organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-N-[N-(furan-2-carbon­yl)hydrazinocarbo­thio­yl]benzamide

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: Aishah80@ukm.my

(Received 28 August 2013; accepted 13 September 2013; online 21 September 2013)

In the title compound C13H10ClN3O3S, the benzoyl group maintains its trans conformation against the thiono group about the C—N bond and the intra­molecular hydrogen bond between the benzoyl O atom and thio­amide H atom. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules, forming chains along the b-axis direction. In addition, C—H⋯π inter­actions occur between a phenyl H atom and the furan ring.

Related literature

For bond-lengths data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).]) and for a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related structures of thio­urea derivatives, see: Yamin & Yusof (2003[Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o124-o126.]); Yusof et al. (2003[Yusof, M. S. M., Yamin, B. M. & Shamsuddin, M. (2003). Acta Cryst. E59, o810-o811.]); Ali et al. (2004[Ali, H., Yusof, M. S., Khamis, N. A., Mardi, A. S. & Yamin, B. M. (2004). Acta Cryst. E60, o1656-o1658.]); Venkatachalam et al. (2004[Venkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275-4284.]); Saeed et al. (2011[Saeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74-84.]); Wilson et al. (2010[Wilson, D., Arada, M. de los, Á., Alrgret, S. & del Valle, M. (2010). J. Hazard. Mater. 181, 140-146.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClN3O3S

  • Mr = 323.75

  • Orthorhombic, P b c a

  • a = 7.286 (4) Å

  • b = 15.148 (8) Å

  • c = 25.840 (14) Å

  • V = 2852 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 298 K

  • 0.50 × 0.49 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.815, Tmax = 0.951

  • 15224 measured reflections

  • 2507 independent reflections

  • 1723 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.117

  • S = 1.02

  • 2507 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the furan ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.92 2.574 (3) 132
N1—H1A⋯O2i 0.86 2.25 3.094 (3) 167
C5—H5A⋯O2i 0.93 2.32 3.093 (4) 140
C13—H13ACgii 0.93 2.83 3.516 (4) 132
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Structural studies of thiourea derivatives have received much attention for the last ten years or so. Their applications in biological activities (Venkatachalam et al., 2004; Saeed et al., 2011) and sensor development as ionophore (Wilson et al., 2010) are important. However, the derivatives consisting of hydrazine are relatively less frequent. On the other hand, the presence of the hydrazinothiocarbonyl group could make the thiourea a good candidate for tridentate chelation with metals. The title compound (I) is similar to N-[N-(furan-2-carbonyl)hydrazinothio carbonyl)benzamide (Yamin & Yusof, 2003) except in the chlorine atom attached at position-3 of the benzene ring (Fig.1). Bond lengths and angles in (I) are in normal ranges (Allen et al., 1987; Allen, 2002) and comparable to those in the analogue N-(N-benzoylhydrazinocarbo thioyl)benzamide (Yusof et al. 2003) and 2-chloro-N-(N-(4-chlorobenzoyl)hydrazinecarbonothioyl)benzamide (Ali et al., 2004). The whole molecule looks nearly planar, with small dihedral angles between the central thiourea moiety N1/C8/S1/N2/N3 with the chlorobenzene, Cl1/(C1-C7) and carbonylfuran O2/O3/(C9-C13) ( 6.07 (9) and 4.82 (11)° respectively). The dihedral angle between the chlorobenzene and carbonylfuran is 10.1 (11)°. All the fragments are planar with maximum deviation from their least square plane for C9 atom of the carbonylfuran (0.030 (3)Å ). There is a significant N2–H2A···O1 intramolecular hydrogen bond (Table 2) which is usually present in any trans carbonoylthiourea (with respect to the position of the carbonoyl group against the thiono about the C8-N1 bond). In the crystal structure, the molecules are linked by N–H··O and C–H···O intermolecular hydrogen bonds (see Table 2) to form one-dimensional chains along the b-axis (Fig.2). In addition, there is a C13–H13A···Cgii interaction (Cg, the centroid of the furan ring O3,C10,C11,C12,C13; (ii): -1/2+x,y,1/2-z) with a H···Cgii distance = 2.830Å and a C-H..Cgii angle = 132°.

Related literature top

For bond-lengths data, see: Allen et al. (1987) and for a description of the Cambridge Structural Database, see: Allen (2002). For related structures of thiourea derivatives, see: Yamin & Yusof (2003); Yusof et al. (2003); Ali et al. (2004); Venkatachalam et al. (2004); Saeed et al. (2011); Wilson et al. (2010).

Experimental top

An acetone (30 ml) solution of tetrahydrofuran-2-carboxamide (0.18 g, 2 mmol) was added into a round-bottom flask containing 3-chlorobenzoyl isothiocyanate (0.58 g,2 mmol). The mixture was refluxed for 3h. After cooling, the solution was filtered off and the filtrate was left to evaporate at room temperature. The solid formed was washed with water and cold ethanol. Crystals suitable for X-ray study were obtained by recrystallization from DMSO.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H= 0.93-0.97Å and N–H = 0.86Å with Uiso(H)= 1.2Ueq(C and N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level. The dashed line indicates intramolecular hydrogen bond.
[Figure 2] Fig. 2. Molecular packing of (I) viewed down the c-axis. Dashed lines indicate intermolecular hydrogen bonds.
3-Chloro-N-[N-(furan-2-carbonyl)hydrazinocarbothioyl]benzamide top
Crystal data top
C13H10ClN3O3SF(000) = 1328
Mr = 323.75Dx = 1.508 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1801 reflections
a = 7.286 (4) Åθ = 1.5–25.0°
b = 15.148 (8) ŵ = 0.43 mm1
c = 25.840 (14) ÅT = 298 K
V = 2852 (3) Å3Block, colourless
Z = 80.50 × 0.49 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2507 independent reflections
Radiation source: fine-focus sealed tube1723 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
Detector resolution: 83.66 pixels mm-1θmax = 25.0°, θmin = 1.6°
ω scanh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1818
Tmin = 0.815, Tmax = 0.951l = 3020
15224 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.P)2 + 1.0899P]
where P = (Fo2 + 2Fc2)/3
2507 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H10ClN3O3SV = 2852 (3) Å3
Mr = 323.75Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.286 (4) ŵ = 0.43 mm1
b = 15.148 (8) ÅT = 298 K
c = 25.840 (14) Å0.50 × 0.49 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2507 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1723 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.951Rint = 0.082
15224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
2507 reflectionsΔρmin = 0.19 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.98435 (14)0.08651 (5)0.18005 (3)0.0735 (3)
O10.7448 (3)0.04610 (12)0.00613 (7)0.0591 (6)
O20.6645 (3)0.25070 (11)0.08567 (7)0.0509 (5)
O30.4281 (3)0.21465 (12)0.20364 (7)0.0509 (5)
N10.7094 (3)0.06226 (13)0.05323 (8)0.0436 (6)
H1A0.72960.11730.05920.052*
N20.6422 (3)0.07378 (13)0.08781 (8)0.0419 (6)
H2A0.68850.09640.06020.050*
N30.5717 (3)0.12697 (13)0.12567 (9)0.0461 (6)
H3A0.51700.10390.15190.055*
C10.8615 (4)0.06793 (17)0.08220 (11)0.0436 (7)
H1B0.87020.00740.08780.052*
C20.9095 (4)0.12615 (18)0.12060 (11)0.0441 (7)
C30.8981 (4)0.21559 (17)0.11338 (12)0.0474 (7)
H3B0.93320.25430.13950.057*
C40.8341 (5)0.24695 (18)0.06697 (12)0.0543 (8)
H4A0.82490.30750.06180.065*
C50.7834 (4)0.19013 (17)0.02794 (11)0.0510 (8)
H5A0.73790.21230.00310.061*
C60.8002 (4)0.09970 (16)0.03502 (10)0.0388 (6)
C70.7507 (4)0.03252 (17)0.00457 (10)0.0418 (7)
C80.6385 (4)0.01326 (16)0.09412 (10)0.0396 (6)
C90.5875 (4)0.21534 (15)0.12203 (10)0.0356 (6)
C100.5023 (4)0.26306 (16)0.16468 (9)0.0360 (6)
C110.4757 (4)0.34892 (18)0.17338 (12)0.0501 (8)
H11A0.51550.39540.15270.060*
C120.3764 (5)0.3558 (2)0.21962 (12)0.0593 (9)
H12A0.33590.40750.23530.071*
C130.3516 (5)0.2743 (2)0.23661 (12)0.0613 (9)
H13A0.29020.25980.26700.074*
S10.55517 (13)0.06141 (5)0.14664 (3)0.0566 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1084 (8)0.0531 (5)0.0589 (6)0.0122 (5)0.0308 (5)0.0102 (4)
O10.1014 (18)0.0309 (11)0.0451 (12)0.0079 (10)0.0097 (11)0.0008 (9)
O20.0729 (15)0.0372 (10)0.0427 (11)0.0040 (9)0.0154 (10)0.0013 (9)
O30.0632 (14)0.0457 (11)0.0437 (12)0.0032 (9)0.0137 (10)0.0024 (9)
N10.0614 (16)0.0247 (11)0.0448 (14)0.0032 (10)0.0005 (11)0.0022 (10)
N20.0572 (15)0.0303 (11)0.0381 (13)0.0018 (10)0.0081 (11)0.0017 (10)
N30.0648 (17)0.0317 (12)0.0416 (13)0.0010 (11)0.0137 (12)0.0021 (10)
C10.0508 (18)0.0302 (13)0.0497 (18)0.0015 (12)0.0007 (14)0.0064 (12)
C20.0432 (17)0.0421 (15)0.0469 (17)0.0036 (13)0.0029 (13)0.0076 (13)
C30.0535 (19)0.0373 (15)0.0512 (18)0.0082 (13)0.0081 (15)0.0126 (13)
C40.080 (2)0.0290 (14)0.0535 (18)0.0094 (14)0.0144 (16)0.0050 (13)
C50.076 (2)0.0367 (16)0.0406 (17)0.0027 (14)0.0108 (15)0.0022 (12)
C60.0464 (17)0.0300 (14)0.0401 (15)0.0044 (11)0.0074 (13)0.0023 (11)
C70.0494 (17)0.0344 (15)0.0417 (17)0.0026 (12)0.0064 (13)0.0021 (12)
C80.0437 (16)0.0315 (14)0.0436 (16)0.0001 (12)0.0046 (13)0.0033 (12)
C90.0396 (16)0.0306 (14)0.0365 (15)0.0007 (11)0.0035 (12)0.0001 (11)
C100.0396 (16)0.0354 (13)0.0329 (14)0.0010 (12)0.0013 (12)0.0003 (11)
C110.065 (2)0.0369 (15)0.0489 (18)0.0036 (14)0.0038 (15)0.0045 (13)
C120.072 (2)0.0511 (19)0.055 (2)0.0136 (16)0.0045 (17)0.0165 (16)
C130.062 (2)0.076 (2)0.0457 (18)0.0112 (18)0.0154 (16)0.0076 (16)
S10.0856 (6)0.0331 (4)0.0513 (5)0.0044 (4)0.0144 (4)0.0026 (3)
Geometric parameters (Å, º) top
Cl1—C21.737 (3)C2—C31.370 (4)
O1—C71.223 (3)C3—C41.372 (4)
O2—C91.219 (3)C3—H3B0.9300
O3—C101.358 (3)C4—C51.376 (4)
O3—C131.362 (3)C4—H4A0.9300
N1—C71.369 (3)C5—C61.388 (4)
N1—C81.391 (3)C5—H5A0.9300
N1—H1A0.8600C6—C71.488 (4)
N2—C81.329 (3)C8—S11.656 (3)
N2—N31.368 (3)C9—C101.457 (3)
N2—H2A0.8600C10—C111.334 (4)
N3—C91.347 (3)C11—C121.401 (4)
N3—H3A0.8600C11—H11A0.9300
C1—C21.373 (4)C12—C131.322 (4)
C1—C61.385 (4)C12—H12A0.9300
C1—H1B0.9300C13—H13A0.9300
C10—O3—C13105.6 (2)C1—C6—C5119.2 (2)
C7—N1—C8127.1 (2)C1—C6—C7116.5 (2)
C7—N1—H1A116.4C5—C6—C7124.3 (3)
C8—N1—H1A116.4O1—C7—N1121.4 (2)
C8—N2—N3119.3 (2)O1—C7—C6121.3 (3)
C8—N2—H2A120.4N1—C7—C6117.4 (2)
N3—N2—H2A120.4N2—C8—N1115.4 (2)
C9—N3—N2120.2 (2)N2—C8—S1123.0 (2)
C9—N3—H3A119.9N1—C8—S1121.59 (18)
N2—N3—H3A119.9O2—C9—N3122.0 (2)
C2—C1—C6119.7 (2)O2—C9—C10124.2 (2)
C2—C1—H1B120.2N3—C9—C10113.8 (2)
C6—C1—H1B120.2C11—C10—O3110.1 (2)
C3—C2—C1121.4 (3)C11—C10—C9132.3 (2)
C3—C2—Cl1118.8 (2)O3—C10—C9117.5 (2)
C1—C2—Cl1119.8 (2)C10—C11—C12106.9 (3)
C2—C3—C4118.8 (3)C10—C11—H11A126.5
C2—C3—H3B120.6C12—C11—H11A126.5
C4—C3—H3B120.6C13—C12—C11106.6 (3)
C3—C4—C5121.0 (3)C13—C12—H12A126.7
C3—C4—H4A119.5C11—C12—H12A126.7
C5—C4—H4A119.5C12—C13—O3110.9 (3)
C4—C5—C6119.8 (3)C12—C13—H13A124.6
C4—C5—H5A120.1O3—C13—H13A124.6
C6—C5—H5A120.1
C8—N2—N3—C9174.6 (2)N3—N2—C8—N1178.7 (2)
C6—C1—C2—C30.0 (4)N3—N2—C8—S11.2 (4)
C6—C1—C2—Cl1179.4 (2)C7—N1—C8—N212.8 (4)
C1—C2—C3—C41.2 (4)C7—N1—C8—S1167.1 (2)
Cl1—C2—C3—C4178.2 (2)N2—N3—C9—O20.3 (4)
C2—C3—C4—C50.6 (5)N2—N3—C9—C10178.8 (2)
C3—C4—C5—C61.3 (5)C13—O3—C10—C110.9 (3)
C2—C1—C6—C51.8 (4)C13—O3—C10—C9177.3 (2)
C2—C1—C6—C7179.9 (3)O2—C9—C10—C115.0 (5)
C4—C5—C6—C12.5 (4)N3—C9—C10—C11174.1 (3)
C4—C5—C6—C7179.6 (3)O2—C9—C10—O3177.3 (2)
C8—N1—C7—O17.6 (5)N3—C9—C10—O33.6 (3)
C8—N1—C7—C6171.5 (2)O3—C10—C11—C121.2 (3)
C1—C6—C7—O18.0 (4)C9—C10—C11—C12176.6 (3)
C5—C6—C7—O1170.0 (3)C10—C11—C12—C131.1 (4)
C1—C6—C7—N1172.9 (2)C11—C12—C13—O30.5 (4)
C5—C6—C7—N19.1 (4)C10—O3—C13—C120.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the furan ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.922.574 (3)132
N1—H1A···O2i0.862.253.094 (3)167
C5—H5A···O2i0.932.323.093 (4)140
C13—H13A···Cgii0.932.833.516 (4)132
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the furan ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.922.574 (3)132
N1—H1A···O2i0.862.253.094 (3)167
C5—H5A···O2i0.932.323.093 (4)140
C13—H13A···Cgii0.932.833.516 (4)132
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x1/2, y, z+1/2.
 

Acknowledgements

The authors would like to thank Universiti Kebangsaan Malaysia and the Ministry of Science and Technology, Malaysia, for research grants FRGS/1/213/ST01/UKM/03/4 and DIP-2012–11 and the Centre of Research and Instrumentation (CRIM) for the research facilities.

References

First citationAli, H., Yusof, M. S., Khamis, N. A., Mardi, A. S. & Yamin, B. M. (2004). Acta Cryst. E60, o1656–o1658.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).  Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275–4284.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWilson, D., Arada, M. de los, Á., Alrgret, S. & del Valle, M. (2010). J. Hazard. Mater. 181, 140–146.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o124–o126.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYusof, M. S. M., Yamin, B. M. & Shamsuddin, M. (2003). Acta Cryst. E59, o810–o811.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds