organic compounds
5,6-Dimethyl-1,10-phenanthroline
aChemistry Department and Chemical Sciences Division of Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
*Correspondence e-mail: SSrozenel@lbl.gov
In the title compound, C14H12N2, the N⋯N distance is 2.719 (1) Å. The N—C—C—N torsion angle [0.9 (1)°] is close to the ideal value of 0° as expected. Bond lengths and angles are consistent with those observed for [1,10]phenanthroline and coordinated 5,6 dimethyl[1,10]phenanthroline. In the crystal, C—H⋯N hydrogen bonds link the molecules into C(4) chains running parallel to the b axis. Weak π–π interactions between benzene and pyridine rings [centroid–centroid distance = 3.5337 (7) Å] and between benzene rings [centroid–centroid distances = 3.6627 (7) and 3.8391 (7)Å] also occur.
CCDC reference: 960120
Related literature
For [1,10]phenanthroline and 5,6-dimethyl[1,10]phenanthroline, see: Ton & Bolte (2005) and Gasque et al. (1999), respectively. For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare, et al. 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 960120
10.1107/S1600536813025087/bx2451sup1.cif
contains datablocks srd3013, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813025087/bx2451Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813025087/bx2451Isup3.cml
Crystals of the title compound, 5,6-dimethyl-1,10-phenanthroline, were obtained by
at 160 °C under dynamic vacuum.All non-hydrogen atoms were refined anisotropically. Aromatic hydrogen atoms were located in the Fourier map and refined isotropically. Methyl hydrogen atoms were placed based on the expected geometry of the carbon atoms to which they were attached and refined using a riding model, with C—H distances 0.98 Å and Uiso(H) = 1.5 Ueq(C).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR97 (Altomare, et al. 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. Top view of the structure of 5,6-dimethyl-1,10-phenanthroline, displacement ellipsoids drawn at the 50% probability level. |
C14H12N2 | F(000) = 440 |
Mr = 208.26 | SHELXL-97 |
Monoclinic, P21/c | Dx = 1.381 Mg m−3 |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1932 (7) Å | Cell parameters from 9819 reflections |
b = 10.0572 (10) Å | θ = 2.5–25.4° |
c = 13.8729 (13) Å | µ = 0.08 mm−1 |
β = 93.673 (5)° | T = 100 K |
V = 1001.55 (17) Å3 | Block, colourless |
Z = 4 | 0.11 × 0.10 × 0.09 mm |
Bruker APEXII CCD diffractometer | 1855 independent reflections |
Radiation source: microfocus sealed tube | 1613 reflections with I > 2σ(I) |
QUAZAR multilayer mirrors monochromator | Rint = 0.022 |
Detector resolution: 8.366 pixels mm-1 | θmax = 25.5°, θmin = 2.5° |
ϕ and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | k = −12→12 |
Tmin = 0.991, Tmax = 0.993 | l = −16→16 |
16500 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0576P)2 + 0.2458P] where P = (Fo2 + 2Fc2)/3 |
1855 reflections | (Δ/σ)max < 0.001 |
171 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C14H12N2 | V = 1001.55 (17) Å3 |
Mr = 208.26 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.1932 (7) Å | µ = 0.08 mm−1 |
b = 10.0572 (10) Å | T = 100 K |
c = 13.8729 (13) Å | 0.11 × 0.10 × 0.09 mm |
β = 93.673 (5)° |
Bruker APEXII CCD diffractometer | 1855 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1613 reflections with I > 2σ(I) |
Tmin = 0.991, Tmax = 0.993 | Rint = 0.022 |
16500 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.16 e Å−3 |
1855 reflections | Δρmin = −0.20 e Å−3 |
171 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.42701 (15) | 0.02490 (12) | 0.23673 (8) | 0.0163 (3) | |
C2 | 0.42141 (15) | 0.15376 (12) | 0.19967 (8) | 0.0169 (3) | |
C3 | 0.35250 (15) | 0.17126 (12) | 0.10622 (8) | 0.0155 (3) | |
C4 | 0.29281 (14) | 0.06112 (11) | 0.04921 (8) | 0.0133 (3) | |
C5 | 0.22138 (14) | 0.07469 (11) | −0.05047 (8) | 0.0140 (3) | |
C6 | 0.17602 (14) | −0.03576 (11) | −0.10406 (8) | 0.0140 (3) | |
C7 | 0.19526 (14) | −0.16667 (11) | −0.06034 (8) | 0.0136 (3) | |
C8 | 0.15222 (15) | −0.28403 (12) | −0.11278 (8) | 0.0168 (3) | |
C9 | 0.17425 (16) | −0.40516 (12) | −0.06876 (8) | 0.0192 (3) | |
C10 | 0.24086 (16) | −0.40937 (12) | 0.02795 (9) | 0.0193 (3) | |
C11 | 0.26123 (14) | −0.18229 (11) | 0.03706 (8) | 0.0132 (3) | |
C12 | 0.31061 (14) | −0.06488 (11) | 0.09349 (8) | 0.0128 (3) | |
C13 | 0.20306 (16) | 0.21432 (12) | −0.08965 (8) | 0.0182 (3) | |
H13A | 0.3273 | 0.2519 | −0.0961 | 0.027* | |
H13B | 0.1353 | 0.2692 | −0.0452 | 0.027* | |
H13C | 0.1347 | 0.2125 | −0.1530 | 0.027* | |
C14 | 0.10570 (15) | −0.03036 (12) | −0.20896 (8) | 0.0188 (3) | |
H14A | −0.0264 | −0.0549 | −0.2148 | 0.028* | |
H14B | 0.1771 | −0.0926 | −0.2464 | 0.028* | |
H14C | 0.1207 | 0.0600 | −0.2337 | 0.028* | |
N1 | 0.37466 (12) | −0.08243 (9) | 0.18696 (7) | 0.0150 (2) | |
N2 | 0.28440 (13) | −0.30292 (9) | 0.08056 (7) | 0.0163 (3) | |
H1 | 0.4752 (17) | 0.0073 (13) | 0.3036 (9) | 0.019 (3)* | |
H2 | 0.4698 (17) | 0.2240 (14) | 0.2390 (9) | 0.020 (3)* | |
H3 | 0.3500 (18) | 0.2604 (15) | 0.0801 (9) | 0.023 (3)* | |
H8 | 0.1103 (18) | −0.2799 (14) | −0.1809 (10) | 0.026 (3)* | |
H9 | 0.1465 (17) | −0.4866 (14) | −0.1012 (9) | 0.022 (3)* | |
H10 | 0.2560 (18) | −0.4966 (14) | 0.0606 (9) | 0.024 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0132 (5) | 0.0220 (7) | 0.0137 (6) | −0.0005 (4) | 0.0003 (4) | −0.0018 (5) |
C2 | 0.0141 (6) | 0.0184 (6) | 0.0183 (6) | −0.0024 (4) | 0.0026 (4) | −0.0061 (5) |
C3 | 0.0146 (6) | 0.0130 (6) | 0.0194 (6) | 0.0002 (4) | 0.0043 (4) | 0.0005 (5) |
C4 | 0.0086 (5) | 0.0157 (6) | 0.0160 (6) | 0.0004 (4) | 0.0031 (4) | 0.0004 (5) |
C5 | 0.0095 (5) | 0.0160 (6) | 0.0167 (6) | 0.0014 (4) | 0.0030 (4) | 0.0034 (5) |
C6 | 0.0098 (5) | 0.0184 (6) | 0.0141 (6) | 0.0011 (4) | 0.0023 (4) | 0.0007 (5) |
C7 | 0.0093 (5) | 0.0169 (6) | 0.0149 (6) | 0.0007 (4) | 0.0020 (4) | −0.0005 (5) |
C8 | 0.0154 (6) | 0.0210 (7) | 0.0142 (6) | −0.0015 (5) | 0.0008 (4) | −0.0024 (5) |
C9 | 0.0201 (6) | 0.0157 (6) | 0.0217 (6) | −0.0018 (5) | 0.0014 (5) | −0.0045 (5) |
C10 | 0.0209 (6) | 0.0126 (6) | 0.0241 (7) | 0.0004 (5) | 0.0001 (5) | 0.0012 (5) |
C11 | 0.0101 (5) | 0.0145 (6) | 0.0151 (6) | 0.0005 (4) | 0.0026 (4) | 0.0012 (5) |
C12 | 0.0091 (5) | 0.0165 (6) | 0.0130 (6) | 0.0004 (4) | 0.0019 (4) | 0.0013 (4) |
C13 | 0.0197 (6) | 0.0169 (7) | 0.0177 (6) | 0.0004 (5) | 0.0000 (5) | 0.0029 (5) |
C14 | 0.0192 (6) | 0.0218 (7) | 0.0150 (6) | 0.0019 (5) | −0.0014 (4) | 0.0023 (5) |
N1 | 0.0138 (5) | 0.0180 (5) | 0.0131 (5) | 0.0002 (4) | −0.0002 (4) | 0.0002 (4) |
N2 | 0.0172 (5) | 0.0135 (5) | 0.0178 (5) | −0.0001 (4) | −0.0003 (4) | 0.0013 (4) |
C1—N1 | 1.3230 (15) | C8—C9 | 1.3673 (17) |
C1—C2 | 1.3939 (17) | C8—H8 | 0.975 (14) |
C1—H1 | 0.985 (13) | C9—C10 | 1.3960 (17) |
C2—C3 | 1.3695 (16) | C9—H9 | 0.950 (14) |
C2—H2 | 0.945 (14) | C10—N2 | 1.3220 (15) |
C3—C4 | 1.4118 (16) | C10—H10 | 0.990 (14) |
C3—H3 | 0.967 (15) | C11—N2 | 1.3605 (14) |
C4—C12 | 1.4105 (16) | C11—C12 | 1.4483 (15) |
C4—C5 | 1.4505 (16) | C12—N1 | 1.3595 (14) |
C5—C6 | 1.3645 (16) | C13—H13A | 0.9800 |
C5—C13 | 1.5085 (15) | C13—H13B | 0.9800 |
C6—C7 | 1.4525 (16) | C13—H13C | 0.9800 |
C6—C14 | 1.5108 (15) | C14—H14A | 0.9800 |
C7—C8 | 1.4104 (15) | C14—H14B | 0.9800 |
C7—C11 | 1.4118 (15) | C14—H14C | 0.9800 |
N1—C1—C2 | 124.44 (10) | C8—C9—H9 | 122.8 (8) |
N1—C1—H1 | 114.6 (8) | C10—C9—H9 | 118.6 (8) |
C2—C1—H1 | 121.0 (7) | N2—C10—C9 | 124.10 (11) |
C3—C2—C1 | 117.96 (10) | N2—C10—H10 | 116.7 (8) |
C3—C2—H2 | 123.3 (8) | C9—C10—H10 | 119.2 (8) |
C1—C2—H2 | 118.7 (8) | N2—C11—C7 | 123.22 (10) |
C2—C3—C4 | 120.54 (11) | N2—C11—C12 | 117.93 (10) |
C2—C3—H3 | 118.1 (8) | C7—C11—C12 | 118.84 (10) |
C4—C3—H3 | 121.3 (8) | N1—C12—C4 | 123.21 (10) |
C12—C4—C3 | 116.43 (10) | N1—C12—C11 | 117.78 (10) |
C12—C4—C5 | 121.10 (10) | C4—C12—C11 | 119.00 (10) |
C3—C4—C5 | 122.46 (10) | C5—C13—H13A | 109.5 |
C6—C5—C4 | 120.03 (10) | C5—C13—H13B | 109.5 |
C6—C5—C13 | 123.31 (10) | H13A—C13—H13B | 109.5 |
C4—C5—C13 | 116.65 (10) | C5—C13—H13C | 109.5 |
C5—C6—C7 | 119.83 (10) | H13A—C13—H13C | 109.5 |
C5—C6—C14 | 123.31 (10) | H13B—C13—H13C | 109.5 |
C7—C6—C14 | 116.87 (10) | C6—C14—H14A | 109.5 |
C8—C7—C11 | 116.73 (10) | C6—C14—H14B | 109.5 |
C8—C7—C6 | 122.09 (10) | H14A—C14—H14B | 109.5 |
C11—C7—C6 | 121.17 (10) | C6—C14—H14C | 109.5 |
C9—C8—C7 | 119.99 (10) | H14A—C14—H14C | 109.5 |
C9—C8—H8 | 119.4 (8) | H14B—C14—H14C | 109.5 |
C7—C8—H8 | 120.6 (8) | C1—N1—C12 | 117.36 (9) |
C8—C9—C10 | 118.62 (11) | C10—N2—C11 | 117.34 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N1i | 0.945 (14) | 2.439 (13) | 3.3718 (15) | 169.0 (10) |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N1i | 0.945 (14) | 2.439 (13) | 3.3718 (15) | 169.0 (10) |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Acknowledgements
The author thanks Professor Richard Andersen and Dr DiPasquale for their support. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences of the US Department of Energy under contract No. DE–AC02-05CH11231.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gasque, L., Moreno-Esparza, R., Mollins, E., Briansó-Penalva, J. L., Ruiz-Ramírez, L. & Medina-Dickinson, G. (1999). Acta Cryst. C55, 158–160. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ton, Q. C. & Bolte, M. (2005). Acta Cryst. E61, o1406–o1407. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
5,6-dimethyl-1,10-phenanthroline was obtained from Sigma-Aldrich. The distances and angles are consistent with those observed for [1,10]phenanthroline (Ton & Bolte, 2005) and coordinated 5,6-dimethyl-1,10-phenanthroline (Gasque, et al., 1999). The crystal packing is stabilized by an intermolecular C—H···N hydrogen bond interaction which links the molecules into chains with graph-set notation C(4) (Bernstein, et al., 1995) running parallel to the b axis. Weak intermolecular π-π interactions, involving the benzene rings, and the pyridine rings, respectively with an average plane-to plane separation of 3.5982 (7) Å further stabilize and reinforce the crystal structure.