organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(4-fluoro­phen­yl)-1,5-di­methyl-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDepartment of Physics, Seethalakshmi Ramaswami College (Autonomous), Tiruchirappalli 620 002, India, bDepartment of Physics, K. Ramakrishnan College of Engineering, Samayapuram, Tiruchirappalli 621 112, India, and cDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, India
*Correspondence e-mail: raghema2000@yahoo.co.in

(Received 3 August 2013; accepted 4 September 2013; online 12 September 2013)

The asymmetric unit of the title compound, C22H23F2NO, contains two independent mol­ecules, A and B. The bicyclic system adopts a twin-chair conformation in both mol­ecules. The dihedral angles between the fluoro­phenyl rings are 55.27 (8) and 56.37 (7)° in mol­ecules A and B, respectively. The NH groups are not involved in hydrogen bonding due to the steric hindrance of fluoro­phenyl groups. The crystal structure features weak C—H⋯O inter­actions.

Related literature

For related structures, see: Venkateswaramoorthi et al. (2013[Venkateswaramoorthi, R., Rizwana Begum, S., Hema, R., Krishnasamy, K. & Anitha, A. G. (2013). Acta Cryst. E69, o768.]); Pham et al. (1998[Pham, M., Gdaniec, M. & Polonski, T. (1998). J. Org. Chem. 63, 3731-3734.]). For the synthesis of 1,5-dimethyl-2,4-diphen­yl-3-aza­bicyclo­[3.3.1]nonan-9-one derivatives, see: Venkateswaramoorthi et al. (2012[Venkateswaramoorthi, R., Xavier, J. J. F., Krishnasamy, K. & Saleem, H. (2012). J. Mol. Struct. 1012, 119-125.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23F2NO

  • Mr = 355.41

  • Monoclinic, P 21 /n

  • a = 8.8470 (3) Å

  • b = 20.5656 (8) Å

  • c = 20.6403 (9) Å

  • β = 98.633 (2)°

  • V = 3712.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.35 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.973

  • 32409 measured reflections

  • 6363 independent reflections

  • 3974 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.01

  • 6363 reflections

  • 473 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.93 2.50 3.395 (3) 163
C44—H44⋯O1ii 0.93 2.47 3.369 (3) 161
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In a continuation of structural studies of 1,5-dimethyl-3-azabicyclo[3.3.1]nonan-9-one derivatives (Venkateswaramoorthi et al., 2013), herewith we present the title compound, (I).

Figure 1 shows the asymmetric unit, which consists of two molecules A and B of the title compound (I). The bicyclo ring adopts the twin-chair conformation in both molecules, with puckering parameters Q = 0.598 (2) Å, θ = 177.73 (19)° and ϕ = 37 (4)° for the piperidine ring N1/C7···C11, and Q = 0.548 (2) Å, θ = 11.9 (2)° and ϕ = 61.6 (11)° for the cyclohexanone ring C8···C14 in molecule A. Corresponding parameters for molecule B are Q = 0.605 (2) Å, θ = 177.12 (19)° and ϕ = 326 (4)° for the piperidine N2/C37/C33/C34/C29/C38 and Q = 0.543 (2) Å, θ=11.2 (2)°, and ϕ = 299.7 (12)° for the cyclohexanone ring C29···C34 (Cremer & Pople, 1975).

The two fluorophenyl rings substituting positions at C7 and C11 in molecule A and at C37 and C38 in molecule B are planar and are oriented at an angle of 55.27 (8)° and 56.37 (7)° to each other, respectively. In molecule A, the piperidine ring makes a dihedral angle of 74.37 (6)° with the fluorophenyl ring C17···C22 and 64.37 (6)° with the fluorophenyl ring C1···C6, whereas in molecule B, the corresponding angles are 64.71 (6)° and 74.90 (6)° with the fluorophenyl rings C23···C28 and C39···C44, respectively.

The methyl groups attached to the piperidine ring at C8 and C10 in molecule A are in equatorial orientation with torsion angles of -174.75 (16)° (N1—C7—C8—C15) and 176.82 (16)° (N1—C11—C10—C16) respectively. In molecule B methyl groups attached to the piperidine ring at C29 and C33 are also in equatorial orientation, with torsion angles of 174.67 (6)° (N2—C38—C29—C35) and -177.52 (16)° (N2—C37—C33—C36).

In the crystal structure of a closely related structure (Venkateswaramoorthi et al., 2012), NH groups are involved in hydrogen bonding, but in the present case, the steric hindrance of fluorophenyl groups avoids the formation of these expected hydrogen bonds. Such a situation was previously reported in the same bicyclic system substituted by difluorophenyl rings (Pham et al., 1998)·In the asymmetric unit of the title compound, atom C18 of molecule A acts as a donor for a weak intermolecular interaction. In molecule B, C44 acts as a donor for a weak C—H···O interaction via H44 with O1 of an adjacent molecule (Table 1, Fig. 2).

Related literature top

For related structures, see: Venkateswaramoorthi et al. (2013); Pham et al. (1998). For the synthesis of 1,5-dimethyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-one derivatives, see: Venkateswaramoorthi et al. (2012). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

Dry ammonium acetate (0.05 mol) was dissolved in ethanol (50 ml) and the solution was mixed with 4-fluoro-benzaldehyde (0.1 mol) and 2,6-dimethyl-cyclohexanone (0.05 mol). The mixture was first refluxed and then allowed to stand at room temperature overnight. Conc. HCl (30 ml) was added and the hydrochloride salt was collected and washed with a mixture of ethanol and ether (1:5 ratio). A suspension of the hydrochloride salt in acetone was treated with strong liquid ammonia solution and the free base was obtained by pouring water. The product was recrystallized from ethanol.

Refinement top

The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with Uiso(H) = 1.5Ueq(C), but methyl groups were allowed to rotate freely about the C—C bonds. All remaining H atoms bonded to C atoms were placed in geometrically idealized positions (C—H = 0.93–0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). N1—H1A and N2—H2A bond lengths were constrained to 0.85 Å using DFIX, and bond length C33—C34 was restrained using DELU restraint (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level. H atoms are represented by circles of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of the title compound.
2,4-Bis(4-fluorophenyl)-1,5-dimethyl-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C22H23F2NOF(000) = 1504
Mr = 355.41Dx = 1.272 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6655 reflections
a = 8.8470 (3) Åθ = 2.5–24.4°
b = 20.5656 (8) ŵ = 0.09 mm1
c = 20.6403 (9) ÅT = 293 K
β = 98.633 (2)°Block, colourless
V = 3712.8 (3) Å30.35 × 0.35 × 0.30 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6363 independent reflections
Radiation source: fine-focus sealed tube3974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω and ϕ scanθmax = 24.8°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 910
Tmin = 0.969, Tmax = 0.973k = 2423
32409 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.8947P]
where P = (Fo2 + 2Fc2)/3
6363 reflections(Δ/σ)max < 0.001
473 parametersΔρmax = 0.12 e Å3
3 restraintsΔρmin = 0.28 e Å3
0 constraints
Crystal data top
C22H23F2NOV = 3712.8 (3) Å3
Mr = 355.41Z = 8
Monoclinic, P21/nMo Kα radiation
a = 8.8470 (3) ŵ = 0.09 mm1
b = 20.5656 (8) ÅT = 293 K
c = 20.6403 (9) Å0.35 × 0.35 × 0.30 mm
β = 98.633 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6363 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3974 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.973Rint = 0.038
32409 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0433 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.01Δρmax = 0.12 e Å3
6363 reflectionsΔρmin = 0.28 e Å3
473 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.3516 (2)0.48852 (8)0.45379 (8)0.1227 (6)
F20.35332 (15)0.33318 (8)0.02536 (6)0.0885 (5)
O10.26343 (19)0.11184 (7)0.25466 (8)0.0730 (5)
N10.10400 (16)0.28936 (7)0.23517 (7)0.0444 (4)
H1A0.03170.31430.24350.053*
C10.3167 (3)0.43528 (14)0.41555 (13)0.0789 (7)
C20.2802 (4)0.37929 (15)0.44484 (12)0.0948 (9)
H20.28180.37750.49000.114*
C30.2407 (3)0.32503 (12)0.40602 (11)0.0754 (7)
H30.21420.28670.42550.090*
C40.2399 (2)0.32674 (10)0.33899 (9)0.0481 (5)
C50.2782 (2)0.38521 (10)0.31226 (10)0.0519 (5)
H50.27820.38780.26730.062*
C60.3162 (2)0.43973 (11)0.35009 (12)0.0634 (6)
H60.34080.47860.33110.076*
C70.1916 (2)0.26798 (9)0.29718 (9)0.0456 (5)
H70.12320.24210.32010.055*
C80.3259 (2)0.22271 (10)0.28393 (10)0.0515 (5)
C90.2534 (2)0.16905 (10)0.23956 (10)0.0521 (5)
C100.1673 (2)0.19176 (9)0.17453 (10)0.0510 (5)
C110.0377 (2)0.23670 (9)0.19285 (9)0.0457 (5)
H110.02510.21050.21820.055*
C120.2865 (2)0.22598 (10)0.13871 (10)0.0599 (6)
H12A0.35520.19320.12590.072*
H12B0.23340.24550.09890.072*
C130.3817 (2)0.27827 (10)0.17760 (11)0.0607 (6)
H13A0.46690.28960.15520.073*
H13B0.31960.31690.17940.073*
C140.4427 (2)0.25676 (10)0.24680 (11)0.0603 (6)
H14A0.48230.29460.27180.072*
H14B0.52770.22730.24510.072*
C150.4082 (3)0.19537 (12)0.34858 (11)0.0750 (7)
H15A0.45760.23010.37470.113*
H15B0.48320.16420.33980.113*
H15C0.33530.17460.37190.113*
C160.0966 (3)0.13486 (10)0.13357 (11)0.0728 (7)
H16A0.05060.15030.09130.109*
H16B0.02000.11470.15520.109*
H16C0.17470.10370.12840.109*
C170.0669 (2)0.26376 (9)0.13480 (9)0.0465 (5)
C180.2107 (2)0.23723 (11)0.11589 (10)0.0572 (6)
H180.24240.20300.14000.069*
C190.3079 (2)0.26012 (12)0.06238 (10)0.0638 (6)
H190.40380.24160.05000.077*
C200.2600 (3)0.31041 (12)0.02818 (10)0.0607 (6)
C210.1216 (3)0.33934 (11)0.04500 (11)0.0658 (6)
H210.09240.37410.02090.079*
C220.0253 (2)0.31588 (10)0.09870 (10)0.0579 (6)
H220.06950.33540.11090.070*
F30.8384 (2)0.25136 (8)0.46529 (8)0.1234 (6)
F40.14797 (15)0.41391 (8)0.01577 (6)0.0864 (4)
O20.77371 (19)0.62768 (7)0.26808 (8)0.0760 (5)
N20.60971 (16)0.45181 (7)0.24478 (7)0.0430 (4)
H2A0.53320.42880.25100.052*
C230.8064 (3)0.30496 (14)0.42688 (14)0.0798 (8)
C240.8106 (2)0.30013 (12)0.36180 (12)0.0683 (6)
H240.83600.26110.34350.082*
C250.7762 (2)0.35463 (10)0.32321 (10)0.0533 (5)
H250.77850.35190.27840.064*
C260.7385 (2)0.41299 (10)0.34974 (9)0.0491 (5)
C270.7347 (3)0.41536 (13)0.41659 (11)0.0737 (7)
H270.70790.45390.43550.088*
C280.7702 (3)0.36108 (16)0.45542 (12)0.0928 (9)
H280.76920.36300.50040.111*
C290.8324 (2)0.51620 (10)0.29605 (10)0.0528 (5)
C300.9496 (2)0.48118 (11)0.26002 (11)0.0632 (6)
H30A1.03650.50980.25930.076*
H30B0.98590.44290.28510.076*
C310.8910 (2)0.46040 (10)0.19028 (11)0.0607 (6)
H31A0.97700.44830.16870.073*
H31B0.82640.42240.19110.073*
C320.8009 (2)0.51366 (10)0.15116 (10)0.0586 (6)
H32A0.74830.49490.11090.070*
H32B0.87240.54560.13920.070*
C330.6818 (2)0.54914 (9)0.18608 (10)0.0509 (5)
C340.7642 (2)0.57082 (10)0.25176 (10)0.0526 (5)
C350.9126 (3)0.54282 (12)0.36123 (12)0.0815 (8)
H35A0.96060.50780.38730.122*
H35B0.83900.56360.38410.122*
H35C0.98870.57390.35330.122*
C360.6161 (3)0.60670 (10)0.14462 (11)0.0722 (7)
H36A0.56790.59140.10260.108*
H36B0.69700.63630.13880.108*
H36C0.54210.62870.16630.108*
C370.5485 (2)0.50556 (9)0.20268 (9)0.0462 (5)
H370.48660.53230.22800.055*
C380.6949 (2)0.47220 (9)0.30777 (9)0.0459 (5)
H380.62620.49870.33000.055*
C390.4430 (2)0.48029 (9)0.14371 (9)0.0458 (5)
C400.4816 (2)0.42821 (10)0.10662 (10)0.0538 (5)
H400.57550.40780.11830.065*
C410.3832 (3)0.40619 (11)0.05281 (10)0.0621 (6)
H410.41020.37150.02800.075*
C420.2457 (3)0.43633 (12)0.03683 (10)0.0606 (6)
C430.2012 (3)0.48678 (12)0.07203 (11)0.0672 (6)
H430.10620.50630.06020.081*
C440.3003 (2)0.50843 (11)0.12576 (10)0.0614 (6)
H440.27080.54270.15050.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1523 (16)0.1044 (12)0.1032 (12)0.0192 (12)0.0071 (11)0.0538 (11)
F20.0774 (9)0.1207 (12)0.0632 (8)0.0237 (9)0.0029 (7)0.0172 (8)
O10.0889 (12)0.0423 (9)0.0887 (11)0.0065 (8)0.0163 (9)0.0150 (8)
N10.0424 (9)0.0423 (9)0.0484 (9)0.0052 (8)0.0068 (7)0.0027 (8)
C10.0792 (18)0.0744 (18)0.0776 (18)0.0064 (15)0.0067 (14)0.0271 (16)
C20.127 (2)0.103 (2)0.0497 (15)0.001 (2)0.0018 (15)0.0170 (16)
C30.0994 (19)0.0731 (17)0.0522 (14)0.0020 (15)0.0067 (13)0.0001 (13)
C40.0410 (11)0.0539 (13)0.0483 (12)0.0025 (10)0.0033 (9)0.0014 (10)
C50.0436 (11)0.0558 (13)0.0565 (12)0.0011 (10)0.0082 (10)0.0069 (11)
C60.0534 (13)0.0582 (14)0.0774 (16)0.0046 (11)0.0062 (12)0.0146 (13)
C70.0419 (11)0.0467 (11)0.0489 (11)0.0007 (10)0.0094 (9)0.0038 (9)
C80.0445 (11)0.0478 (12)0.0619 (13)0.0068 (10)0.0070 (10)0.0077 (10)
C90.0529 (13)0.0405 (12)0.0673 (14)0.0055 (10)0.0235 (11)0.0065 (11)
C100.0615 (13)0.0371 (11)0.0563 (12)0.0020 (10)0.0148 (10)0.0004 (10)
C110.0481 (11)0.0420 (11)0.0487 (11)0.0037 (10)0.0127 (9)0.0004 (9)
C120.0695 (14)0.0523 (13)0.0637 (13)0.0094 (12)0.0288 (12)0.0020 (11)
C130.0585 (13)0.0516 (13)0.0794 (15)0.0017 (11)0.0343 (12)0.0076 (12)
C140.0427 (11)0.0543 (13)0.0861 (16)0.0048 (10)0.0169 (11)0.0005 (12)
C150.0703 (15)0.0717 (16)0.0786 (16)0.0154 (14)0.0034 (13)0.0119 (13)
C160.0928 (18)0.0479 (13)0.0783 (16)0.0010 (13)0.0150 (14)0.0132 (12)
C170.0512 (12)0.0435 (12)0.0454 (11)0.0005 (10)0.0089 (9)0.0050 (9)
C180.0554 (13)0.0618 (14)0.0550 (13)0.0067 (12)0.0100 (11)0.0001 (11)
C190.0497 (13)0.0835 (17)0.0570 (13)0.0032 (13)0.0044 (11)0.0033 (13)
C200.0583 (14)0.0772 (16)0.0457 (12)0.0167 (13)0.0048 (11)0.0001 (12)
C210.0730 (16)0.0634 (15)0.0616 (14)0.0024 (13)0.0120 (12)0.0158 (12)
C220.0580 (13)0.0523 (13)0.0620 (13)0.0052 (11)0.0040 (11)0.0042 (11)
F30.1348 (14)0.1159 (13)0.1122 (13)0.0213 (11)0.0053 (11)0.0657 (11)
F40.0776 (9)0.1248 (12)0.0527 (8)0.0198 (9)0.0036 (7)0.0028 (8)
O20.0903 (12)0.0420 (9)0.0966 (12)0.0034 (9)0.0174 (10)0.0131 (9)
N20.0409 (9)0.0418 (9)0.0468 (9)0.0027 (8)0.0080 (7)0.0058 (8)
C230.0733 (17)0.0836 (19)0.0781 (18)0.0118 (15)0.0032 (14)0.0381 (17)
C240.0548 (14)0.0607 (15)0.0878 (18)0.0076 (12)0.0057 (13)0.0171 (14)
C250.0477 (12)0.0532 (13)0.0590 (12)0.0014 (11)0.0083 (10)0.0079 (11)
C260.0415 (11)0.0560 (13)0.0488 (12)0.0017 (10)0.0035 (9)0.0044 (10)
C270.0873 (18)0.0806 (17)0.0520 (13)0.0130 (14)0.0067 (12)0.0041 (13)
C280.110 (2)0.115 (2)0.0508 (15)0.013 (2)0.0017 (14)0.0252 (17)
C290.0477 (12)0.0457 (12)0.0642 (13)0.0023 (10)0.0056 (10)0.0047 (11)
C300.0423 (12)0.0534 (13)0.0961 (18)0.0008 (11)0.0176 (12)0.0085 (13)
C310.0555 (13)0.0525 (13)0.0810 (16)0.0049 (11)0.0330 (12)0.0004 (12)
C320.0646 (13)0.0485 (12)0.0686 (14)0.0055 (11)0.0290 (11)0.0030 (11)
C330.0588 (13)0.0355 (11)0.0607 (11)0.0025 (10)0.0166 (9)0.0050 (9)
C340.0498 (12)0.0413 (12)0.0700 (12)0.0024 (10)0.0204 (9)0.0043 (10)
C350.0778 (17)0.0734 (17)0.0877 (18)0.0141 (14)0.0058 (14)0.0110 (14)
C360.0865 (17)0.0473 (13)0.0843 (17)0.0036 (13)0.0177 (14)0.0165 (12)
C370.0485 (11)0.0404 (11)0.0517 (11)0.0092 (10)0.0139 (9)0.0033 (9)
C380.0422 (11)0.0469 (11)0.0493 (11)0.0047 (9)0.0092 (9)0.0022 (10)
C390.0486 (12)0.0459 (12)0.0439 (11)0.0037 (10)0.0096 (9)0.0084 (9)
C400.0547 (13)0.0522 (13)0.0540 (12)0.0071 (11)0.0068 (10)0.0021 (11)
C410.0694 (15)0.0648 (14)0.0530 (13)0.0005 (13)0.0124 (11)0.0028 (11)
C420.0565 (14)0.0826 (17)0.0421 (12)0.0111 (13)0.0051 (11)0.0106 (12)
C430.0515 (13)0.0869 (18)0.0611 (14)0.0112 (13)0.0022 (11)0.0126 (14)
C440.0590 (14)0.0632 (14)0.0625 (14)0.0127 (12)0.0110 (11)0.0019 (12)
Geometric parameters (Å, º) top
F1—C11.358 (3)F3—C231.363 (3)
F2—C201.359 (2)F4—C421.363 (2)
O1—C91.217 (2)O2—C341.216 (2)
N1—C111.458 (2)N2—C371.459 (2)
N1—C71.461 (2)N2—C381.463 (2)
N1—H1A0.8567N2—H2A0.8518
C1—C61.354 (3)C23—C241.353 (3)
C1—C21.362 (4)C23—C281.356 (4)
C2—C31.388 (3)C24—C251.382 (3)
C2—H20.9300C24—H240.9300
C3—C41.383 (3)C25—C261.381 (3)
C3—H30.9300C25—H250.9300
C4—C51.386 (3)C26—C271.386 (3)
C4—C71.509 (3)C26—C381.510 (3)
C5—C61.379 (3)C27—C281.383 (3)
C5—H50.9300C27—H270.9300
C6—H60.9300C28—H280.9300
C7—C81.565 (3)C29—C341.515 (3)
C7—H70.9800C29—C351.525 (3)
C8—C91.514 (3)C29—C301.542 (3)
C8—C151.528 (3)C29—C381.564 (3)
C8—C141.544 (3)C30—C311.516 (3)
C9—C101.514 (3)C30—H30A0.9700
C10—C161.522 (3)C30—H30B0.9700
C10—C121.545 (3)C31—C321.515 (3)
C10—C111.563 (3)C31—H31A0.9700
C11—C171.506 (3)C31—H31B0.9700
C11—H110.9800C32—C331.546 (3)
C12—C131.519 (3)C32—H32A0.9700
C12—H12A0.9700C32—H32B0.9700
C12—H12B0.9700C33—C341.507 (3)
C13—C141.515 (3)C33—C361.524 (3)
C13—H13A0.9700C33—C371.560 (3)
C13—H13B0.9700C35—H35A0.9600
C14—H14A0.9700C35—H35B0.9600
C14—H14B0.9700C35—H35C0.9600
C15—H15A0.9600C36—H36A0.9600
C15—H15B0.9600C36—H36B0.9600
C15—H15C0.9600C36—H36C0.9600
C16—H16A0.9600C37—C391.510 (3)
C16—H16B0.9600C37—H370.9800
C16—H16C0.9600C38—H380.9800
C17—C181.385 (3)C39—C441.387 (3)
C17—C221.386 (3)C39—C401.389 (3)
C18—C191.377 (3)C40—C411.381 (3)
C18—H180.9300C40—H400.9300
C19—C201.356 (3)C41—C421.360 (3)
C19—H190.9300C41—H410.9300
C20—C211.359 (3)C42—C431.359 (3)
C21—C221.380 (3)C43—C441.380 (3)
C21—H210.9300C43—H430.9300
C22—H220.9300C44—H440.9300
C11—N1—C7114.47 (14)C37—N2—C38114.07 (14)
C11—N1—H1A108.6C37—N2—H2A106.2
C7—N1—H1A108.6C38—N2—H2A109.9
C6—C1—F1119.5 (3)C24—C23—C28122.5 (2)
C6—C1—C2122.3 (2)C24—C23—F3118.9 (3)
F1—C1—C2118.2 (2)C28—C23—F3118.5 (3)
C1—C2—C3118.7 (2)C23—C24—C25118.4 (2)
C1—C2—H2120.7C23—C24—H24120.8
C3—C2—H2120.7C25—C24—H24120.8
C4—C3—C2121.4 (2)C26—C25—C24121.4 (2)
C4—C3—H3119.3C26—C25—H25119.3
C2—C3—H3119.3C24—C25—H25119.3
C3—C4—C5117.1 (2)C25—C26—C27118.0 (2)
C3—C4—C7120.70 (19)C25—C26—C38121.97 (18)
C5—C4—C7122.15 (17)C27—C26—C38120.01 (19)
C6—C5—C4122.2 (2)C28—C27—C26120.7 (2)
C6—C5—H5118.9C28—C27—H27119.6
C4—C5—H5118.9C26—C27—H27119.6
C1—C6—C5118.3 (2)C23—C28—C27118.9 (2)
C1—C6—H6120.8C23—C28—H28120.5
C5—C6—H6120.8C27—C28—H28120.5
N1—C7—C4109.10 (15)C34—C29—C35110.88 (17)
N1—C7—C8110.05 (15)C34—C29—C30106.92 (17)
C4—C7—C8114.80 (15)C35—C29—C30109.61 (18)
N1—C7—H7107.5C34—C29—C38105.89 (15)
C4—C7—H7107.5C35—C29—C38109.93 (17)
C8—C7—H7107.5C30—C29—C38113.53 (16)
C9—C8—C15111.28 (17)C31—C30—C29115.53 (17)
C9—C8—C14106.53 (17)C31—C30—H30A108.4
C15—C8—C14109.51 (17)C29—C30—H30A108.4
C9—C8—C7105.99 (15)C31—C30—H30B108.4
C15—C8—C7109.93 (17)C29—C30—H30B108.4
C14—C8—C7113.52 (16)H30A—C30—H30B107.5
O1—C9—C8122.8 (2)C32—C31—C30112.31 (18)
O1—C9—C10122.2 (2)C32—C31—H31A109.1
C8—C9—C10114.99 (16)C30—C31—H31A109.1
C9—C10—C16111.42 (17)C32—C31—H31B109.1
C9—C10—C12106.00 (17)C30—C31—H31B109.1
C16—C10—C12109.72 (17)H31A—C31—H31B107.9
C9—C10—C11104.94 (15)C31—C32—C33115.72 (16)
C16—C10—C11109.51 (17)C31—C32—H32A108.4
C12—C10—C11115.13 (16)C33—C32—H32A108.4
N1—C11—C17110.25 (15)C31—C32—H32B108.4
N1—C11—C10109.88 (15)C33—C32—H32B108.4
C17—C11—C10114.30 (15)H32A—C32—H32B107.4
N1—C11—H11107.4C34—C33—C36111.57 (17)
C17—C11—H11107.4C34—C33—C32106.72 (17)
C10—C11—H11107.4C36—C33—C32109.52 (17)
C13—C12—C10115.70 (17)C34—C33—C37104.59 (15)
C13—C12—H12A108.4C36—C33—C37109.42 (16)
C10—C12—H12A108.4C32—C33—C37114.94 (15)
C13—C12—H12B108.4O2—C34—C33122.5 (2)
C10—C12—H12B108.4O2—C34—C29122.8 (2)
H12A—C12—H12B107.4C33—C34—C29114.74 (17)
C14—C13—C12112.48 (17)C29—C35—H35A109.5
C14—C13—H13A109.1C29—C35—H35B109.5
C12—C13—H13A109.1H35A—C35—H35B109.5
C14—C13—H13B109.1C29—C35—H35C109.5
C12—C13—H13B109.1H35A—C35—H35C109.5
H13A—C13—H13B107.8H35B—C35—H35C109.5
C13—C14—C8115.49 (17)C33—C36—H36A109.5
C13—C14—H14A108.4C33—C36—H36B109.5
C8—C14—H14A108.4H36A—C36—H36B109.5
C13—C14—H14B108.4C33—C36—H36C109.5
C8—C14—H14B108.4H36A—C36—H36C109.5
H14A—C14—H14B107.5H36B—C36—H36C109.5
C8—C15—H15A109.5N2—C37—C39110.40 (15)
C8—C15—H15B109.5N2—C37—C33109.92 (15)
H15A—C15—H15B109.5C39—C37—C33114.64 (15)
C8—C15—H15C109.5N2—C37—H37107.2
H15A—C15—H15C109.5C39—C37—H37107.2
H15B—C15—H15C109.5C33—C37—H37107.2
C10—C16—H16A109.5N2—C38—C26109.38 (15)
C10—C16—H16B109.5N2—C38—C29109.70 (15)
H16A—C16—H16B109.5C26—C38—C29114.67 (15)
C10—C16—H16C109.5N2—C38—H38107.6
H16A—C16—H16C109.5C26—C38—H38107.6
H16B—C16—H16C109.5C29—C38—H38107.6
C18—C17—C22117.39 (19)C44—C39—C40117.61 (19)
C18—C17—C11120.46 (18)C44—C39—C37119.94 (18)
C22—C17—C11122.14 (18)C40—C39—C37122.44 (18)
C19—C18—C17121.9 (2)C41—C40—C39121.3 (2)
C19—C18—H18119.1C41—C40—H40119.4
C17—C18—H18119.1C39—C40—H40119.4
C20—C19—C18118.2 (2)C42—C41—C40118.6 (2)
C20—C19—H19120.9C42—C41—H41120.7
C18—C19—H19120.9C40—C41—H41120.7
C19—C20—C21122.8 (2)C43—C42—C41122.6 (2)
C19—C20—F2119.1 (2)C43—C42—F4118.9 (2)
C21—C20—F2118.1 (2)C41—C42—F4118.4 (2)
C20—C21—C22118.5 (2)C42—C43—C44118.4 (2)
C20—C21—H21120.8C42—C43—H43120.8
C22—C21—H21120.8C44—C43—H43120.8
C21—C22—C17121.3 (2)C43—C44—C39121.5 (2)
C21—C22—H22119.3C43—C44—H44119.2
C17—C22—H22119.3C39—C44—H44119.2
C6—C1—C2—C30.2 (4)C28—C23—C24—C250.1 (4)
F1—C1—C2—C3178.4 (2)F3—C23—C24—C25179.3 (2)
C1—C2—C3—C40.9 (4)C23—C24—C25—C260.1 (3)
C2—C3—C4—C50.9 (3)C24—C25—C26—C270.6 (3)
C2—C3—C4—C7178.0 (2)C24—C25—C26—C38177.63 (17)
C3—C4—C5—C60.2 (3)C25—C26—C27—C281.1 (3)
C7—C4—C5—C6177.27 (17)C38—C26—C27—C28178.2 (2)
F1—C1—C6—C5179.1 (2)C24—C23—C28—C270.6 (5)
C2—C1—C6—C50.4 (4)F3—C23—C28—C27178.8 (2)
C4—C5—C6—C10.4 (3)C26—C27—C28—C231.1 (4)
C11—N1—C7—C4174.22 (14)C34—C29—C30—C3151.5 (2)
C11—N1—C7—C858.99 (19)C35—C29—C30—C31171.76 (18)
C3—C4—C7—N1141.90 (19)C38—C29—C30—C3164.9 (2)
C5—C4—C7—N135.1 (2)C29—C30—C31—C3245.7 (2)
C3—C4—C7—C894.1 (2)C30—C31—C32—C3345.8 (2)
C5—C4—C7—C889.0 (2)C31—C32—C33—C3451.7 (2)
N1—C7—C8—C954.38 (19)C31—C32—C33—C36172.57 (18)
C4—C7—C8—C9177.91 (16)C31—C32—C33—C3763.8 (2)
N1—C7—C8—C15174.75 (16)C36—C33—C34—O20.5 (3)
C4—C7—C8—C1561.7 (2)C32—C33—C34—O2120.1 (2)
N1—C7—C8—C1462.2 (2)C37—C33—C34—O2117.7 (2)
C4—C7—C8—C1461.3 (2)C36—C33—C34—C29179.78 (17)
C15—C8—C9—O10.9 (3)C32—C33—C34—C2960.6 (2)
C14—C8—C9—O1118.4 (2)C37—C33—C34—C2961.6 (2)
C7—C8—C9—O1120.4 (2)C35—C29—C34—O20.5 (3)
C15—C8—C9—C10179.21 (17)C30—C29—C34—O2119.9 (2)
C14—C8—C9—C1061.5 (2)C38—C29—C34—O2118.7 (2)
C7—C8—C9—C1059.7 (2)C35—C29—C34—C33179.79 (17)
O1—C9—C10—C160.9 (3)C30—C29—C34—C3360.8 (2)
C8—C9—C10—C16179.25 (17)C38—C29—C34—C3360.6 (2)
O1—C9—C10—C12118.4 (2)C38—N2—C37—C39171.41 (14)
C8—C9—C10—C1261.4 (2)C38—N2—C37—C3361.16 (19)
O1—C9—C10—C11119.3 (2)C34—C33—C37—N257.88 (19)
C8—C9—C10—C1160.8 (2)C36—C33—C37—N2177.52 (16)
C7—N1—C11—C17172.46 (14)C32—C33—C37—N258.8 (2)
C7—N1—C11—C1060.68 (19)C34—C33—C37—C39177.08 (16)
C9—C10—C11—N157.12 (19)C36—C33—C37—C3957.4 (2)
C16—C10—C11—N1176.82 (16)C32—C33—C37—C3966.2 (2)
C12—C10—C11—N159.0 (2)C37—N2—C38—C26174.22 (14)
C9—C10—C11—C17178.34 (16)C37—N2—C38—C2959.20 (19)
C16—C10—C11—C1758.6 (2)C25—C26—C38—N235.1 (2)
C12—C10—C11—C1765.5 (2)C27—C26—C38—N2141.86 (19)
C9—C10—C12—C1351.8 (2)C25—C26—C38—C2988.6 (2)
C16—C10—C12—C13172.27 (18)C27—C26—C38—C2994.4 (2)
C11—C10—C12—C1363.7 (2)C34—C29—C38—N254.84 (19)
C10—C12—C13—C1446.1 (2)C35—C29—C38—N2174.67 (16)
C12—C13—C14—C845.7 (2)C30—C29—C38—N262.1 (2)
C9—C8—C14—C1351.5 (2)C34—C29—C38—C26178.38 (16)
C15—C8—C14—C13171.97 (18)C35—C29—C38—C2661.8 (2)
C7—C8—C14—C1364.8 (2)C30—C29—C38—C2661.4 (2)
N1—C11—C17—C18133.43 (18)N2—C37—C39—C44131.91 (18)
C10—C11—C17—C18102.2 (2)C33—C37—C39—C44103.3 (2)
N1—C11—C17—C2246.0 (2)N2—C37—C39—C4046.7 (2)
C10—C11—C17—C2278.4 (2)C33—C37—C39—C4078.1 (2)
C22—C17—C18—C191.7 (3)C44—C39—C40—C411.6 (3)
C11—C17—C18—C19178.85 (18)C37—C39—C40—C41179.81 (18)
C17—C18—C19—C200.5 (3)C39—C40—C41—C420.5 (3)
C18—C19—C20—C210.8 (3)C40—C41—C42—C430.6 (3)
C18—C19—C20—F2179.09 (18)C40—C41—C42—F4179.10 (18)
C19—C20—C21—C220.8 (3)C41—C42—C43—C440.5 (3)
F2—C20—C21—C22179.04 (19)F4—C42—C43—C44179.06 (18)
C20—C21—C22—C170.4 (3)C42—C43—C44—C390.6 (3)
C18—C17—C22—C211.6 (3)C40—C39—C44—C431.6 (3)
C11—C17—C22—C21178.92 (18)C37—C39—C44—C43179.74 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.503.395 (3)163
C44—H44···O1ii0.932.473.369 (3)161
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.503.395 (3)162.5
C44—H44···O1ii0.932.473.369 (3)161.3
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the data collection. SR thanks the University Grants Commission for the financial support of this work (MRP-4335/12).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPham, M., Gdaniec, M. & Polonski, T. (1998). J. Org. Chem. 63, 3731–3734.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkateswaramoorthi, R., Rizwana Begum, S., Hema, R., Krishnasamy, K. & Anitha, A. G. (2013). Acta Cryst. E69, o768.  CSD CrossRef IUCr Journals Google Scholar
First citationVenkateswaramoorthi, R., Xavier, J. J. F., Krishnasamy, K. & Saleem, H. (2012). J. Mol. Struct. 1012, 119–125.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds