metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages m542-m543

μ-(2,6-Bis{[3-(di­methyl­amino)­prop­yl]imino­meth­yl}-4-methyl­phenolato)-μ-hydroxido-bis­­[(thio­cyanato-κN)copper(II)]

aResearch and Development Centre, Bharathiar University, Tamil Nadu, India, bDepartment of Chemistry, Government Arts College, Nandanam, Chennai 600035, Tamil Nadu, India, cNational Centre for Catalysis Research, IIT Madras, Chennai 600 036, TamilNadu, India, and dDepartment of Chemistry, IIT Madras, Chennai 600 036, TamilNadu, India
*Correspondence e-mail: porbal96@gmail.com

(Received 31 July 2013; accepted 5 September 2013; online 12 September 2013)

In the title compound, [Cu2(C19H31N4O)(OH)(NCS)2], the mol­ecular structure of the dinuclear complex reveals two penta­coordinated CuII ions, which are bridged by the phenolate O atom of the ligand and by an exogenous hydroxide ion. The bridging atoms occupy equatorial positions in the coordination sphere of the metal atoms and complete the equatorial coordination planes with two ligand N atoms, the apical positions being occupied by thio­cyanate N atoms. The crystal structure also features ππ stacking inter­actions involving the benzene rings with a centroid–centroid distance of 3.764 (4)Å. The crystal studied was a non-merohedral twin, with a refined BASF value of 0.203 (2)

Related literature

For related structures, see: Matsufuji et al. (2005[Matsufuji, K., Shiraishi, H., Miyasato, Y., Shiga, T., Ohba, M., Yokoyama, T. & Okawa, H. (2005). Bull. Chem. Soc. Jpn, 78, 851-858.]); Amase et al. (2005[Amase, R., Shiraishi, H., Miyasato, Y., Ohba, M. & Okawa, H. (2005). Bull. Chem. Soc. Jpn, 78, 1814-1820.]); Erxleben & Hermann (2000[Erxleben, A. & Hermann, J. (2000). J. Chem. Soc. Dalton Trans. pp. 569-575.]); Higuchi et al. (1995[Higuchi, C., Sakiyama, H., Okawa, H. & Fenton, D. E. (1995). J. Chem. Soc. Dalton Trans. pp. 4015-4020.]); Koga et al. (1998[Koga, T., Furutachi, H., Nakamura, T., Fukita, N., Ohba, M., Takahashi, K. & Okawa, H. (1998). Inorg. Chem. 37, 989-996.]); Knight et al. (2008[Knight, P. D., White, A. J. P. & Williams, C. K. (2008). Inorg. Chem. 47, 11711-11719.]). For applications and properties of binuclear copper (II) complexes, see: Adams et al. (2000[Adams, H., Fenton, D. E., Haque, S. R., Heath, S. L., Ohba, M., Okawa, H. & Spey, S. E. (2000). J. Chem. Soc. Dalton Trans. pp. 1849-1856.]); Al-Obaidi (2011[Al-Obaidi, O. H. S. (2011). Bioinorg. Chem. App. 2012, 1-6.]); Anupama et al. (2012[Anupama, K., Sandeep, P. N., Dhoolesh, G. K., Krishna, N. & Vidyanand, R. (2012). J. Lumin. 132, 2763-2768.]); Aytaç (2010[Aytaç, A. (2010). J. Mater. Sci. 45, 6812-6818.]); Hurley (2002[Hurley, L. H. (2002). Nat. Rev. Cancer, 2, 188-200.]); Saha & Koner (2004[Saha, P. K. & Koner, S. (2004). Inorg. Chem. Commun. 7, 1164-1166.]); Sreedaran et al. (2008[Sreedaran, S., Bharathi, K. S., Rahiman, A. K., Jagadish, L., Kaviyarasan, V. & Narayanan, V. (2008). Polyhedron, 27, 2931-2938.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C19H31N4O)(OH)(NCS)2]

  • Mr = 591.73

  • Monoclinic, P 21 /n

  • a = 11.9706 (5) Å

  • b = 13.7518 (7) Å

  • c = 16.9887 (8) Å

  • β = 109.396 (2)°

  • V = 2637.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 298 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.572, Tmax = 0.715

  • 15757 measured reflections

  • 15757 independent reflections

  • 12691 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.01

  • 15757 reflections

  • 303 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Binuclear copper (II) complexes are of special interest in their design and synthesis. They have distinct role to play as successful synthetic biomimetic devices capable of representing the active sites of various metalloenzymes (Adams, et al., 2000). They are shown to act as possible catalysts favoring a wide variety of organic transformations in both homogeneous and heterogeneous media (Saha, et al., 2004). They also serve as antifungal and antibacterial agents (Sreedaran, et al., 2008; Al-Obaidi, et al. 2011), as DNA binding and cleaving agents (Hurley, 2002), as molecular magnetic materials and as fluorescent probes (Anupama, et al., 2012). Moreover, the presence of the –C=N– groups, electronegative nitrogen, sulfur and oxygen atoms in the complex, may impart corrosion inhibition properties to the synthesized complex (Aytaç, 2010). In the title compound, C21H32Cu2N6O2S2, the molecular structure of the dinuclear cation in complex reveals two pentacoordinated cupric ions, which are bridged by the phenolate oxygen O atoms of the ligand and by an exogenous hydroxo ion. Bridging atoms occupy equatorial positions in the coordination sphere of the metals and completes its equatorial coordination plane with two N atoms of the ligand.The apical position is occupied by thiocyanate N atoms. The molecular structure is stabilized by weak O—H···N hydrogen bond interactions. The crystal structure is stablized by π-π stacking interactions involving the benzene rings [Cg1-Cg1i=3.764 (4)Å] ( symmetry code (i) : -x,-y,-z).The crystal studied was a non-merohedral twin with a refined BASF value of 0.2034 (20)

Related literature top

For related structures, see: Matsufuji et al. (2005); Amase et al. (2005); Erxleben & Hermann (2000); Higuchi et al. (1995); Koga et al. (1998); Knight et al. (2008). For applications and properties of binuclear copper (II) complexes, see: Adams et al. (2000); Al-Obaidi (2011); Anupama et al. (2012); Aytaç (2010); Hurley (2002); Saha & Koner (2004); Sreedaran et al. (2008).

Experimental top

A solution of 2,6-Diformyl-4-methylphenol (0.164 g, 1 mmol) in methanol was slowly added to a solution of 3-(Dimethylamino)propylamine (0.25 ml, 2.0 mmol) in 5 ml of methanol and stirred. The resulting mixture was refluxed for 10 min. To the yellow ligand solution thus obtained was added copper (II) nitrate trihydrate (0.485 g, 2 mmol) and the mixture was refluxed for another 30 min. The addition of sodium thiocyanate (0.162 g, 2 mmol) resulted in the precipitation of light green microcrystals. Single crystals suitable for X-ray diffraction were obtained by recrystallization from acetonitrile.

Refinement top

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, methylene C—H = 0.97 Å and methyl C—H = 0.96 Å. The displacement parameters were set for phenyl H atoms at Uiso(H) = 1.2Ueq(C) and for methylene and methyl H atoms at Uiso(H) =1.5Ueq(C). There was two fold twinning in the crystal. The input data was converted from HKLF 4 to HKLF 5 format for SHELXL97 program·MERG 0 was added in the ins file and refined.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of the molecule with atoms represented as 30% probability ellipsoids.
µ-(2,6-Bis{[3-(dimethylamino)propyl]iminomethyl}-4-methylphenolato)-µ-hydroxido-bis[(thiocyanato-κN)copper(II)] top
Crystal data top
[Cu2(C19H31N4O)(OH)(NCS)2]F(000) = 1224
Mr = 591.73Dx = 1.490 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6965 reflections
a = 11.9706 (5) Åθ = 2.5–28.5°
b = 13.7518 (7) ŵ = 1.80 mm1
c = 16.9887 (8) ÅT = 298 K
β = 109.396 (2)°Rectangular, green
V = 2637.9 (2) Å30.35 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
15757 independent reflections
Radiation source: fine-focus sealed tube12691 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(TWINABS; Bruker, 2004)
h = 1413
Tmin = 0.572, Tmax = 0.715k = 1616
15757 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0461P)2 + 2.7323P]
where P = (Fo2 + 2Fc2)/3
15757 reflections(Δ/σ)max = 0.001
303 parametersΔρmax = 0.73 e Å3
2 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cu2(C19H31N4O)(OH)(NCS)2]V = 2637.9 (2) Å3
Mr = 591.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.9706 (5) ŵ = 1.80 mm1
b = 13.7518 (7) ÅT = 298 K
c = 16.9887 (8) Å0.35 × 0.25 × 0.20 mm
β = 109.396 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
15757 independent reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2004)
12691 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 0.715Rint = 0.000
15757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.01Δρmax = 0.73 e Å3
15757 reflectionsΔρmin = 0.53 e Å3
303 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14435 (16)0.08416 (13)0.14686 (11)0.0324 (4)
C20.02153 (16)0.09626 (14)0.13278 (12)0.0348 (5)
C30.05365 (17)0.12155 (15)0.05291 (12)0.0420 (5)
H30.13400.12910.04460.050*
C40.01470 (18)0.13587 (14)0.01390 (13)0.0455 (5)
C50.10368 (18)0.12202 (15)0.00002 (13)0.0434 (5)
H50.13180.13000.04450.052*
C60.18437 (16)0.09648 (14)0.07788 (12)0.0351 (5)
C70.17786 (18)0.19821 (16)0.46594 (14)0.0439 (5)
C80.60543 (19)0.19201 (15)0.32423 (13)0.0425 (5)
C90.30672 (19)0.08411 (16)0.08337 (14)0.0445 (5)
H90.32240.09360.03380.053*
C100.0999 (2)0.16307 (17)0.09907 (13)0.0642 (7)
H10A0.17840.14250.10350.096*
H10B0.07620.13170.14150.096*
H10C0.09900.23230.10620.096*
C110.03213 (17)0.08429 (16)0.19646 (14)0.0430 (5)
H110.11360.09410.17930.052*
C120.06173 (19)0.0563 (2)0.32495 (15)0.0586 (7)
H12A0.14170.07380.29100.070*
H12B0.03520.10280.37030.070*
C130.0625 (2)0.0435 (2)0.36024 (16)0.0645 (7)
H13A0.08330.09000.31470.077*
H13B0.12360.04610.38600.077*
C140.0528 (2)0.0738 (2)0.42343 (14)0.0645 (7)
H14A0.07590.02500.46710.077*
H14B0.04030.13420.44880.077*
C150.1269 (3)0.16821 (18)0.33008 (16)0.0740 (8)
H15A0.10600.22520.35460.111*
H15B0.19560.18160.31460.111*
H15C0.06220.15020.28130.111*
C160.51179 (18)0.05934 (19)0.13281 (16)0.0579 (7)
H16A0.56290.10920.16670.070*
H16B0.49980.07410.07470.070*
C170.5721 (2)0.0382 (2)0.15419 (18)0.0704 (8)
H17A0.51980.08760.12070.084*
H17B0.64300.03740.13850.084*
C180.60619 (18)0.0670 (2)0.24424 (17)0.0659 (8)
H18A0.65420.12540.25250.079*
H18B0.65530.01600.27780.079*
C190.5583 (2)0.1110 (2)0.36522 (16)0.0779 (8)
H19A0.61090.16530.37140.117*
H19B0.49620.12780.38690.117*
H19C0.60160.05630.39550.117*
C200.4338 (2)0.16796 (18)0.23131 (18)0.0767 (8)
H20A0.48410.22270.23270.115*
H20B0.39300.14980.17440.115*
H20C0.37710.18500.25780.115*
C210.2588 (2)0.1131 (2)0.46299 (15)0.0758 (8)
H21A0.27880.05940.50120.114*
H21B0.32410.12690.44380.114*
H21C0.24200.16930.49070.114*
Cu10.393606 (19)0.039255 (19)0.259878 (16)0.03997 (8)
Cu20.18605 (2)0.039242 (19)0.329566 (15)0.03923 (8)
N10.01670 (14)0.06201 (12)0.27351 (11)0.0400 (4)
N20.39640 (14)0.06200 (12)0.14674 (11)0.0410 (4)
N30.50620 (14)0.08561 (13)0.27594 (12)0.0481 (5)
N40.15297 (16)0.08803 (13)0.39072 (11)0.0458 (4)
N50.20263 (17)0.14220 (15)0.42418 (12)0.0598 (5)
N60.52528 (17)0.14212 (14)0.31649 (12)0.0591 (5)
O10.21794 (10)0.06199 (10)0.22147 (7)0.0381 (3)
O110.35320 (12)0.01574 (12)0.35888 (9)0.0573 (4)
H11O0.38510.06620.38910.086*
S30.71742 (6)0.26265 (5)0.33508 (5)0.0685 (2)
S40.14334 (6)0.27589 (5)0.52589 (5)0.0684 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0350 (10)0.0254 (10)0.0345 (11)0.0008 (9)0.0086 (9)0.0019 (8)
C20.0327 (10)0.0315 (12)0.0382 (12)0.0025 (9)0.0091 (9)0.0039 (9)
C30.0379 (11)0.0365 (13)0.0444 (13)0.0055 (9)0.0038 (10)0.0006 (10)
C40.0490 (13)0.0328 (12)0.0434 (13)0.0036 (10)0.0002 (10)0.0027 (10)
C50.0584 (13)0.0356 (12)0.0363 (12)0.0050 (10)0.0159 (11)0.0030 (10)
C60.0384 (11)0.0321 (12)0.0341 (12)0.0051 (9)0.0111 (9)0.0007 (9)
C70.0433 (12)0.0416 (14)0.0453 (14)0.0067 (10)0.0128 (10)0.0003 (10)
C80.0478 (12)0.0384 (13)0.0411 (13)0.0020 (10)0.0146 (10)0.0015 (10)
C90.0562 (14)0.0405 (14)0.0452 (14)0.0060 (11)0.0280 (12)0.0002 (11)
C100.0714 (16)0.0580 (15)0.0468 (15)0.0076 (13)0.0022 (12)0.0128 (12)
C110.0291 (10)0.0436 (14)0.0554 (15)0.0029 (9)0.0128 (10)0.0073 (11)
C120.0412 (12)0.085 (2)0.0581 (16)0.0022 (12)0.0274 (12)0.0124 (14)
C130.0553 (14)0.095 (2)0.0505 (15)0.0254 (14)0.0273 (13)0.0086 (15)
C140.0776 (17)0.0796 (19)0.0455 (14)0.0293 (15)0.0327 (13)0.0004 (13)
C150.114 (2)0.0416 (15)0.0677 (18)0.0107 (15)0.0310 (16)0.0073 (13)
C160.0427 (13)0.0769 (19)0.0657 (17)0.0077 (12)0.0334 (12)0.0049 (14)
C170.0498 (14)0.085 (2)0.087 (2)0.0089 (14)0.0366 (14)0.0185 (17)
C180.0357 (12)0.0666 (18)0.093 (2)0.0151 (11)0.0181 (13)0.0157 (15)
C190.0664 (16)0.076 (2)0.075 (2)0.0375 (15)0.0012 (14)0.0123 (15)
C200.0779 (18)0.0373 (15)0.101 (2)0.0023 (13)0.0113 (16)0.0058 (14)
C210.0828 (18)0.083 (2)0.0554 (17)0.0027 (16)0.0153 (14)0.0322 (15)
Cu10.02982 (13)0.04586 (17)0.04599 (17)0.00438 (11)0.01494 (12)0.00773 (12)
Cu20.03448 (14)0.04623 (17)0.03978 (16)0.00297 (11)0.01607 (12)0.00696 (12)
N10.0343 (9)0.0452 (11)0.0451 (11)0.0004 (8)0.0195 (8)0.0037 (9)
N20.0367 (9)0.0420 (11)0.0504 (11)0.0031 (8)0.0228 (9)0.0003 (9)
N30.0358 (9)0.0421 (12)0.0599 (12)0.0092 (8)0.0072 (9)0.0043 (9)
N40.0599 (11)0.0428 (11)0.0362 (10)0.0100 (9)0.0181 (9)0.0030 (9)
N50.0654 (12)0.0523 (14)0.0605 (13)0.0079 (10)0.0194 (11)0.0186 (11)
N60.0564 (12)0.0493 (13)0.0695 (14)0.0145 (10)0.0181 (10)0.0130 (10)
O10.0266 (7)0.0572 (9)0.0299 (8)0.0025 (6)0.0084 (6)0.0034 (6)
O110.0382 (8)0.0844 (12)0.0495 (10)0.0098 (8)0.0148 (7)0.0199 (8)
S30.0648 (4)0.0720 (5)0.0766 (5)0.0241 (3)0.0340 (4)0.0000 (4)
S40.0654 (4)0.0669 (5)0.0845 (5)0.0065 (3)0.0405 (4)0.0248 (4)
Geometric parameters (Å, º) top
C1—O11.3168 (19)C15—H15B0.9600
C1—C61.416 (3)C15—H15C0.9600
C1—C21.419 (2)C16—N21.477 (2)
C2—C31.400 (3)C16—C171.510 (3)
C2—C111.439 (3)C16—H16A0.9700
C3—C41.377 (3)C16—H16B0.9700
C3—H30.9300C17—C181.500 (3)
C4—C51.370 (3)C17—H17A0.9700
C4—C101.514 (2)C17—H17B0.9700
C5—C61.400 (3)C18—N31.489 (3)
C5—H50.9300C18—H18A0.9700
C6—C91.446 (3)C18—H18B0.9700
C7—N51.151 (3)C19—N31.477 (3)
C7—S41.621 (2)C19—H19A0.9600
C8—N61.151 (2)C19—H19B0.9600
C8—S31.616 (2)C19—H19C0.9600
C9—N21.279 (3)C20—N31.474 (3)
C9—H90.9300C20—H20A0.9600
C10—H10A0.9600C20—H20B0.9600
C10—H10B0.9600C20—H20C0.9600
C10—H10C0.9600C21—N41.483 (3)
C11—N11.281 (3)C21—H21A0.9600
C11—H110.9300C21—H21B0.9600
C12—N11.482 (2)C21—H21C0.9600
C12—C131.499 (3)Cu1—O111.9255 (15)
C12—H12A0.9700Cu1—N21.9587 (17)
C12—H12B0.9700Cu1—O12.0085 (12)
C13—C141.499 (3)Cu1—N62.0985 (19)
C13—H13A0.9700Cu1—N32.1437 (17)
C13—H13B0.9700Cu2—O111.9219 (14)
C14—N41.492 (3)Cu2—N11.9577 (16)
C14—H14A0.9700Cu2—O12.0203 (12)
C14—H14B0.9700Cu2—N52.101 (2)
C15—N41.470 (3)Cu2—N42.1384 (17)
C15—H15A0.9600O11—H11O0.8715
O1—C1—C6121.49 (17)N3—C18—H18A108.3
O1—C1—C2120.93 (18)C17—C18—H18A108.3
C6—C1—C2117.58 (16)N3—C18—H18B108.3
C3—C2—C1119.27 (18)C17—C18—H18B108.3
C3—C2—C11116.95 (17)H18A—C18—H18B107.4
C1—C2—C11123.78 (18)N3—C19—H19A109.5
C4—C3—C2123.35 (18)N3—C19—H19B109.5
C4—C3—H3118.3H19A—C19—H19B109.5
C2—C3—H3118.3N3—C19—H19C109.5
C5—C4—C3116.88 (18)H19A—C19—H19C109.5
C5—C4—C10121.9 (2)H19B—C19—H19C109.5
C3—C4—C10121.2 (2)N3—C20—H20A109.5
C4—C5—C6123.2 (2)N3—C20—H20B109.5
C4—C5—H5118.4H20A—C20—H20B109.5
C6—C5—H5118.4N3—C20—H20C109.5
C5—C6—C1119.72 (18)H20A—C20—H20C109.5
C5—C6—C9117.17 (19)H20B—C20—H20C109.5
C1—C6—C9123.11 (18)N4—C21—H21A109.5
N5—C7—S4179.1 (2)N4—C21—H21B109.5
N6—C8—S3179.6 (2)H21A—C21—H21B109.5
N2—C9—C6129.14 (19)N4—C21—H21C109.5
N2—C9—H9115.4H21A—C21—H21C109.5
C6—C9—H9115.4H21B—C21—H21C109.5
C4—C10—H10A109.5O11—Cu1—N2167.19 (6)
C4—C10—H10B109.5O11—Cu1—O176.72 (5)
H10A—C10—H10B109.5N2—Cu1—O190.78 (6)
C4—C10—H10C109.5O11—Cu1—N694.66 (7)
H10A—C10—H10C109.5N2—Cu1—N695.00 (7)
H10B—C10—H10C109.5O1—Cu1—N6126.15 (7)
N1—C11—C2129.00 (18)O11—Cu1—N394.82 (7)
N1—C11—H11115.5N2—Cu1—N392.17 (7)
C2—C11—H11115.5O1—Cu1—N3135.42 (6)
N1—C12—C13111.92 (19)N6—Cu1—N397.86 (7)
N1—C12—H12A109.2O11—Cu2—N1166.83 (7)
C13—C12—H12A109.2O11—Cu2—O176.52 (5)
N1—C12—H12B109.2N1—Cu2—O190.62 (6)
C13—C12—H12B109.2O11—Cu2—N595.13 (7)
H12A—C12—H12B107.9N1—Cu2—N594.81 (7)
C12—C13—C14114.5 (2)O1—Cu2—N5126.34 (7)
C12—C13—H13A108.6O11—Cu2—N494.66 (7)
C14—C13—H13A108.6N1—Cu2—N492.19 (7)
C12—C13—H13B108.6O1—Cu2—N4133.61 (6)
C14—C13—H13B108.6N5—Cu2—N499.53 (7)
H13A—C13—H13B107.6C11—N1—C12116.86 (17)
N4—C14—C13115.60 (18)C11—N1—Cu2125.65 (14)
N4—C14—H14A108.4C12—N1—Cu2117.46 (14)
C13—C14—H14A108.4C9—N2—C16116.05 (18)
N4—C14—H14B108.4C9—N2—Cu1125.50 (14)
C13—C14—H14B108.4C16—N2—Cu1118.35 (15)
H14A—C14—H14B107.4C20—N3—C19108.8 (2)
N4—C15—H15A109.5C20—N3—C18110.60 (19)
N4—C15—H15B109.5C19—N3—C18107.21 (18)
H15A—C15—H15B109.5C20—N3—Cu1108.21 (13)
N4—C15—H15C109.5C19—N3—Cu1110.66 (14)
H15A—C15—H15C109.5C18—N3—Cu1111.32 (14)
H15B—C15—H15C109.5C15—N4—C21109.2 (2)
N2—C16—C17112.44 (19)C15—N4—C14110.47 (19)
N2—C16—H16A109.1C21—N4—C14107.06 (18)
C17—C16—H16A109.1C15—N4—Cu2107.68 (14)
N2—C16—H16B109.1C21—N4—Cu2110.35 (14)
C17—C16—H16B109.1C14—N4—Cu2112.04 (14)
H16A—C16—H16B107.8C7—N5—Cu2160.80 (18)
C18—C17—C16115.2 (2)C8—N6—Cu1157.66 (19)
C18—C17—H17A108.5C1—O1—Cu1129.96 (12)
C16—C17—H17A108.5C1—O1—Cu2130.01 (12)
C18—C17—H17B108.5Cu1—O1—Cu2100.02 (5)
C16—C17—H17B108.5Cu2—O11—Cu1106.70 (6)
H17A—C17—H17B107.5Cu2—O11—H11O103.5
N3—C18—C17115.82 (18)Cu1—O11—H11O101.1
O1—C1—C2—C3178.85 (17)N6—Cu1—N3—C1967.38 (16)
C6—C1—C2—C31.3 (3)O11—Cu1—N3—C18147.13 (15)
O1—C1—C2—C111.0 (3)N2—Cu1—N3—C1843.61 (15)
C6—C1—C2—C11178.84 (19)O1—Cu1—N3—C18136.92 (14)
C1—C2—C3—C40.2 (3)N6—Cu1—N3—C1851.74 (16)
C11—C2—C3—C4179.66 (19)C13—C14—N4—C1563.7 (3)
C2—C3—C4—C51.5 (3)C13—C14—N4—C21177.5 (2)
C2—C3—C4—C10179.94 (19)C13—C14—N4—Cu256.4 (2)
C3—C4—C5—C61.3 (3)O11—Cu2—N4—C1589.45 (16)
C10—C4—C5—C6179.73 (19)N1—Cu2—N4—C1579.30 (16)
C4—C5—C6—C10.2 (3)O1—Cu2—N4—C1513.65 (19)
C4—C5—C6—C9179.91 (19)N5—Cu2—N4—C15174.54 (16)
O1—C1—C6—C5178.67 (17)O11—Cu2—N4—C2129.70 (16)
C2—C1—C6—C51.5 (3)N1—Cu2—N4—C21161.55 (16)
O1—C1—C6—C91.2 (3)O1—Cu2—N4—C21105.50 (16)
C2—C1—C6—C9178.60 (19)N5—Cu2—N4—C2166.30 (17)
C5—C6—C9—N2179.3 (2)O11—Cu2—N4—C14148.89 (14)
C1—C6—C9—N20.5 (4)N1—Cu2—N4—C1442.37 (15)
C3—C2—C11—N1179.7 (2)O1—Cu2—N4—C14135.31 (13)
C1—C2—C11—N10.1 (4)N5—Cu2—N4—C1452.88 (15)
N1—C12—C13—C1466.9 (3)S4—C7—N5—Cu2103 (13)
C12—C13—C14—N467.0 (3)O11—Cu2—N5—C7179.4 (6)
N2—C16—C17—C1863.9 (3)N1—Cu2—N5—C79.3 (6)
C16—C17—C18—N366.5 (3)O1—Cu2—N5—C7103.6 (6)
C2—C11—N1—C12179.1 (2)N4—Cu2—N5—C783.8 (6)
C2—C11—N1—Cu21.3 (3)S3—C8—N6—Cu1117 (30)
C13—C12—N1—C11118.7 (2)O11—Cu1—N6—C8165.6 (5)
C13—C12—N1—Cu263.2 (2)N2—Cu1—N6—C822.9 (5)
O11—Cu2—N1—C1113.7 (4)O1—Cu1—N6—C8117.5 (5)
O1—Cu2—N1—C111.36 (18)N3—Cu1—N6—C870.0 (5)
N5—Cu2—N1—C11125.20 (19)C6—C1—O1—Cu10.5 (2)
N4—Cu2—N1—C11135.05 (18)C2—C1—O1—Cu1179.35 (13)
O11—Cu2—N1—C12168.5 (3)C6—C1—O1—Cu2179.45 (13)
O1—Cu2—N1—C12179.19 (15)C2—C1—O1—Cu20.4 (2)
N5—Cu2—N1—C1252.63 (16)O11—Cu1—O1—C1177.76 (16)
N4—Cu2—N1—C1247.12 (16)N2—Cu1—O1—C10.57 (16)
C6—C9—N2—C16177.2 (2)N6—Cu1—O1—C196.20 (16)
C6—C9—N2—Cu10.9 (3)N3—Cu1—O1—C194.45 (17)
C17—C16—N2—C9122.6 (2)O11—Cu1—O1—Cu21.45 (6)
C17—C16—N2—Cu160.8 (2)N2—Cu1—O1—Cu2178.65 (6)
O11—Cu1—N2—C913.6 (4)N6—Cu1—O1—Cu284.59 (9)
O1—Cu1—N2—C91.19 (19)N3—Cu1—O1—Cu284.76 (10)
N6—Cu1—N2—C9125.21 (18)O11—Cu2—O1—C1177.76 (16)
N3—Cu1—N2—C9136.69 (18)N1—Cu2—O1—C10.62 (16)
O11—Cu1—N2—C16170.1 (3)N5—Cu2—O1—C195.81 (16)
O1—Cu1—N2—C16177.44 (15)N4—Cu2—O1—C194.24 (16)
N6—Cu1—N2—C1651.04 (16)O11—Cu2—O1—Cu11.46 (6)
N3—Cu1—N2—C1647.05 (16)N1—Cu2—O1—Cu1178.59 (7)
C17—C18—N3—C2062.5 (3)N5—Cu2—O1—Cu184.98 (9)
C17—C18—N3—C19179.0 (2)N4—Cu2—O1—Cu184.97 (9)
C17—C18—N3—Cu157.8 (2)N1—Cu2—O11—Cu114.2 (4)
O11—Cu1—N3—C2091.13 (16)O1—Cu2—O11—Cu11.56 (7)
N2—Cu1—N3—C2078.13 (16)N5—Cu2—O11—Cu1124.62 (9)
O1—Cu1—N3—C2015.2 (2)N4—Cu2—O11—Cu1135.36 (8)
N6—Cu1—N3—C20173.48 (16)N2—Cu1—O11—Cu214.3 (4)
O11—Cu1—N3—C1928.01 (16)O1—Cu1—O11—Cu21.57 (7)
N2—Cu1—N3—C19162.73 (16)N6—Cu1—O11—Cu2124.51 (8)
O1—Cu1—N3—C19103.96 (16)N3—Cu1—O11—Cu2137.17 (8)

Experimental details

Crystal data
Chemical formula[Cu2(C19H31N4O)(OH)(NCS)2]
Mr591.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.9706 (5), 13.7518 (7), 16.9887 (8)
β (°) 109.396 (2)
V3)2637.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(TWINABS; Bruker, 2004)
Tmin, Tmax0.572, 0.715
No. of measured, independent and
observed [I > 2σ(I)] reflections
15757, 15757, 12691
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.01
No. of reflections15757
No. of parameters303
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.53

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

 

Acknowledgements

The authors thank the Department of Chemistry, IIT Madras, for the data collection and Dr Babu Varghese, Sophisticated Analytical Instrumentation Facility, Indian Institute of Technology, Chennai 600 036, Tamil Nadu, India, for the help rendered with the single crystal XRD studies. MGM and PKS thank the UGC–MRP, Government of India, for financial support.

References

First citationAdams, H., Fenton, D. E., Haque, S. R., Heath, S. L., Ohba, M., Okawa, H. & Spey, S. E. (2000). J. Chem. Soc. Dalton Trans. pp. 1849–1856.  Web of Science CSD CrossRef Google Scholar
First citationAl-Obaidi, O. H. S. (2011). Bioinorg. Chem. App. 2012, 1–6.  Google Scholar
First citationAmase, R., Shiraishi, H., Miyasato, Y., Ohba, M. & Okawa, H. (2005). Bull. Chem. Soc. Jpn, 78, 1814–1820.  Web of Science CSD CrossRef CAS Google Scholar
First citationAnupama, K., Sandeep, P. N., Dhoolesh, G. K., Krishna, N. & Vidyanand, R. (2012). J. Lumin. 132, 2763–2768.  Google Scholar
First citationAytaç, A. (2010). J. Mater. Sci. 45, 6812–6818.  Google Scholar
First citationBruker (2004). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErxleben, A. & Hermann, J. (2000). J. Chem. Soc. Dalton Trans. pp. 569–575.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHiguchi, C., Sakiyama, H., Okawa, H. & Fenton, D. E. (1995). J. Chem. Soc. Dalton Trans. pp. 4015–4020.  CSD CrossRef Web of Science Google Scholar
First citationHurley, L. H. (2002). Nat. Rev. Cancer, 2, 188–200.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKnight, P. D., White, A. J. P. & Williams, C. K. (2008). Inorg. Chem. 47, 11711–11719.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKoga, T., Furutachi, H., Nakamura, T., Fukita, N., Ohba, M., Takahashi, K. & Okawa, H. (1998). Inorg. Chem. 37, 989–996.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatsufuji, K., Shiraishi, H., Miyasato, Y., Shiga, T., Ohba, M., Yokoyama, T. & Okawa, H. (2005). Bull. Chem. Soc. Jpn, 78, 851–858.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaha, P. K. & Koner, S. (2004). Inorg. Chem. Commun. 7, 1164–1166.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreedaran, S., Bharathi, K. S., Rahiman, A. K., Jagadish, L., Kaviyarasan, V. & Narayanan, V. (2008). Polyhedron, 27, 2931–2938.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages m542-m543
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds