organic compounds
Dipentyl 2,6-diaminobenzo[1,2-b:4,5-b′]difuran-3,7-dicarboxylate
aDipartimento di Ingegneria, Università di Napoli 'Parthenope', Centro Direzionale di Napoli, Isola C4, 80143 Napoli, Italy, bDipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy, and cIstituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Naples, Italy
*Correspondence e-mail: giuseppina.roviello@uniparthenope.it, angela.tuzi@unina.it
The title compound, C22H28N2O6, crystallizes with one half-molecule in the independent unit, the molecule being located on an inversion centre. The penthyl groups are in the all-trans conformation and an almost planar conformation of the whole molecule is observed [maximum deviation from the least-squares plane through all non-H atoms is 0.0229 (17) Å for an N atom]. The amino groups are involved in intra- and intermolecular hydrogen bonds. Intramolecular hydrogen bonding involving the amino group and ester carbonyl helps to lock the syn conformation of the ester with respect to the amino group. In the crystal, N—H⋯O hydrogen bonding involving the amino group and the furan and ester carbonyl O atoms self-assembles the molecules into a two-dimensional hydrogen-bonded network parallel to (010) that displays interdigital packing sustained by alkyl–alkyl interactions.
Related literature
For the synthesis and properties of aminobenzodifurane derivatives, see: Caruso et al. (2009). For O- and N-rich aromatic heterocycles, see: Roviello et al. (2007, 2012). For molecules with optical and opto-electronical properties, see: Carella et al. (2012); Centore et al. (2007); Roviello et al. (2009); Ricciotti et al. (2013); Vitaliano et al. (2009). For hydrogen bonding in heterocycles, see: Centore et al. (2013a,b).
Experimental
Crystal data
|
|
Data collection: COLLECT (Nonius, 1999); cell DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S160053681302480X/ds2234sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681302480X/ds2234Isup2.hkl
2,6-diamino-benzo[1,2 - b;4,5 - b']difuran-3,7-dicarboxylic acid was prepared according to the procedure described in the literature (Caruso et al. 2009). Crystals suitable for X-ray analysis were obtained by slow evaporation of dioxane/water solution.
All NH hydrogen atoms were located in difference Fourier maps and refined with Uiso=1.2Ueq(N) of the
All the other H atoms were generated stereochemically and refined by the riding model with Uiso=1.2×Ueq of the (1.5 for H atoms of the methyl groups).Data collection: COLLECT (Nonius, 1999); cell
DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. ORTEP view of the title compound. Thermal ellipsoids are drawn at 30% probability level. | |
Fig. 2. Crystal packing viewed along b axis. Hydrogen bonds are drawn as dashed lines. |
C22H28N2O6 | F(000) = 444 |
Mr = 416.46 | Dx = 1.205 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 75 reflections |
a = 8.267 (1) Å | θ = 3.1–16.9° |
b = 7.994 (1) Å | µ = 0.09 mm−1 |
c = 17.582 (3) Å | T = 173 K |
β = 98.98 (2)° | Block, grey |
V = 1147.7 (3) Å3 | 0.50 × 0.04 × 0.01 mm |
Z = 2 |
Bruker–Nonius KappaCCD diffractometer | 2626 independent reflections |
Radiation source: normal-focus sealed tube | 1258 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.096 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
CCD rotation images, thick slices scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | k = −10→9 |
Tmin = 0.957, Tmax = 0.999 | l = −22→22 |
11093 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.93 | w = 1/[σ2(Fo2) + (0.061P)2] where P = (Fo2 + 2Fc2)/3 |
2626 reflections | (Δ/σ)max < 0.001 |
142 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C22H28N2O6 | V = 1147.7 (3) Å3 |
Mr = 416.46 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.267 (1) Å | µ = 0.09 mm−1 |
b = 7.994 (1) Å | T = 173 K |
c = 17.582 (3) Å | 0.50 × 0.04 × 0.01 mm |
β = 98.98 (2)° |
Bruker–Nonius KappaCCD diffractometer | 2626 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1258 reflections with I > 2σ(I) |
Tmin = 0.957, Tmax = 0.999 | Rint = 0.096 |
11093 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.93 | Δρmax = 0.19 e Å−3 |
2626 reflections | Δρmin = −0.20 e Å−3 |
142 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5923 (2) | 0.1341 (3) | 0.04464 (11) | 0.0257 (5) | |
H1 | 0.6556 | 0.2314 | 0.0731 | 0.026* | |
C2 | 0.5354 (2) | −0.0094 (3) | 0.07682 (11) | 0.0246 (5) | |
C3 | 0.4461 (2) | −0.1426 (3) | 0.03695 (11) | 0.0255 (5) | |
C4 | 0.4171 (2) | −0.2648 (3) | 0.09645 (11) | 0.0254 (5) | |
C5 | 0.4884 (3) | −0.1957 (3) | 0.16650 (12) | 0.0282 (5) | |
C6 | 0.3356 (2) | −0.4269 (3) | 0.09113 (12) | 0.0288 (6) | |
C7 | 0.1878 (3) | −0.6355 (3) | 0.00858 (11) | 0.0326 (6) | |
H7A | 0.0935 | −0.6356 | 0.0370 | 0.033* | |
H7B | 0.2644 | −0.7250 | 0.0301 | 0.033* | |
C8 | 0.1290 (3) | −0.6679 (3) | −0.07634 (12) | 0.0340 (6) | |
H8A | 0.2242 | −0.6700 | −0.1043 | 0.034* | |
H8B | 0.0556 | −0.5760 | −0.0979 | 0.034* | |
C9 | 0.0363 (3) | −0.8366 (3) | −0.08811 (12) | 0.0382 (6) | |
H9A | 0.1101 | −0.9271 | −0.0654 | 0.038* | |
H9B | −0.0583 | −0.8331 | −0.0598 | 0.038* | |
C10 | −0.0261 (3) | −0.8793 (3) | −0.17302 (13) | 0.0472 (7) | |
H10A | 0.0678 | −0.8822 | −0.2017 | 0.047* | |
H10B | −0.1019 | −0.7904 | −0.1958 | 0.047* | |
C11 | −0.1155 (4) | −1.0494 (3) | −0.18205 (16) | 0.0632 (8) | |
H11A | −0.1539 | −1.0711 | −0.2367 | 0.063* | |
H11B | −0.2094 | −1.0467 | −0.1542 | 0.063* | |
H11C | −0.0400 | −1.1383 | −0.1609 | 0.063* | |
N1 | 0.4973 (3) | −0.2479 (3) | 0.23935 (11) | 0.0383 (6) | |
H1A | 0.550 (3) | −0.192 (3) | 0.2748 (12) | 0.038* | |
H1B | 0.454 (3) | −0.340 (3) | 0.2485 (12) | 0.038* | |
O1 | 0.56177 (16) | −0.04310 (18) | 0.15705 (7) | 0.0292 (4) | |
O2 | 0.32315 (19) | −0.51874 (18) | 0.14725 (8) | 0.0377 (4) | |
O3 | 0.27143 (17) | −0.47150 (17) | 0.01739 (8) | 0.0324 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0243 (13) | 0.0246 (14) | 0.0275 (12) | 0.0019 (10) | 0.0017 (10) | −0.0028 (10) |
C2 | 0.0267 (12) | 0.0283 (14) | 0.0184 (11) | 0.0051 (11) | 0.0018 (9) | 0.0001 (10) |
C3 | 0.0225 (12) | 0.0268 (14) | 0.0271 (12) | 0.0040 (10) | 0.0039 (10) | −0.0032 (10) |
C4 | 0.0263 (12) | 0.0216 (13) | 0.0271 (12) | 0.0021 (10) | 0.0009 (10) | −0.0009 (10) |
C5 | 0.0289 (13) | 0.0252 (15) | 0.0303 (13) | 0.0008 (11) | 0.0039 (10) | 0.0012 (11) |
C6 | 0.0260 (13) | 0.0305 (15) | 0.0286 (13) | 0.0076 (11) | −0.0001 (10) | −0.0006 (11) |
C7 | 0.0304 (13) | 0.0269 (14) | 0.0400 (14) | −0.0019 (11) | 0.0041 (11) | −0.0014 (11) |
C8 | 0.0282 (13) | 0.0345 (16) | 0.0385 (13) | 0.0024 (11) | 0.0029 (11) | −0.0043 (11) |
C9 | 0.0292 (13) | 0.0355 (16) | 0.0487 (15) | 0.0032 (11) | 0.0025 (12) | −0.0065 (12) |
C10 | 0.0432 (16) | 0.0499 (18) | 0.0483 (15) | −0.0056 (14) | 0.0068 (13) | −0.0135 (13) |
C11 | 0.0620 (19) | 0.054 (2) | 0.073 (2) | −0.0181 (16) | 0.0085 (16) | −0.0242 (15) |
N1 | 0.0530 (14) | 0.0320 (14) | 0.0268 (12) | −0.0109 (11) | −0.0033 (10) | 0.0022 (10) |
O1 | 0.0350 (9) | 0.0296 (10) | 0.0224 (8) | −0.0013 (7) | 0.0025 (7) | 0.0006 (7) |
O2 | 0.0489 (10) | 0.0313 (10) | 0.0307 (9) | −0.0033 (8) | −0.0003 (7) | 0.0075 (7) |
O3 | 0.0373 (9) | 0.0293 (10) | 0.0289 (9) | −0.0043 (7) | 0.0001 (7) | −0.0010 (7) |
C1—C2 | 1.393 (3) | C7—H7B | 0.9900 |
C1—C3i | 1.422 (3) | C8—C9 | 1.549 (3) |
C1—H1 | 1.0231 | C8—H8A | 0.9900 |
C2—C3 | 1.418 (3) | C8—H8B | 0.9900 |
C2—O1 | 1.419 (2) | C9—C10 | 1.540 (3) |
C3—C1i | 1.422 (3) | C9—H9A | 0.9900 |
C3—C4 | 1.477 (3) | C9—H9B | 0.9900 |
C4—C5 | 1.394 (3) | C10—C11 | 1.543 (3) |
C4—C6 | 1.457 (3) | C10—H10A | 0.9900 |
C5—N1 | 1.338 (3) | C10—H10B | 0.9900 |
C5—O1 | 1.384 (2) | C11—H11A | 0.9800 |
C6—O2 | 1.247 (2) | C11—H11B | 0.9800 |
C6—O3 | 1.369 (2) | C11—H11C | 0.9800 |
C7—O3 | 1.479 (2) | N1—H1A | 0.83 (2) |
C7—C8 | 1.518 (3) | N1—H1B | 0.84 (2) |
C7—H7A | 0.9900 | ||
C2—C1—C3i | 114.40 (18) | C7—C8—H8B | 109.5 |
C2—C1—H1 | 127.3 | C9—C8—H8B | 109.5 |
C3i—C1—H1 | 118.3 | H8A—C8—H8B | 108.1 |
C1—C2—C3 | 126.93 (18) | C10—C9—C8 | 114.01 (19) |
C1—C2—O1 | 123.44 (18) | C10—C9—H9A | 108.8 |
C3—C2—O1 | 109.63 (17) | C8—C9—H9A | 108.8 |
C2—C3—C1i | 118.67 (18) | C10—C9—H9B | 108.8 |
C2—C3—C4 | 106.02 (17) | C8—C9—H9B | 108.8 |
C1i—C3—C4 | 135.31 (19) | H9A—C9—H9B | 107.6 |
C5—C4—C6 | 122.45 (19) | C9—C10—C11 | 112.2 (2) |
C5—C4—C3 | 105.72 (18) | C9—C10—H10A | 109.2 |
C6—C4—C3 | 131.82 (18) | C11—C10—H10A | 109.2 |
N1—C5—O1 | 115.50 (19) | C9—C10—H10B | 109.2 |
N1—C5—C4 | 132.4 (2) | C11—C10—H10B | 109.2 |
O1—C5—C4 | 112.08 (18) | H10A—C10—H10B | 107.9 |
O2—C6—O3 | 121.9 (2) | C10—C11—H11A | 109.5 |
O2—C6—C4 | 124.58 (19) | C10—C11—H11B | 109.5 |
O3—C6—C4 | 113.54 (18) | H11A—C11—H11B | 109.5 |
O3—C7—C8 | 109.05 (16) | C10—C11—H11C | 109.5 |
O3—C7—H7A | 109.9 | H11A—C11—H11C | 109.5 |
C8—C7—H7A | 109.9 | H11B—C11—H11C | 109.5 |
O3—C7—H7B | 109.9 | C5—N1—H1A | 119.4 (15) |
C8—C7—H7B | 109.9 | C5—N1—H1B | 119.5 (15) |
H7A—C7—H7B | 108.3 | H1A—N1—H1B | 121 (2) |
C7—C8—C9 | 110.81 (18) | C5—O1—C2 | 106.54 (16) |
C7—C8—H8A | 109.5 | C6—O3—C7 | 115.84 (15) |
C9—C8—H8A | 109.5 | ||
C3i—C1—C2—C3 | 0.1 (3) | C5—C4—C6—O2 | −0.8 (3) |
C3i—C1—C2—O1 | 179.41 (17) | C3—C4—C6—O2 | 178.5 (2) |
C1—C2—C3—C1i | −0.1 (3) | C5—C4—C6—O3 | 179.06 (18) |
O1—C2—C3—C1i | −179.49 (16) | C3—C4—C6—O3 | −1.6 (3) |
C1—C2—C3—C4 | 179.22 (19) | O3—C7—C8—C9 | −178.43 (16) |
O1—C2—C3—C4 | −0.2 (2) | C7—C8—C9—C10 | −179.49 (19) |
C2—C3—C4—C5 | 0.7 (2) | C8—C9—C10—C11 | 179.2 (2) |
C1i—C3—C4—C5 | 179.8 (2) | N1—C5—O1—C2 | −178.64 (17) |
C2—C3—C4—C6 | −178.7 (2) | C4—C5—O1—C2 | 0.8 (2) |
C1i—C3—C4—C6 | 0.4 (4) | C1—C2—O1—C5 | −179.79 (18) |
C6—C4—C5—N1 | −2.1 (4) | C3—C2—O1—C5 | −0.3 (2) |
C3—C4—C5—N1 | 178.4 (2) | O2—C6—O3—C7 | −0.4 (3) |
C6—C4—C5—O1 | 178.55 (17) | C4—C6—O3—C7 | 179.72 (16) |
C3—C4—C5—O1 | −0.9 (2) | C8—C7—O3—C6 | −178.24 (17) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2ii | 0.83 (2) | 2.11 (2) | 2.935 (3) | 171 (2) |
N1—H1B···O1iii | 0.84 (2) | 2.34 (2) | 3.066 (2) | 144 (2) |
N1—H1B···O2 | 0.84 (2) | 2.41 (2) | 2.942 (3) | 122.2 (18) |
Symmetry codes: (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.83 (2) | 2.11 (2) | 2.935 (3) | 171 (2) |
N1—H1B···O1ii | 0.84 (2) | 2.34 (2) | 3.066 (2) | 144 (2) |
N1—H1B···O2 | 0.84 (2) | 2.41 (2) | 2.942 (3) | 122.2 (18) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
The authors thank the Centro Interdipartimentale di Metodologie Chimico–Fisiche, Università degli Studi di Napoli "Federico II" for the X-ray facilities.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carella, A., Borbone, F., Roviello, A., Roviello, G., Tuzi, A., Kravinsky, A., Shikler, R., Cantele, G. & Ninno, D. (2012). Dyes Pigm. 95, 116–125. Web of Science CSD CrossRef CAS Google Scholar
Caruso, U., Panunzi, B., Roviello, G. N., Roviello, G., Tingoli, M. & Tuzi, A. (2009). C. R. Chim. 12, 622–634. Web of Science CSD CrossRef CAS Google Scholar
Centore, R., Piccialli, V. & Tuzi, A. (2013a). Acta Cryst. E69, o667–o668. CSD CrossRef CAS IUCr Journals Google Scholar
Centore, R., Piccialli, V. & Tuzi, A. (2013b). Acta Cryst. E69, o802–o803. CSD CrossRef CAS IUCr Journals Google Scholar
Centore, R., Riccio, P., Fusco, S., Carella, A., Quatela, A., Schutzmann, S., Stella, F. & De Matteis, F. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 2719–2725. Web of Science CrossRef CAS Google Scholar
Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nonius, B. V. (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Ricciotti, L., Borbone, F., Carella, A., Centore, R., Roviello, A., Barra, M., Roviello, G., Ferone, C., Minarini, C. & Morvillo, P. (2013). J. Polym. Sci. Part A Polym. Chem. doi:10.1002/pola.26849. Google Scholar
Roviello, A., Borbone, F., Carella, A., Diana, R., Roviello, G., Panunzi, B., Ambrosio, A. & Maddalena, P. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 2677–2689. Web of Science CrossRef CAS Google Scholar
Roviello, A., Buono, A., Carella, A., Roviello, G., Cassinese, A., Barra, M. & Biasucci, M. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 1758–1760. Web of Science CrossRef CAS Google Scholar
Roviello, G. N., Roviello, G., Musumeci, D., Bucci, E. M. & Pedone, C. (2012). Amino Acids, 43, 1615–1623. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vitaliano, R., Fratoddi, I., Venditti, I., Roviello, G., Battocchio, C., Polzonetti, G. & Russo, M. V. (2009). J. Phys. Chem. A, 113, 14730–14740. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the field of our studies on the synthesis and properties of aminobenzodifurane derivatives (Caruso et al. 2009) we prepared the title compound, C22H28N2O6. The presence of an aromatic heterocyclic core in the molecule makes this kind of compound interesting in organic electronics (Carella et al. 2012; Centore et al. 2007). 2,6-diamino-benzo[1,2 - b;4,5 - b']difuran-3,7-dicarboxylic acid (Fig. 1) crystallizes in P21/c space group with one half molecule in the independent unit. The molecule is located on a crystallographic inversion center and exhibits an all planar shape (maximum deviation from least square plane of the molecule is -0.0229 (17) for N1). The planarity of the molecule is a consequence of the all-trans conformation of penthyl groups and of the torsion angle at C6–O3 bond (C4—C6—O3—C7 = 179.7 (2)°). The planar conformation is also stabilized by intramolecular N—H···O=C hydrogen bonds (Table 1). In fact, the intramolecular hydrogen bonding involving the amino group and ester carbonyl helps to lock the syn conformation of ester with respect to amino group. The amino NH2 group is also involved in intermolecular hydrogen bonds, acting as donor towards benzodifurane oxigen (O1) and ester carbonyl oxygen (O2) acceptors (see Table 1). In the crystal packing (Fig. 2), molecules self-assemble into a two-dimensional hydrogen bonded network that display interdigital packing sustained by alkyl-alkyl interactions.