organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 9-hy­dr­oxy-15-methyl-2-oxo-11-(pyren-1-yl)-10-oxa-15-aza­tetra­cyclo­[7.6.0.01,12.03,8]penta­deca-3(8),4,6-triene-12-carboxyl­ate

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 1 August 2013; accepted 7 September 2013; online 21 September 2013)

In the title compound, C32H25NO5, the furan and pyrrole rings each adopt an envelope conformation, the respective flap atoms being the C atom bearing the pyrene substituent and the CH2 atom adjacent to the N atom. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond. In the crystal, C—H⋯O contacts link the mol­ecules, forming a two-dimensional network parallel to (001).

Related literature

For the solid–state structures of pyrenes, see: Robertson & White (1947[Robertson, J. M. & White, J. G. (1947). J. Chem. Soc. pp. 358-368.]); Camerman & Trotter (1965[Camerman, A. & Trotter, J. (1965). Acta Cryst. 18, 636-643.]); Allmann (1970[Allmann, R. (1970). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 132, 129-151.]); Hazell et al. (1972[Hazell, A. C., Larsen, F. K. & Lehmann, M. S. (1972). Acta Cryst. B28, 2977-2984.]); Kai et al. (1978[Kai, Y., Hama, F., Yasuoka, N. & Kasai, N. (1978). Acta Cryst. B34, 1263-1270.]). For a related structure, see: Gruber et al. (2010[Gruber, T., Seichter, W. & Weber, E. (2010). Acta Cryst. E66, o443.]). For the use of pyrenes in fluorescence sensors, see: Bren (2001[Bren, V. A. (2001). Russ. Chem. Rev. 70, 1017-1036.]).

[Scheme 1]

Experimental

Crystal data
  • C32H25NO5

  • Mr = 503.53

  • Monoclinic, C 2/c

  • a = 31.6964 (6) Å

  • b = 11.0325 (2) Å

  • c = 14.1965 (3) Å

  • β = 96.503 (1)°

  • V = 4932.44 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.983

  • 20953 measured reflections

  • 4661 independent reflections

  • 3280 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.04

  • 4661 reflections

  • 347 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯O3i 0.93 2.43 3.299 (2) 155
O2—H2⋯N 0.87 (2) 1.95 (2) 2.6217 (19) 133 (2)
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Owing to their electronic, optical and geometric properties, mono-functionalized pyrenes, attachable to a receptor platform, are of special interest for the development of fluorescent sensors (Bren et al., 2001).

The pyrene moiety alone shows no significant deviations of bond lengths and angles compared with those of the unsubstituted analogue (Robertson et al., 1947; Camerman et al., 1965; Allmann et al., 1970; Hazell et al., 1972; Kai et al., 1978). The furan and pyrole rings adopt an envelope conformation. C17 and C20 are displaced by -0.2843 (2) Å and 0.2851 (2) Å, respectively, from the least-square planes formed by the remaining ring atoms. The dihedral angle between the furan and pyrole ring being 65.50 (6)°. The carboxylate group (C30/05/C31) is almost perpendicular to the furan ring with dihedral angle of 85.05 (1)°. The molecular conformation is stabilized by an intramolecular O—H···N hydrogen bond and the crystal packing is stabilized by intermolecular C—H···O contacts.

Related literature top

For the solid–state structures of pyrenes, see: Robertson & White (1947); Camerman & Trotter (1965); Allmann (1970); Hazell et al. (1972); Kai et al. (1978). For a related structure, see: Gruber et al. (2010). For the use of pyrenes in fluorescence sensors, see: Bren (2001).

Experimental top

To a reaction mixture of 2-((3a2, 4-dihydropyren-1-yl)(hydroxy)methyl)acrylate (1 mmol), ninhydrine (1.1 mmol) and sarcosine (1.1 mmol) was refluxed in methanol until completion of the reaction was evidenced by TLC analysis. After completion of the reaction the solvent was evaporated under reduced pressure. The crude reaction mixture was dissolved in dichloromethane and washed with water followed by brine solution. The organic layer was separated and dried over sodium sulfate, filtering and evaporation of the organic solvent under reduced pressure. The product was separated by column chromatography using hexane and ethyl acetate (3:7) as an eluent to give colorless solid. The product was dissolved in chloroform and heated for five minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent resulting in single crystals suitable for XRD studies.

Refinement top

All the H atoms were positioned geometrically, with C–H = 0.93–0.97Å and constrained to ride on their parent atom, with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The hydroxyl H atom was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, Displacement ellipsoids are drawn at the 30% probability level, H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound, Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.
(I) top
Crystal data top
C32H25NO5F(000) = 2112
Mr = 503.53Dx = 1.356 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8834 reflections
a = 31.6964 (6) Åθ = 2.1–31.2°
b = 11.0325 (2) ŵ = 0.09 mm1
c = 14.1965 (3) ÅT = 293 K
β = 96.503 (1)°Block, colourless
V = 4932.44 (17) Å30.25 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4661 independent reflections
Radiation source: fine-focus sealed tube3280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scanθmax = 25.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 3837
Tmin = 0.979, Tmax = 0.983k = 1113
20953 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0547P)2 + 1.507P]
where P = (Fo2 + 2Fc2)/3
4661 reflections(Δ/σ)max < 0.001
347 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C32H25NO5V = 4932.44 (17) Å3
Mr = 503.53Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.6964 (6) ŵ = 0.09 mm1
b = 11.0325 (2) ÅT = 293 K
c = 14.1965 (3) Å0.25 × 0.20 × 0.20 mm
β = 96.503 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4661 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3280 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.031
20953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.15 e Å3
4661 reflectionsΔρmin = 0.18 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06963 (4)0.02788 (10)0.10712 (8)0.0468 (3)
O30.08806 (4)0.40608 (11)0.02173 (8)0.0555 (3)
O20.00524 (4)0.11622 (12)0.06940 (10)0.0499 (3)
N0.03715 (5)0.18310 (13)0.08500 (9)0.0468 (4)
C170.11197 (5)0.04084 (15)0.08207 (11)0.0396 (4)
H170.12860.08990.13040.048*
C160.13183 (5)0.08345 (15)0.07916 (11)0.0412 (4)
O40.16465 (4)0.24317 (13)0.03901 (10)0.0647 (4)
C10.23651 (5)0.24458 (17)0.12311 (11)0.0453 (4)
C20.19242 (5)0.22187 (16)0.09870 (11)0.0408 (4)
C30.17562 (5)0.10230 (15)0.10426 (10)0.0396 (4)
O50.15453 (5)0.19027 (15)0.11231 (10)0.0828 (5)
C230.05729 (5)0.23187 (15)0.16533 (11)0.0387 (4)
C250.07807 (5)0.32732 (16)0.03066 (11)0.0402 (4)
C100.25291 (6)0.36313 (19)0.11528 (12)0.0532 (5)
C130.16523 (6)0.31982 (16)0.06926 (12)0.0452 (4)
C150.10609 (6)0.18228 (16)0.05246 (13)0.0496 (5)
H150.07710.17020.03750.060*
C220.04826 (5)0.14005 (15)0.08771 (11)0.0396 (4)
C180.10582 (5)0.11345 (15)0.01307 (11)0.0391 (4)
C290.05082 (5)0.22207 (18)0.25959 (11)0.0484 (5)
H290.04070.15040.28320.058*
C240.07323 (5)0.33856 (16)0.13185 (11)0.0419 (4)
C140.12230 (6)0.29750 (16)0.04743 (13)0.0510 (5)
H140.10410.36140.02900.061*
C40.20465 (6)0.00815 (18)0.13747 (12)0.0491 (5)
H40.19470.07080.14170.059*
C50.24608 (6)0.0317 (2)0.16270 (13)0.0575 (5)
H50.26380.03150.18550.069*
C280.05960 (6)0.3202 (2)0.31740 (13)0.0608 (6)
H280.05450.31530.38050.073*
C210.08922 (6)0.03972 (17)0.10085 (12)0.0496 (5)
H21A0.11230.01650.13660.059*
H21B0.07470.03290.08310.059*
C60.26386 (6)0.1491 (2)0.15595 (13)0.0541 (5)
C200.05868 (6)0.12456 (18)0.15795 (12)0.0550 (5)
H20A0.07370.18320.19260.066*
H20B0.03880.08010.20220.066*
C260.08287 (6)0.43730 (18)0.19105 (13)0.0558 (5)
H260.09370.50850.16820.067*
C300.14512 (6)0.18882 (16)0.02412 (13)0.0461 (4)
C120.18277 (7)0.43904 (19)0.06394 (14)0.0593 (5)
H120.16500.50370.04520.071*
C110.22455 (7)0.4587 (2)0.08562 (14)0.0637 (6)
H110.23510.53680.08110.076*
C190.06708 (5)0.19699 (15)0.00068 (10)0.0375 (4)
C320.00976 (7)0.28537 (19)0.11593 (14)0.0617 (5)
H32A0.00290.31730.06280.092*
H32B0.01220.25870.16360.092*
H32C0.02630.34740.14180.092*
C90.29646 (7)0.3813 (2)0.13888 (15)0.0695 (6)
H90.30770.45850.13320.083*
C270.07588 (7)0.4264 (2)0.28456 (13)0.0642 (6)
H270.08210.49090.32590.077*
C70.30703 (7)0.1735 (3)0.17972 (16)0.0736 (7)
H70.32530.11140.20230.088*
C80.32282 (7)0.2884 (3)0.17003 (17)0.0783 (7)
H80.35170.30280.18480.094*
C310.18922 (11)0.2689 (3)0.1309 (2)0.1279 (13)
H31A0.19350.26350.19660.192*
H31B0.21470.24420.09250.192*
H31C0.18250.35100.11590.192*
H20.0041 (7)0.110 (2)0.0079 (16)0.081 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0466 (7)0.0380 (7)0.0591 (7)0.0011 (5)0.0194 (5)0.0090 (6)
O30.0785 (9)0.0419 (7)0.0462 (7)0.0123 (7)0.0079 (6)0.0074 (6)
O20.0402 (7)0.0526 (8)0.0577 (8)0.0076 (6)0.0101 (6)0.0048 (6)
N0.0519 (9)0.0460 (9)0.0407 (7)0.0009 (7)0.0024 (6)0.0036 (7)
C170.0378 (9)0.0375 (10)0.0445 (9)0.0044 (8)0.0080 (7)0.0011 (7)
C160.0433 (10)0.0377 (10)0.0426 (9)0.0018 (8)0.0047 (7)0.0027 (7)
O40.0629 (9)0.0629 (9)0.0671 (9)0.0265 (8)0.0021 (7)0.0046 (7)
C10.0426 (11)0.0574 (12)0.0365 (8)0.0016 (9)0.0074 (7)0.0088 (8)
C20.0437 (10)0.0452 (10)0.0337 (8)0.0001 (8)0.0060 (7)0.0025 (7)
C30.0414 (10)0.0424 (10)0.0350 (8)0.0039 (8)0.0050 (7)0.0010 (7)
O50.1044 (13)0.0818 (11)0.0715 (9)0.0397 (9)0.0505 (9)0.0140 (8)
C230.0334 (9)0.0427 (10)0.0402 (9)0.0039 (8)0.0045 (7)0.0027 (7)
C250.0447 (10)0.0365 (10)0.0392 (8)0.0012 (8)0.0035 (7)0.0026 (7)
C100.0522 (12)0.0634 (13)0.0451 (10)0.0141 (10)0.0103 (8)0.0123 (9)
C130.0527 (11)0.0380 (10)0.0440 (9)0.0029 (9)0.0013 (8)0.0020 (8)
C150.0415 (10)0.0410 (11)0.0646 (11)0.0031 (9)0.0018 (8)0.0034 (9)
C220.0370 (10)0.0358 (10)0.0468 (9)0.0008 (7)0.0085 (7)0.0041 (7)
C180.0414 (10)0.0371 (10)0.0397 (8)0.0041 (8)0.0087 (7)0.0025 (7)
C290.0442 (10)0.0612 (12)0.0399 (9)0.0072 (9)0.0046 (7)0.0085 (9)
C240.0469 (10)0.0391 (10)0.0393 (8)0.0012 (8)0.0035 (7)0.0036 (8)
C140.0511 (12)0.0347 (10)0.0642 (11)0.0068 (8)0.0061 (9)0.0029 (9)
C40.0476 (11)0.0477 (11)0.0517 (10)0.0047 (9)0.0039 (8)0.0019 (8)
C50.0487 (12)0.0633 (14)0.0594 (11)0.0167 (10)0.0009 (9)0.0015 (10)
C280.0600 (13)0.0856 (16)0.0369 (9)0.0064 (12)0.0066 (8)0.0028 (10)
C210.0592 (12)0.0443 (11)0.0462 (9)0.0039 (9)0.0103 (8)0.0077 (8)
C60.0433 (11)0.0684 (14)0.0510 (10)0.0006 (10)0.0075 (8)0.0128 (10)
C200.0718 (13)0.0519 (12)0.0400 (9)0.0019 (10)0.0009 (9)0.0079 (8)
C260.0668 (13)0.0486 (12)0.0515 (11)0.0036 (10)0.0039 (9)0.0078 (9)
C300.0496 (11)0.0405 (10)0.0505 (10)0.0034 (9)0.0153 (9)0.0007 (8)
C120.0681 (14)0.0445 (12)0.0634 (12)0.0053 (10)0.0009 (10)0.0007 (9)
C110.0729 (15)0.0534 (13)0.0647 (12)0.0182 (12)0.0071 (11)0.0018 (10)
C190.0424 (10)0.0343 (9)0.0358 (8)0.0038 (7)0.0040 (7)0.0005 (7)
C320.0629 (13)0.0666 (14)0.0523 (11)0.0053 (11)0.0078 (9)0.0007 (10)
C90.0585 (14)0.0812 (17)0.0708 (13)0.0222 (13)0.0164 (11)0.0211 (12)
C270.0731 (14)0.0703 (15)0.0484 (11)0.0027 (12)0.0027 (10)0.0226 (10)
C70.0442 (13)0.0909 (19)0.0843 (15)0.0056 (12)0.0016 (11)0.0195 (13)
C80.0431 (13)0.103 (2)0.0890 (16)0.0141 (14)0.0087 (11)0.0327 (15)
C310.152 (3)0.123 (3)0.126 (2)0.074 (2)0.091 (2)0.015 (2)
Geometric parameters (Å, º) top
O1—C221.423 (2)C18—C211.531 (2)
O1—C171.4340 (18)C18—C191.565 (2)
O3—C251.2090 (19)C29—C281.368 (3)
O2—C221.384 (2)C29—H290.9300
O2—H20.87 (2)C24—C261.389 (2)
N—C201.455 (2)C14—H140.9300
N—C321.460 (2)C4—C51.347 (3)
N—C191.464 (2)C4—H40.9300
C17—C161.511 (2)C5—C61.420 (3)
C17—C181.563 (2)C5—H50.9300
C17—H170.9800C28—C271.382 (3)
C16—C151.389 (2)C28—H280.9300
C16—C31.409 (2)C21—C201.514 (3)
O4—C301.192 (2)C21—H21A0.9700
C1—C61.410 (3)C21—H21B0.9700
C1—C101.416 (3)C6—C71.398 (3)
C1—C21.423 (2)C20—H20A0.9700
C2—C131.415 (2)C20—H20B0.9700
C2—C31.428 (2)C26—C271.376 (3)
C3—C41.432 (2)C26—H260.9300
O5—C301.319 (2)C12—C111.343 (3)
O5—C311.448 (3)C12—H120.9300
C23—C291.381 (2)C11—H110.9300
C23—C241.386 (2)C32—H32A0.9600
C23—C221.500 (2)C32—H32B0.9600
C25—C241.467 (2)C32—H32C0.9600
C25—C191.529 (2)C9—C81.364 (3)
C10—C91.398 (3)C9—H90.9300
C10—C111.418 (3)C27—H270.9300
C13—C141.383 (2)C7—C81.375 (3)
C13—C121.433 (3)C7—H70.9300
C15—C141.376 (3)C8—H80.9300
C15—H150.9300C31—H31A0.9600
C22—C191.563 (2)C31—H31B0.9600
C18—C301.521 (2)C31—H31C0.9600
C22—O1—C17107.67 (12)C4—C5—C6122.74 (19)
C22—O2—H297.4 (15)C4—C5—H5118.6
C20—N—C32116.09 (14)C6—C5—H5118.6
C20—N—C19109.02 (14)C29—C28—C27121.79 (17)
C32—N—C19118.45 (14)C29—C28—H28119.1
O1—C17—C16108.71 (13)C27—C28—H28119.1
O1—C17—C18103.69 (12)C20—C21—C18104.32 (14)
C16—C17—C18116.93 (13)C20—C21—H21A110.9
O1—C17—H17109.1C18—C21—H21A110.9
C16—C17—H17109.1C20—C21—H21B110.9
C18—C17—H17109.1C18—C21—H21B110.9
C15—C16—C3118.99 (16)H21A—C21—H21B108.9
C15—C16—C17119.09 (15)C7—C6—C1119.0 (2)
C3—C16—C17121.91 (15)C7—C6—C5123.0 (2)
C6—C1—C10119.89 (17)C1—C6—C5118.03 (17)
C6—C1—C2119.93 (17)N—C20—C21102.50 (13)
C10—C1—C2120.17 (17)N—C20—H20A111.3
C13—C2—C1119.05 (16)C21—C20—H20A111.3
C13—C2—C3120.21 (15)N—C20—H20B111.3
C1—C2—C3120.74 (16)C21—C20—H20B111.3
C16—C3—C2119.03 (15)H20A—C20—H20B109.2
C16—C3—C4123.66 (16)C27—C26—C24117.84 (19)
C2—C3—C4117.30 (15)C27—C26—H26121.1
C30—O5—C31115.97 (18)C24—C26—H26121.1
C29—C23—C24119.91 (16)O4—C30—O5123.62 (17)
C29—C23—C22128.47 (16)O4—C30—C18124.01 (15)
C24—C23—C22111.60 (13)O5—C30—C18112.35 (16)
O3—C25—C24127.25 (16)C11—C12—C13120.96 (19)
O3—C25—C19124.89 (14)C11—C12—H12119.5
C24—C25—C19107.84 (13)C13—C12—H12119.5
C9—C10—C1118.4 (2)C12—C11—C10121.56 (19)
C9—C10—C11122.7 (2)C12—C11—H11119.2
C1—C10—C11118.93 (17)C10—C11—H11119.2
C14—C13—C2118.74 (16)N—C19—C25115.83 (13)
C14—C13—C12121.95 (17)N—C19—C22110.19 (13)
C2—C13—C12119.31 (17)C25—C19—C22104.67 (12)
C14—C15—C16121.89 (17)N—C19—C18106.18 (12)
C14—C15—H15119.1C25—C19—C18115.56 (13)
C16—C15—H15119.1C22—C19—C18103.71 (12)
O2—C22—O1107.96 (13)N—C32—H32A109.5
O2—C22—C23111.60 (13)N—C32—H32B109.5
O1—C22—C23113.46 (13)H32A—C32—H32B109.5
O2—C22—C19112.58 (13)N—C32—H32C109.5
O1—C22—C19106.66 (12)H32A—C32—H32C109.5
C23—C22—C19104.54 (13)H32B—C32—H32C109.5
C30—C18—C21114.63 (14)C8—C9—C10121.4 (2)
C30—C18—C17110.23 (13)C8—C9—H9119.3
C21—C18—C17115.39 (14)C10—C9—H9119.3
C30—C18—C19110.75 (13)C26—C27—C28120.44 (18)
C21—C18—C19102.26 (13)C26—C27—H27119.8
C17—C18—C19102.52 (12)C28—C27—H27119.8
C28—C29—C23118.49 (18)C8—C7—C6120.7 (2)
C28—C29—H29120.8C8—C7—H7119.6
C23—C29—H29120.8C6—C7—H7119.6
C23—C24—C26121.50 (15)C9—C8—C7120.6 (2)
C23—C24—C25110.28 (15)C9—C8—H8119.7
C26—C24—C25128.21 (16)C7—C8—H8119.7
C15—C14—C13121.10 (17)O5—C31—H31A109.5
C15—C14—H14119.5O5—C31—H31B109.5
C13—C14—H14119.5H31A—C31—H31B109.5
C5—C4—C3121.22 (18)O5—C31—H31C109.5
C5—C4—H4119.4H31A—C31—H31C109.5
C3—C4—H4119.4H31B—C31—H31C109.5
C22—O1—C17—C16166.42 (13)C10—C1—C6—C70.4 (3)
C22—O1—C17—C1841.34 (15)C2—C1—C6—C7179.86 (16)
O1—C17—C16—C1531.7 (2)C10—C1—C6—C5180.00 (16)
C18—C17—C16—C1585.17 (19)C2—C1—C6—C50.6 (2)
O1—C17—C16—C3147.21 (14)C4—C5—C6—C7178.29 (18)
C18—C17—C16—C395.89 (18)C4—C5—C6—C11.3 (3)
C6—C1—C2—C13177.65 (15)C32—N—C20—C21170.80 (15)
C10—C1—C2—C131.8 (2)C19—N—C20—C2133.93 (18)
C6—C1—C2—C32.0 (2)C18—C21—C20—N40.11 (18)
C10—C1—C2—C3178.61 (14)C23—C24—C26—C270.4 (3)
C15—C16—C3—C21.9 (2)C25—C24—C26—C27179.51 (18)
C17—C16—C3—C2179.16 (14)C31—O5—C30—O43.6 (3)
C15—C16—C3—C4176.69 (16)C31—O5—C30—C18174.6 (2)
C17—C16—C3—C42.3 (2)C21—C18—C30—O4173.00 (18)
C13—C2—C3—C160.6 (2)C17—C18—C30—O440.8 (2)
C1—C2—C3—C16179.76 (14)C19—C18—C30—O471.9 (2)
C13—C2—C3—C4178.05 (14)C21—C18—C30—O58.9 (2)
C1—C2—C3—C41.6 (2)C17—C18—C30—O5141.05 (16)
C6—C1—C10—C91.3 (2)C19—C18—C30—O5106.19 (17)
C2—C1—C10—C9179.25 (15)C14—C13—C12—C11179.88 (18)
C6—C1—C10—C11177.55 (16)C2—C13—C12—C110.6 (3)
C2—C1—C10—C111.9 (2)C13—C12—C11—C100.5 (3)
C1—C2—C13—C14178.75 (15)C9—C10—C11—C12179.54 (18)
C3—C2—C13—C140.9 (2)C1—C10—C11—C120.7 (3)
C1—C2—C13—C120.5 (2)C20—N—C19—C25115.29 (16)
C3—C2—C13—C12179.85 (15)C32—N—C19—C2520.4 (2)
C3—C16—C15—C141.7 (3)C20—N—C19—C22126.17 (15)
C17—C16—C15—C14179.29 (16)C32—N—C19—C2298.12 (17)
C17—O1—C22—O2153.13 (13)C20—N—C19—C1814.48 (17)
C17—O1—C22—C2382.64 (15)C32—N—C19—C18150.18 (15)
C17—O1—C22—C1931.92 (16)O3—C25—C19—N47.9 (2)
C29—C23—C22—O264.5 (2)C24—C25—C19—N130.74 (15)
C24—C23—C22—O2113.96 (16)O3—C25—C19—C22169.45 (16)
C29—C23—C22—O157.7 (2)C24—C25—C19—C229.20 (17)
C24—C23—C22—O1123.81 (15)O3—C25—C19—C1877.2 (2)
C29—C23—C22—C19173.51 (16)C24—C25—C19—C18104.17 (15)
C24—C23—C22—C198.00 (18)O2—C22—C19—N14.03 (19)
O1—C17—C18—C30151.21 (13)O1—C22—C19—N104.20 (15)
C16—C17—C18—C3089.18 (17)C23—C22—C19—N135.34 (14)
O1—C17—C18—C2176.99 (16)O2—C22—C19—C25111.15 (15)
C16—C17—C18—C2142.6 (2)O1—C22—C19—C25130.62 (13)
O1—C17—C18—C1933.26 (15)C23—C22—C19—C2510.16 (16)
C16—C17—C18—C19152.87 (14)O2—C22—C19—C18127.32 (14)
C24—C23—C29—C281.4 (3)O1—C22—C19—C189.09 (16)
C22—C23—C29—C28176.98 (17)C23—C22—C19—C18111.37 (13)
C29—C23—C24—C260.2 (3)C30—C18—C19—N111.87 (15)
C22—C23—C24—C26178.41 (16)C21—C18—C19—N10.71 (16)
C29—C23—C24—C25179.07 (15)C17—C18—C19—N130.55 (13)
C22—C23—C24—C252.3 (2)C30—C18—C19—C2518.05 (18)
O3—C25—C24—C23173.97 (17)C21—C18—C19—C25140.62 (14)
C19—C25—C24—C234.64 (19)C17—C18—C19—C2599.53 (14)
O3—C25—C24—C266.8 (3)C30—C18—C19—C22131.98 (14)
C19—C25—C24—C26174.59 (18)C21—C18—C19—C22105.45 (14)
C16—C15—C14—C130.2 (3)C17—C18—C19—C2214.40 (15)
C2—C13—C14—C151.1 (3)C1—C10—C9—C80.9 (3)
C12—C13—C14—C15179.64 (17)C11—C10—C9—C8177.93 (19)
C16—C3—C4—C5178.38 (16)C24—C26—C27—C280.3 (3)
C2—C3—C4—C50.2 (2)C29—C28—C27—C261.5 (3)
C3—C4—C5—C61.7 (3)C1—C6—C7—C80.9 (3)
C23—C29—C28—C272.0 (3)C5—C6—C7—C8178.6 (2)
C30—C18—C21—C2089.05 (18)C10—C9—C8—C70.5 (3)
C17—C18—C21—C20141.26 (15)C6—C7—C8—C91.4 (3)
C19—C18—C21—C2030.85 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···O3i0.932.433.299 (2)155
O2—H2···N0.87 (2)1.95 (2)2.6217 (19)133 (2)
Symmetry code: (i) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···O3i0.932.433.299 (2)155.4
O2—H2···N0.87 (2)1.95 (2)2.6217 (19)133 (2)
Symmetry code: (i) x, y+1, z+1/2.
 

References

First citationAllmann, R. (1970). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 132, 129–151.  CrossRef CAS Google Scholar
First citationBren, V. A. (2001). Russ. Chem. Rev. 70, 1017–1036.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamerman, A. & Trotter, J. (1965). Acta Cryst. 18, 636–643.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGruber, T., Seichter, W. & Weber, E. (2010). Acta Cryst. E66, o443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHazell, A. C., Larsen, F. K. & Lehmann, M. S. (1972). Acta Cryst. B28, 2977–2984.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKai, Y., Hama, F., Yasuoka, N. & Kasai, N. (1978). Acta Cryst. B34, 1263–1270.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRobertson, J. M. & White, J. G. (1947). J. Chem. Soc. pp. 358–368.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds