15224 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.P)2 + 1.0899P] where P = (Fo2 + 2Fc2)/3 |
2507 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C13H10ClN3O3S | V = 2852 (3) Å3 |
Mr = 323.75 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 7.286 (4) Å | µ = 0.43 mm−1 |
b = 15.148 (8) Å | T = 298 K |
c = 25.840 (14) Å | 0.50 × 0.49 × 0.12 mm |
Bruker SMART APEX CCD area-detector diffractometer | 2507 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1723 reflections with I > 2σ(I) |
Tmin = 0.815, Tmax = 0.951 | Rint = 0.082 |
15224 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.24 e Å−3 |
2507 reflections | Δρmin = −0.19 e Å−3 |
190 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.98435 (14) | −0.08651 (5) | −0.18005 (3) | 0.0735 (3) | |
O1 | 0.7448 (3) | 0.04610 (12) | −0.00613 (7) | 0.0591 (6) | |
O2 | 0.6645 (3) | 0.25070 (11) | 0.08567 (7) | 0.0509 (5) | |
O3 | 0.4281 (3) | 0.21465 (12) | 0.20364 (7) | 0.0509 (5) | |
N1 | 0.7094 (3) | −0.06226 (13) | 0.05323 (8) | 0.0436 (6) | |
H1A | 0.7296 | −0.1173 | 0.0592 | 0.052* | |
N2 | 0.6422 (3) | 0.07378 (13) | 0.08781 (8) | 0.0419 (6) | |
H2A | 0.6885 | 0.0964 | 0.0602 | 0.050* | |
N3 | 0.5717 (3) | 0.12697 (13) | 0.12567 (9) | 0.0461 (6) | |
H3A | 0.5170 | 0.1039 | 0.1519 | 0.055* | |
C1 | 0.8615 (4) | −0.06793 (17) | −0.08220 (11) | 0.0436 (7) | |
H1B | 0.8702 | −0.0074 | −0.0878 | 0.052* | |
C2 | 0.9095 (4) | −0.12615 (18) | −0.12060 (11) | 0.0441 (7) | |
C3 | 0.8981 (4) | −0.21559 (17) | −0.11338 (12) | 0.0474 (7) | |
H3B | 0.9332 | −0.2543 | −0.1395 | 0.057* | |
C4 | 0.8341 (5) | −0.24695 (18) | −0.06697 (12) | 0.0543 (8) | |
H4A | 0.8249 | −0.3075 | −0.0618 | 0.065* | |
C5 | 0.7834 (4) | −0.19013 (17) | −0.02794 (11) | 0.0510 (8) | |
H5A | 0.7379 | −0.2123 | 0.0031 | 0.061* | |
C6 | 0.8002 (4) | −0.09970 (16) | −0.03502 (10) | 0.0388 (6) | |
C7 | 0.7507 (4) | −0.03252 (17) | 0.00457 (10) | 0.0418 (7) | |
C8 | 0.6385 (4) | −0.01326 (16) | 0.09412 (10) | 0.0396 (6) | |
C9 | 0.5875 (4) | 0.21534 (15) | 0.12203 (10) | 0.0356 (6) | |
C10 | 0.5023 (4) | 0.26306 (16) | 0.16468 (9) | 0.0360 (6) | |
C11 | 0.4757 (4) | 0.34892 (18) | 0.17338 (12) | 0.0501 (8) | |
H11A | 0.5155 | 0.3954 | 0.1527 | 0.060* | |
C12 | 0.3764 (5) | 0.3558 (2) | 0.21962 (12) | 0.0593 (9) | |
H12A | 0.3359 | 0.4075 | 0.2353 | 0.071* | |
C13 | 0.3516 (5) | 0.2743 (2) | 0.23661 (12) | 0.0613 (9) | |
H13A | 0.2902 | 0.2598 | 0.2670 | 0.074* | |
S1 | 0.55517 (13) | −0.06141 (5) | 0.14664 (3) | 0.0566 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.1084 (8) | 0.0531 (5) | 0.0589 (6) | −0.0122 (5) | 0.0308 (5) | −0.0102 (4) |
O1 | 0.1014 (18) | 0.0309 (11) | 0.0451 (12) | 0.0079 (10) | 0.0097 (11) | 0.0008 (9) |
O2 | 0.0729 (15) | 0.0372 (10) | 0.0427 (11) | −0.0040 (9) | 0.0154 (10) | 0.0013 (9) |
O3 | 0.0632 (14) | 0.0457 (11) | 0.0437 (12) | 0.0032 (9) | 0.0137 (10) | 0.0024 (9) |
N1 | 0.0614 (16) | 0.0247 (11) | 0.0448 (14) | 0.0032 (10) | −0.0005 (11) | −0.0022 (10) |
N2 | 0.0572 (15) | 0.0303 (11) | 0.0381 (13) | 0.0018 (10) | 0.0081 (11) | −0.0017 (10) |
N3 | 0.0648 (17) | 0.0317 (12) | 0.0416 (13) | 0.0010 (11) | 0.0137 (12) | −0.0021 (10) |
C1 | 0.0508 (18) | 0.0302 (13) | 0.0497 (18) | −0.0015 (12) | −0.0007 (14) | −0.0064 (12) |
C2 | 0.0432 (17) | 0.0421 (15) | 0.0469 (17) | −0.0036 (13) | 0.0029 (13) | −0.0076 (13) |
C3 | 0.0535 (19) | 0.0373 (15) | 0.0512 (18) | 0.0082 (13) | −0.0081 (15) | −0.0126 (13) |
C4 | 0.080 (2) | 0.0290 (14) | 0.0535 (18) | 0.0094 (14) | −0.0144 (16) | −0.0050 (13) |
C5 | 0.076 (2) | 0.0367 (16) | 0.0406 (17) | 0.0027 (14) | −0.0108 (15) | 0.0022 (12) |
C6 | 0.0464 (17) | 0.0300 (14) | 0.0401 (15) | 0.0044 (11) | −0.0074 (13) | −0.0023 (11) |
C7 | 0.0494 (17) | 0.0344 (15) | 0.0417 (17) | 0.0026 (12) | −0.0064 (13) | −0.0021 (12) |
C8 | 0.0437 (16) | 0.0315 (14) | 0.0436 (16) | 0.0001 (12) | −0.0046 (13) | −0.0033 (12) |
C9 | 0.0396 (16) | 0.0306 (14) | 0.0365 (15) | 0.0007 (11) | −0.0035 (12) | 0.0001 (11) |
C10 | 0.0396 (16) | 0.0354 (13) | 0.0329 (14) | −0.0010 (12) | −0.0013 (12) | 0.0003 (11) |
C11 | 0.065 (2) | 0.0369 (15) | 0.0489 (18) | 0.0036 (14) | 0.0038 (15) | −0.0045 (13) |
C12 | 0.072 (2) | 0.0511 (19) | 0.055 (2) | 0.0136 (16) | 0.0045 (17) | −0.0165 (16) |
C13 | 0.062 (2) | 0.076 (2) | 0.0457 (18) | 0.0112 (18) | 0.0154 (16) | −0.0076 (16) |
S1 | 0.0856 (6) | 0.0331 (4) | 0.0513 (5) | −0.0044 (4) | 0.0144 (4) | 0.0026 (3) |
Cl1—C2 | 1.737 (3) | C2—C3 | 1.370 (4) |
O1—C7 | 1.223 (3) | C3—C4 | 1.372 (4) |
O2—C9 | 1.219 (3) | C3—H3B | 0.9300 |
O3—C10 | 1.358 (3) | C4—C5 | 1.376 (4) |
O3—C13 | 1.362 (3) | C4—H4A | 0.9300 |
N1—C7 | 1.369 (3) | C5—C6 | 1.388 (4) |
N1—C8 | 1.391 (3) | C5—H5A | 0.9300 |
N1—H1A | 0.8600 | C6—C7 | 1.488 (4) |
N2—C8 | 1.329 (3) | C8—S1 | 1.656 (3) |
N2—N3 | 1.368 (3) | C9—C10 | 1.457 (3) |
N2—H2A | 0.8600 | C10—C11 | 1.334 (4) |
N3—C9 | 1.347 (3) | C11—C12 | 1.401 (4) |
N3—H3A | 0.8600 | C11—H11A | 0.9300 |
C1—C2 | 1.373 (4) | C12—C13 | 1.322 (4) |
C1—C6 | 1.385 (4) | C12—H12A | 0.9300 |
C1—H1B | 0.9300 | C13—H13A | 0.9300 |
C10—O3—C13 | 105.6 (2) | C1—C6—C5 | 119.2 (2) |
C7—N1—C8 | 127.1 (2) | C1—C6—C7 | 116.5 (2) |
C7—N1—H1A | 116.4 | C5—C6—C7 | 124.3 (3) |
C8—N1—H1A | 116.4 | O1—C7—N1 | 121.4 (2) |
C8—N2—N3 | 119.3 (2) | O1—C7—C6 | 121.3 (3) |
C8—N2—H2A | 120.4 | N1—C7—C6 | 117.4 (2) |
N3—N2—H2A | 120.4 | N2—C8—N1 | 115.4 (2) |
C9—N3—N2 | 120.2 (2) | N2—C8—S1 | 123.0 (2) |
C9—N3—H3A | 119.9 | N1—C8—S1 | 121.59 (18) |
N2—N3—H3A | 119.9 | O2—C9—N3 | 122.0 (2) |
C2—C1—C6 | 119.7 (2) | O2—C9—C10 | 124.2 (2) |
C2—C1—H1B | 120.2 | N3—C9—C10 | 113.8 (2) |
C6—C1—H1B | 120.2 | C11—C10—O3 | 110.1 (2) |
C3—C2—C1 | 121.4 (3) | C11—C10—C9 | 132.3 (2) |
C3—C2—Cl1 | 118.8 (2) | O3—C10—C9 | 117.5 (2) |
C1—C2—Cl1 | 119.8 (2) | C10—C11—C12 | 106.9 (3) |
C2—C3—C4 | 118.8 (3) | C10—C11—H11A | 126.5 |
C2—C3—H3B | 120.6 | C12—C11—H11A | 126.5 |
C4—C3—H3B | 120.6 | C13—C12—C11 | 106.6 (3) |
C3—C4—C5 | 121.0 (3) | C13—C12—H12A | 126.7 |
C3—C4—H4A | 119.5 | C11—C12—H12A | 126.7 |
C5—C4—H4A | 119.5 | C12—C13—O3 | 110.9 (3) |
C4—C5—C6 | 119.8 (3) | C12—C13—H13A | 124.6 |
C4—C5—H5A | 120.1 | O3—C13—H13A | 124.6 |
C6—C5—H5A | 120.1 | ||
C8—N2—N3—C9 | 174.6 (2) | N3—N2—C8—N1 | 178.7 (2) |
C6—C1—C2—C3 | 0.0 (4) | N3—N2—C8—S1 | −1.2 (4) |
C6—C1—C2—Cl1 | 179.4 (2) | C7—N1—C8—N2 | −12.8 (4) |
C1—C2—C3—C4 | 1.2 (4) | C7—N1—C8—S1 | 167.1 (2) |
Cl1—C2—C3—C4 | −178.2 (2) | N2—N3—C9—O2 | −0.3 (4) |
C2—C3—C4—C5 | −0.6 (5) | N2—N3—C9—C10 | 178.8 (2) |
C3—C4—C5—C6 | −1.3 (5) | C13—O3—C10—C11 | 0.9 (3) |
C2—C1—C6—C5 | −1.8 (4) | C13—O3—C10—C9 | −177.3 (2) |
C2—C1—C6—C7 | −179.9 (3) | O2—C9—C10—C11 | 5.0 (5) |
C4—C5—C6—C1 | 2.5 (4) | N3—C9—C10—C11 | −174.1 (3) |
C4—C5—C6—C7 | −179.6 (3) | O2—C9—C10—O3 | −177.3 (2) |
C8—N1—C7—O1 | 7.6 (5) | N3—C9—C10—O3 | 3.6 (3) |
C8—N1—C7—C6 | −171.5 (2) | O3—C10—C11—C12 | −1.2 (3) |
C1—C6—C7—O1 | 8.0 (4) | C9—C10—C11—C12 | 176.6 (3) |
C5—C6—C7—O1 | −170.0 (3) | C10—C11—C12—C13 | 1.1 (4) |
C1—C6—C7—N1 | −172.9 (2) | C11—C12—C13—O3 | −0.5 (4) |
C5—C6—C7—N1 | 9.1 (4) | C10—O3—C13—C12 | −0.2 (4) |
Cg is the centroid of the furan ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1 | 0.86 | 1.92 | 2.574 (3) | 132 |
N1—H1A···O2i | 0.86 | 2.25 | 3.094 (3) | 167 |
C5—H5A···O2i | 0.93 | 2.32 | 3.093 (4) | 140 |
C13—H13A···Cgii | 0.93 | 2.83 | 3.516 (4) | 132 |
Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) x−1/2, y, −z+1/2. |
Cg is the centroid of the furan ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1 | 0.86 | 1.92 | 2.574 (3) | 132 |
N1—H1A···O2i | 0.86 | 2.25 | 3.094 (3) | 167 |
C5—H5A···O2i | 0.93 | 2.32 | 3.093 (4) | 140 |
C13—H13A···Cgii | 0.93 | 2.83 | 3.516 (4) | 132 |
Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) x−1/2, y, −z+1/2. |
Acknowledgements
The authors would like to thank Universiti Kebangsaan Malaysia and the Ministry of Science and Technology, Malaysia, for research grants FRGS/1/213/ST01/UKM/03/4 and DIP-2012–11 and the Centre of Research and Instrumentation (CRIM) for the research facilities.
References
Ali, H., Yusof, M. S., Khamis, N. A., Mardi, A. S. & Yamin, B. M. (2004). Acta Cryst. E60, o1656–o1658. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). Google Scholar
Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Saeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74–84. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Venkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275–4284. Web of Science CrossRef PubMed CAS Google Scholar
Wilson, D., Arada, M. de los, Á., Alrgret, S. & del Valle, M. (2010). J. Hazard. Mater. 181, 140–146. Web of Science CrossRef CAS PubMed Google Scholar
Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o124–o126. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Yusof, M. S. M., Yamin, B. M. & Shamsuddin, M. (2003). Acta Cryst. E59, o810–o811. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Structural studies of thiourea derivatives have received much attention for the last ten years or so. Their applications in biological activities (Venkatachalam et al., 2004; Saeed et al., 2011) and sensor development as ionophore (Wilson et al., 2010) are important. However, the derivatives consisting of hydrazine are relatively less frequent. On the other hand, the presence of the hydrazinothiocarbonyl group could make the thiourea a good candidate for tridentate chelation with metals. The title compound (I) is similar to N-[N-(furan-2-carbonyl)hydrazinothio carbonyl)benzamide (Yamin & Yusof, 2003) except in the chlorine atom attached at position-3 of the benzene ring (Fig.1). Bond lengths and angles in (I) are in normal ranges (Allen et al., 1987; Allen, 2002) and comparable to those in the analogue N-(N-benzoylhydrazinocarbo thioyl)benzamide (Yusof et al. 2003) and 2-chloro-N-(N-(4-chlorobenzoyl)hydrazinecarbonothioyl)benzamide (Ali et al., 2004). The whole molecule looks nearly planar, with small dihedral angles between the central thiourea moiety N1/C8/S1/N2/N3 with the chlorobenzene, Cl1/(C1-C7) and carbonylfuran O2/O3/(C9-C13) ( 6.07 (9) and 4.82 (11)° respectively). The dihedral angle between the chlorobenzene and carbonylfuran is 10.1 (11)°. All the fragments are planar with maximum deviation from their least square plane for C9 atom of the carbonylfuran (0.030 (3)Å ). There is a significant N2–H2A···O1 intramolecular hydrogen bond (Table 2) which is usually present in any trans carbonoylthiourea (with respect to the position of the carbonoyl group against the thiono about the C8-N1 bond). In the crystal structure, the molecules are linked by N–H··O and C–H···O intermolecular hydrogen bonds (see Table 2) to form one-dimensional chains along the b-axis (Fig.2). In addition, there is a C13–H13A···Cgii interaction (Cg, the centroid of the furan ring O3,C10,C11,C12,C13; (ii): -1/2+x,y,1/2-z) with a H···Cgii distance = 2.830Å and a C-H..Cgii angle = 132°.