organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,6-Dimeth­yl-1,10-phenanthroline

aChemistry Department and Chemical Sciences Division of Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
*Correspondence e-mail: SSrozenel@lbl.gov

(Received 29 August 2013; accepted 9 September 2013; online 18 September 2013)

In the title compound, C14H12N2, the N⋯N distance is 2.719 (1) Å. The N—C—C—N torsion angle [0.9 (1)°] is close to the ideal value of 0° as expected. Bond lengths and angles are consistent with those observed for [1,10]phenanthroline and coordinated 5,6 dimeth­yl[1,10]phenanthroline. In the crystal, C—H⋯N hydrogen bonds link the mol­ecules into C(4) chains running parallel to the b axis. Weak ππ inter­actions between benzene and pyridine rings [centroid–centroid distance = 3.5337 (7) Å] and between benzene rings [centroid–centroid distances = 3.6627 (7) and 3.8391 (7)Å] also occur.

Related literature

For [1,10]phenanthroline and 5,6-dimeth­yl[1,10]phenan­thro­line, see: Ton & Bolte (2005[Ton, Q. C. & Bolte, M. (2005). Acta Cryst. E61, o1406-o1407.]) and Gasque et al. (1999[Gasque, L., Moreno-Esparza, R., Mollins, E., Briansó-Penalva, J. L., Ruiz-Ramírez, L. & Medina-Dickinson, G. (1999). Acta Cryst. C55, 158-160.]), respectively. For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2

  • Mr = 208.26

  • Monoclinic, P 21 /c

  • a = 7.1932 (7) Å

  • b = 10.0572 (10) Å

  • c = 13.8729 (13) Å

  • β = 93.673 (5)°

  • V = 1001.55 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.11 × 0.10 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.991, Tmax = 0.993

  • 16500 measured reflections

  • 1855 independent reflections

  • 1613 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.100

  • S = 1.06

  • 1855 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1i 0.945 (14) 2.439 (13) 3.3718 (15) 169.0 (10)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare, et al. 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-32 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

5,6-dimethyl-1,10-phenanthroline was obtained from Sigma-Aldrich. The distances and angles are consistent with those observed for [1,10]phenanthroline (Ton & Bolte, 2005) and coordinated 5,6-dimethyl-1,10-phenanthroline (Gasque, et al., 1999). The crystal packing is stabilized by an intermolecular C—H···N hydrogen bond interaction which links the molecules into chains with graph-set notation C(4) (Bernstein, et al., 1995) running parallel to the b axis. Weak intermolecular π-π interactions, involving the benzene rings, and the pyridine rings, respectively with an average plane-to plane separation of 3.5982 (7) Å further stabilize and reinforce the crystal structure.

Related literature top

For [1,10]phenanthroline and 5,6-dimethyl-1,10-phenanthroline, see: Ton & Bolte (2005) and Gasque et al. (1999), respectively. For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Crystals of the title compound, 5,6-dimethyl-1,10-phenanthroline, were obtained by sublimation at 160 °C under dynamic vacuum.

Refinement top

All non-hydrogen atoms were refined anisotropically. Aromatic hydrogen atoms were located in the Fourier map and refined isotropically. Methyl hydrogen atoms were placed based on the expected geometry of the carbon atoms to which they were attached and refined using a riding model, with C—H distances 0.98 Å and Uiso(H) = 1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR97 (Altomare, et al. 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Top view of the structure of 5,6-dimethyl-1,10-phenanthroline, displacement ellipsoids drawn at the 50% probability level.
5,6-Dimethyl-1,10-phenanthroline top
Crystal data top
C14H12N2F(000) = 440
Mr = 208.26SHELXL-97
Monoclinic, P21/cDx = 1.381 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.1932 (7) ÅCell parameters from 9819 reflections
b = 10.0572 (10) Åθ = 2.5–25.4°
c = 13.8729 (13) ŵ = 0.08 mm1
β = 93.673 (5)°T = 100 K
V = 1001.55 (17) Å3Block, colourless
Z = 40.11 × 0.10 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
1855 independent reflections
Radiation source: microfocus sealed tube1613 reflections with I > 2σ(I)
QUAZAR multilayer mirrors monochromatorRint = 0.022
Detector resolution: 8.366 pixels mm-1θmax = 25.5°, θmin = 2.5°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.991, Tmax = 0.993l = 1616
16500 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.2458P]
where P = (Fo2 + 2Fc2)/3
1855 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H12N2V = 1001.55 (17) Å3
Mr = 208.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1932 (7) ŵ = 0.08 mm1
b = 10.0572 (10) ÅT = 100 K
c = 13.8729 (13) Å0.11 × 0.10 × 0.09 mm
β = 93.673 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
1855 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1613 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.993Rint = 0.022
16500 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.16 e Å3
1855 reflectionsΔρmin = 0.20 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.42701 (15)0.02490 (12)0.23673 (8)0.0163 (3)
C20.42141 (15)0.15376 (12)0.19967 (8)0.0169 (3)
C30.35250 (15)0.17126 (12)0.10622 (8)0.0155 (3)
C40.29281 (14)0.06112 (11)0.04921 (8)0.0133 (3)
C50.22138 (14)0.07469 (11)0.05047 (8)0.0140 (3)
C60.17602 (14)0.03576 (11)0.10406 (8)0.0140 (3)
C70.19526 (14)0.16667 (11)0.06034 (8)0.0136 (3)
C80.15222 (15)0.28403 (12)0.11278 (8)0.0168 (3)
C90.17425 (16)0.40516 (12)0.06876 (8)0.0192 (3)
C100.24086 (16)0.40937 (12)0.02795 (9)0.0193 (3)
C110.26123 (14)0.18229 (11)0.03706 (8)0.0132 (3)
C120.31061 (14)0.06488 (11)0.09349 (8)0.0128 (3)
C130.20306 (16)0.21432 (12)0.08965 (8)0.0182 (3)
H13A0.32730.25190.09610.027*
H13B0.13530.26920.04520.027*
H13C0.13470.21250.15300.027*
C140.10570 (15)0.03036 (12)0.20896 (8)0.0188 (3)
H14A0.02640.05490.21480.028*
H14B0.17710.09260.24640.028*
H14C0.12070.06000.23370.028*
N10.37466 (12)0.08243 (9)0.18696 (7)0.0150 (2)
N20.28440 (13)0.30292 (9)0.08056 (7)0.0163 (3)
H10.4752 (17)0.0073 (13)0.3036 (9)0.019 (3)*
H20.4698 (17)0.2240 (14)0.2390 (9)0.020 (3)*
H30.3500 (18)0.2604 (15)0.0801 (9)0.023 (3)*
H80.1103 (18)0.2799 (14)0.1809 (10)0.026 (3)*
H90.1465 (17)0.4866 (14)0.1012 (9)0.022 (3)*
H100.2560 (18)0.4966 (14)0.0606 (9)0.024 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0132 (5)0.0220 (7)0.0137 (6)0.0005 (4)0.0003 (4)0.0018 (5)
C20.0141 (6)0.0184 (6)0.0183 (6)0.0024 (4)0.0026 (4)0.0061 (5)
C30.0146 (6)0.0130 (6)0.0194 (6)0.0002 (4)0.0043 (4)0.0005 (5)
C40.0086 (5)0.0157 (6)0.0160 (6)0.0004 (4)0.0031 (4)0.0004 (5)
C50.0095 (5)0.0160 (6)0.0167 (6)0.0014 (4)0.0030 (4)0.0034 (5)
C60.0098 (5)0.0184 (6)0.0141 (6)0.0011 (4)0.0023 (4)0.0007 (5)
C70.0093 (5)0.0169 (6)0.0149 (6)0.0007 (4)0.0020 (4)0.0005 (5)
C80.0154 (6)0.0210 (7)0.0142 (6)0.0015 (5)0.0008 (4)0.0024 (5)
C90.0201 (6)0.0157 (6)0.0217 (6)0.0018 (5)0.0014 (5)0.0045 (5)
C100.0209 (6)0.0126 (6)0.0241 (7)0.0004 (5)0.0001 (5)0.0012 (5)
C110.0101 (5)0.0145 (6)0.0151 (6)0.0005 (4)0.0026 (4)0.0012 (5)
C120.0091 (5)0.0165 (6)0.0130 (6)0.0004 (4)0.0019 (4)0.0013 (4)
C130.0197 (6)0.0169 (7)0.0177 (6)0.0004 (5)0.0000 (5)0.0029 (5)
C140.0192 (6)0.0218 (7)0.0150 (6)0.0019 (5)0.0014 (4)0.0023 (5)
N10.0138 (5)0.0180 (5)0.0131 (5)0.0002 (4)0.0002 (4)0.0002 (4)
N20.0172 (5)0.0135 (5)0.0178 (5)0.0001 (4)0.0003 (4)0.0013 (4)
Geometric parameters (Å, º) top
C1—N11.3230 (15)C8—C91.3673 (17)
C1—C21.3939 (17)C8—H80.975 (14)
C1—H10.985 (13)C9—C101.3960 (17)
C2—C31.3695 (16)C9—H90.950 (14)
C2—H20.945 (14)C10—N21.3220 (15)
C3—C41.4118 (16)C10—H100.990 (14)
C3—H30.967 (15)C11—N21.3605 (14)
C4—C121.4105 (16)C11—C121.4483 (15)
C4—C51.4505 (16)C12—N11.3595 (14)
C5—C61.3645 (16)C13—H13A0.9800
C5—C131.5085 (15)C13—H13B0.9800
C6—C71.4525 (16)C13—H13C0.9800
C6—C141.5108 (15)C14—H14A0.9800
C7—C81.4104 (15)C14—H14B0.9800
C7—C111.4118 (15)C14—H14C0.9800
N1—C1—C2124.44 (10)C8—C9—H9122.8 (8)
N1—C1—H1114.6 (8)C10—C9—H9118.6 (8)
C2—C1—H1121.0 (7)N2—C10—C9124.10 (11)
C3—C2—C1117.96 (10)N2—C10—H10116.7 (8)
C3—C2—H2123.3 (8)C9—C10—H10119.2 (8)
C1—C2—H2118.7 (8)N2—C11—C7123.22 (10)
C2—C3—C4120.54 (11)N2—C11—C12117.93 (10)
C2—C3—H3118.1 (8)C7—C11—C12118.84 (10)
C4—C3—H3121.3 (8)N1—C12—C4123.21 (10)
C12—C4—C3116.43 (10)N1—C12—C11117.78 (10)
C12—C4—C5121.10 (10)C4—C12—C11119.00 (10)
C3—C4—C5122.46 (10)C5—C13—H13A109.5
C6—C5—C4120.03 (10)C5—C13—H13B109.5
C6—C5—C13123.31 (10)H13A—C13—H13B109.5
C4—C5—C13116.65 (10)C5—C13—H13C109.5
C5—C6—C7119.83 (10)H13A—C13—H13C109.5
C5—C6—C14123.31 (10)H13B—C13—H13C109.5
C7—C6—C14116.87 (10)C6—C14—H14A109.5
C8—C7—C11116.73 (10)C6—C14—H14B109.5
C8—C7—C6122.09 (10)H14A—C14—H14B109.5
C11—C7—C6121.17 (10)C6—C14—H14C109.5
C9—C8—C7119.99 (10)H14A—C14—H14C109.5
C9—C8—H8119.4 (8)H14B—C14—H14C109.5
C7—C8—H8120.6 (8)C1—N1—C12117.36 (9)
C8—C9—C10118.62 (11)C10—N2—C11117.34 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N1i0.945 (14)2.439 (13)3.3718 (15)169.0 (10)
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N1i0.945 (14)2.439 (13)3.3718 (15)169.0 (10)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The author thanks Professor Richard Andersen and Dr DiPasquale for their support. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences of the US Department of Energy under contract No. DE–AC02-05CH11231.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGasque, L., Moreno-Esparza, R., Mollins, E., Briansó-Penalva, J. L., Ruiz-Ramírez, L. & Medina-Dickinson, G. (1999). Acta Cryst. C55, 158–160.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTon, Q. C. & Bolte, M. (2005). Acta Cryst. E61, o1406–o1407.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds