inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages i69-i70

SBN60, strontium-barium niobate at 100 K

aChemistry Department, Uniwersity of Warsaw, 1 Pasteura Str., 02-093, Warsaw, Poland, and bInstitute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw, Poland
*Correspondence e-mail: marcin.stachowicz@chem.uw.edu.pl

(Received 5 June 2013; accepted 10 September 2013; online 28 September 2013)

The title compound, Sr0.6Ba0.4Nb2O6 (strontium barium niobium oxide), belongs to the group of strontium–barium niobates with varying composition of Sr and Ba. Their general formula can be written as SrxBa1 - xNb2O6. Below the Curie temperature, Tc, these materials indicate ferroelectric properties. The Curie temperature for SBN60 is equal to 346±0.5 K so the structure is in the ferroelectric phase at the measurement temperature of 100 K. Characteristic for this family of compounds is the packing along the z-axis. The NbO6 corner-sharing octa­hedra surround three types of vacancy tunnels with penta­gonal, square and triangular shapes. The Sr2+ ions partially occupy two unique sites, the first one located inside the penta­gon and the second one in the square tunnels. Consequently, they are situated on the mirror plane and the inter­section of two glide planes, respectively. The site inside the penta­gonal tunnel is additionally disordered so that the same position is shared by Ba2+ and Sr2+ ions whereas another part of the Ba2+ ion occupies a different position (relative occupancies 0.43:0.41:0.16). One of the NbV atoms and three of the O2− ions occupy general positions. The second NbV atom is located on the inter­section of the mirror planes. Two remaining O2− ions are located on the same mirror plane. Only the NbV atom and one of the O2− ions which is located on the mirror plane are not disordered. Each of the remaining O2− ions is split between two sites, with relative occupancies of 0.52:0.48 (O2− ions in general positions) and 0.64:0.36 (O2− ion on the mirror plane).

Related literature

For detailed information about the growth of the crystals, see: Lukasiewicz et al. (2008[Lukasiewicz, T., Swirkowicz, M. A., Dec, J., Hofman, W. & Szyrski, W. (2008). J. Cryst. Growth, 310, 1464-1469.]). For their physical properties and possible applications in photorefractive, pyroelectric and electro-optic devices, see: Neurgaonkar et al. (1988[Neurgaonkar, R. R., Hall, W. F., Oliver, J. R., Ho, W. H. & Cory, W. K. (1988). Ferroelectrics, 87, 167-179.]); Chernaya et al. (2003[Chernaya, T. S., Volk, T. R., Maksimov, B. A., Blomberg, M. K., Ivleva, L. I., Verin, I. A. & Simonov, V. I. (2003). Cryst. Rep. 48, 933-938.]); Megumi et al. (1976[Megumi, K., Nagatsuma, N., Ksashiwada, Y. & Furuhata, Y. (1976). J. Mater. Sci. 11, 1583-1592.]). For SBN61 crystals, a modulation in the structure was reported, see: Schefer et al. (2008[Schefer, J., Schaniel, D., Petříček, V., Woike, T., Cousson, A. & Woehlecke, M. (2008). Z. Kristallogr. 223, 399-407.]); Woike et al. (2003[Woike, T., Petříček, V., Dušek, M., Hansen, N. K., Fertey, P., Lecomte, C., Arakcheeva, A., Chapuis, G., Imlau, M. & Pankrath, R. (2003). Acta Cryst. B59, 28-35.]). The structure of SBN61 has been determined from single crystal X-ray data; the structures of three other analogues (x = 34, 48, 82), with no disorder present, and the influence of temperature on their unit-cell parameters has been investigated with use of the powder data, see: Podlozhenov et al. (2006[Podlozhenov, S., Graetsch, H. A., Schneider, J., Ulex, M., Wöhlecke, M. & Betzler, K. (2006). Acta Cryst. B62, 960-965.]).

Experimental

Crystal data
  • Sr0.6Ba0.4Nb2O6

  • Mr = 389.33

  • Tetragonal, P 4b m

  • a = 12.43478 (12) Å

  • c = 3.93697 (6) Å

  • V = 608.75 (1) Å3

  • Z = 5

  • Mo Kα radiation

  • μ = 14.32 mm−1

  • T = 100 K

  • 0.06 (radius) mm

Data collection
  • Agilent Xcalibur Opal diffractometer

  • Absorption correction: for a sphere (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.278, Tmax = 0.278

  • 31766 measured reflections

  • 2265 independent reflections

  • 2204 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.074

  • S = 1.16

  • 2265 reflections

  • 82 parameters

  • 15 restraints

  • Δρmax = 2.15 e Å−3

  • Δρmin = −1.96 e Å−3

  • Absolute structure: Flack parameter determined using 942 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: 0.07 (7)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

Strontium-barium niobate is a very attractive material because of many applications. Its crystal structure, with open tetragonal tungsten bronze crystal lattice, exhibits a special ferroelectric-relaxor behaviour which depends on the Sr/Ba ratio (over 0.25x0.75). The reason to investigate SBN with different compositions is a gradual crossover from typical ferroelectric (SBN40) to extreme relaxor (SBN75). Its low-phase transition temperature, which varies from 50 to 150°C, is dependent on concentration of Sr (Megumi et al. 1976). Also their other properties such as: large electro-optic and pyroelectric coefficients, and good photorefractive and acousto-optic parameters (Neurgaonkar et al. 1988) are worth to be studied. The tetragonal structure of SBN contains a number of vacant sites which allows for introduction of a wide range of dopants including the rare earth and transition metal ions. This creates additional interesting properties. This versatility of SBN makes it a very promising material for use in optoelectronics.

The crystal structure of the title compound, Sr0.6Ba0.4Nb2O6 (SBN60) was determined at 100 K. The Curie temperature for SBN60 is equal to 346±0.5 K so the structure is in the ferroelectric phase. No modulation was observed for the complete dataset of sinΘmax/λ=1.06 which allowed for the refinement of the disorder of atomic positions present in the structure.

Characteristic for this family of compounds is packing along the z-axis. The NbO6 corner-sharing octahedra surround three types of vacancy tunnels with the shape of pentagon, square and triangle. The Sr ions partially occupy two unique sites, the first one located inside the pentagon and the second one in the above mentioned square-like tunnels. Consequently, they are situated on the mirror plane and the intersection of two glide planes, respectively. The site inside pentagon tunnel is additionally disordered in the way that the same position is shared by barium and strontium ion (Ba1 and Sr1) whereas another part of the barium ion (Ba1B) occupies different position. One of the niobium ions and three of the oxygen ions occupy general positions. Second niobium ion (Nb2) is located on the intersection of the mirror planes. Two remaining oxygen ions (O1, O5) are located on the same mirror plane. Only the niobium ions and one of the oxygen ions which is placed at the mirror plane (O1) are free from disorder. Each of the remaining oxygen ions is split between two positions, with relative occupancies 52:48 for O2, O3, O4, and 64:36 for O5.

Related literature top

For detailed information about the growth of the crystals, see: Lukasiewicz et al. (2008). For their physical properties and possible applications in photorefractive, pyroelectric and electro-optic devices, see: Neurgaonkar et al. (1988); Chernaya et al. (2003); Megumi et al. (1976). For SBN61 crystals, a modulation in the structure was reported, see: Schefer et al. (2008); Woike et al. (2003). For single-crystal structures of SBN61 and three other analogues (x = 34; 48; 82), with no disorder present, and the influence of temperature on their unit-cell parameters has been investigated with use of the powder data, see: Podlozhenov et al. (2006).

Experimental top

The group of single crystals with varying composition was synthetized and grown by Czochralski technique at the Institute of Electronic Materials Technology in Warsaw, Poland The detailed information about the growth of the crystals was presented elsewhere (Lukasiewicz et al. 2008).

The real composition of grown crystals was checked with use of ICP-OES (inductively coupled plasma-optical emission spectroscopy) method. The obtained results (in relation to niobium) are presented in wt% for corresponding oxides. SrO: 15.788; BaO: 14.983; Nb2O5: 68.465; O: 24.61. These values lead to the formula: Sr0.59Ba0.38Nb2O5.97. In the structure refinement the simplified formula Sr0.6Ba0.4Nb2O6 was used.

The single crystals of SBN60 were prepared for the X-ray experiment by grinding in a special mill to a spherical shape of ca 0.3–0.5 mm diameter.

Refinement top

The complete X-ray diffraction data collected for the SBN60 (sinΘmax/λ=1.06) allowed for refinement of rich disorder of atomic positions present in this structure. The crystal was twinned by merohedry. The twinning is not directly detectable from the reflection pattern, however under measurement temperature (100 K) the compound exhibits ferroelectric properties. This excludes the presence of centres of symmetry in the studied structure. For this reason the best matching space group P4/mbm was rejected and P4bm was chosen instead.

The asymmetric part of the unit cell contains 5 independent oxygen atoms. Three of them occupy the general positions (8 d in the Wyckoff notation) and each of these three oxygen atoms appears at two positions with the ratio of occupation factors equal to 52:48 (PART 1: O2A, O3A, O4A and PART 2: O2B, O3B, O4B). Anisotropic displacement parameters (ADPs) are constrained to be equal for each pair of the disordered atoms. Remaining two oxygen atoms from the asymmetric part of the unit cell are in special positions. The one in the position 2 b in the Wyckoff notation is disordered with the 64:36 occupation factor ratio thus giving the O5A and O5B atoms. Both parts of this disorder are constrained to have equal ADPs. The last oxygen atom (O1 - position 4 c in the Wyckoff notation) does not exhibit any disorder.

In the case of heavier atoms an interesting disorder was found in the position 4 c occupied by strontium and barium atoms with the ratio of occupation factors equal to 43:41:16 (Sr1:Ba1:Ba1B, see Figure 1). The first position is occupied by Sr1 and Ba1. These two atoms are constrained to have equal ADPs whereas only Ba1B is present at the other position. Figure 2 presents the projection of the plane along the z-axis. Each Sr1/Ba1 disordered site is between two oxygen pentagons (one pentagon above, and the other one below the plane formed by Sr1/Ba1 atoms). A similar situation is present for all Sr2 positions (2 a in the Wyckoff notation) although they are surrounded by oxygen atoms forming squares. This illustration clearly shows that disorder of atoms at the 4 c Wyckoff position occupied by strontium and barium is associated with a larger free space available for these positions.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement parameters with 50% probability level of SBN60.
[Figure 2] Fig. 2. The packing of SBN60 along the Z-axis. Nb atoms are surrounded by oxygen octahedra.
Strontium barium niobium oxide top
Crystal data top
Sr0.6Ba0.4Nb2O6Dx = 5.310 Mg m3
Mr = 389.33Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4bmCell parameters from 16657 reflections
a = 12.43478 (12) Åθ = 3.3–42.2°
c = 3.93697 (6) ŵ = 14.32 mm1
V = 608.75 (1) Å3T = 100 K
Z = 5Sphere, colourless
F(000) = 8760.12 × 0.12 × 0.12 × 0.06 (radius) mm
Data collection top
Agilent Xcalibur Opal
diffractometer
2265 independent reflections
Radiation source: fine-focus sealed tube2204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.4441 pixels mm-1θmax = 42.3°, θmin = 3.3°
ω scansh = 2323
Absorption correction: for a sphere
(CrysAlis PRO; Agilent, 2012)
k = 2323
Tmin = 0.278, Tmax = 0.278l = 77
31766 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0417P)2 + 1.9722P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.027(Δ/σ)max = 0.001
wR(F2) = 0.074Δρmax = 2.15 e Å3
S = 1.16Δρmin = 1.96 e Å3
2265 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
82 parametersExtinction coefficient: 0.0340 (11)
15 restraintsAbsolute structure: Flack parameter determined using 942 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (7)
Crystal data top
Sr0.6Ba0.4Nb2O6Z = 5
Mr = 389.33Mo Kα radiation
Tetragonal, P4bmµ = 14.32 mm1
a = 12.43478 (12) ÅT = 100 K
c = 3.93697 (6) Å0.12 × 0.12 × 0.12 × 0.06 (radius) mm
V = 608.75 (1) Å3
Data collection top
Agilent Xcalibur Opal
diffractometer
2265 independent reflections
Absorption correction: for a sphere
(CrysAlis PRO; Agilent, 2012)
2204 reflections with I > 2σ(I)
Tmin = 0.278, Tmax = 0.278Rint = 0.030
31766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02715 restraints
wR(F2) = 0.074Δρmax = 2.15 e Å3
S = 1.16Δρmin = 1.96 e Å3
2265 reflectionsAbsolute structure: Flack parameter determined using 942 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
82 parametersAbsolute structure parameter: 0.07 (7)
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.82718 (6)0.32718 (6)0.5075 (5)0.01003 (15)0.36
Ba1B0.8140 (6)0.3543 (3)0.507 (2)0.0104 (7)0.07
Nb10.574560 (15)0.288626 (15)0.00050 (15)0.00455 (6)
Nb21.00000.50000.98772 (12)0.00311 (7)
Sr10.82718 (6)0.32718 (6)0.5075 (5)0.01003 (15)0.38
Sr20.50000.50000.5120 (2)0.00246 (9)0.74
O10.7187 (2)0.2187 (2)0.0349 (15)0.0144 (8)
O2A0.6341 (5)0.4334 (4)0.0139 (19)0.0081 (6)0.48
O2B0.6437 (5)0.4286 (4)0.0985 (14)0.0081 (6)0.52
O3A0.4966 (5)0.1552 (4)0.1035 (15)0.0085 (6)0.48
O3B0.4907 (3)0.1577 (3)0.0208 (16)0.0085 (6)0.52
O4A0.5510 (5)0.2845 (4)0.4624 (11)0.0121 (6)0.48
O4B0.5974 (4)0.3066 (4)0.4656 (12)0.0121 (6)0.52
O5A1.00000.50000.5179 (3)0.027 (3)0.36
O5B0.9789 (8)0.4789 (8)0.5274 (7)0.027 (3)0.32
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0104 (2)0.0104 (2)0.00932 (18)0.0083 (4)0.0002 (3)0.0002 (3)
Ba1B0.0170 (18)0.0070 (12)0.0071 (9)0.0079 (15)0.000 (2)0.000 (2)
Nb10.00466 (8)0.00369 (8)0.00531 (8)0.00120 (5)0.00007 (12)0.00130 (12)
Nb20.00313 (9)0.00313 (9)0.00306 (14)0.00024 (9)0.0000.000
Sr10.0104 (2)0.0104 (2)0.00932 (18)0.0083 (4)0.0002 (3)0.0002 (3)
Sr20.00182 (11)0.00182 (11)0.0037 (2)0.0000.0000.000
O10.0067 (6)0.0067 (6)0.030 (3)0.0034 (7)0.0001 (11)0.0001 (11)
O2A0.0107 (11)0.0029 (8)0.011 (2)0.0036 (7)0.0031 (16)0.0024 (14)
O2B0.0107 (11)0.0029 (8)0.011 (2)0.0036 (7)0.0031 (16)0.0024 (14)
O3A0.0079 (8)0.0047 (7)0.0130 (17)0.0039 (6)0.0006 (14)0.0017 (15)
O3B0.0079 (8)0.0047 (7)0.0130 (17)0.0039 (6)0.0006 (14)0.0017 (15)
O4A0.0233 (16)0.0104 (12)0.0026 (14)0.0029 (10)0.0000 (13)0.0016 (10)
O4B0.0233 (16)0.0104 (12)0.0026 (14)0.0029 (10)0.0000 (13)0.0016 (10)
O5A0.038 (5)0.038 (5)0.005 (3)0.026 (6)0.0000.000
O5B0.038 (5)0.038 (5)0.005 (3)0.026 (6)0.0000.000
Geometric parameters (Å, º) top
Ba1—Nb23.5792 (15)Nb2—O5Ai2.0872 (10)
Ba1—O1i2.820 (5)Nb2—O5A1.8498 (10)
Ba1—O12.665 (5)Nb2—O5Bxii1.8496 (10)
Ba1—O2Aii3.326 (6)Nb2—O5B1.8496 (10)
Ba1—O2Ai3.326 (6)Sr2—O2Ai2.636 (7)
Ba1—O3Aiii3.161 (6)Sr2—O2Aiv2.636 (7)
Ba1—O3Aiv3.161 (6)Sr2—O2Axiii2.636 (7)
Ba1—O3Av2.649 (6)Sr2—O2Axiv2.636 (7)
Ba1—O3Avi2.649 (6)Sr2—O2Bix2.576 (6)
Ba1—O4Aiv3.112 (6)Sr2—O2Bxv2.576 (6)
Ba1—O4Aiii3.112 (6)Sr2—O2B2.576 (6)
Ba1—O5A3.0395 (11)Sr2—O2Bvi2.576 (6)
Ba1B—Ba1Bvii3.9370Sr2—O4Bxiii2.694 (5)
Ba1B—Ba1Bi3.9370Sr2—O4Bi2.694 (5)
Ba1B—Ba1Bviii0.709 (11)Sr2—O4Biv2.694 (5)
Ba1B—Nb1i3.648 (8)Sr2—O4Bxiv2.694 (5)
Ba1B—Nb13.675 (8)O1—Ba1vii2.820 (5)
Ba1B—Nb1ii3.997 (5)O1—Ba1Bxvi2.927 (9)
Ba1B—Nb1vi3.620 (6)O1—Ba1Bvii2.927 (9)
Ba1B—Nb1iv3.592 (6)O1—Ba1Bviii2.775 (8)
Ba1B—Nb23.495 (7)O1—Nb1viii1.9967 (12)
Ba1B—Nb2vii3.579 (8)O1—Sr1vii2.820 (5)
Ba1B—O12.775 (8)O2A—Ba1vii3.326 (6)
Ba1B—O1i2.927 (9)O2A—Nb1vi2.002 (5)
Nb1—Sr2vii3.3862 (6)O2A—Sr2vii2.636 (7)
Nb1—O11.9966 (12)O2B—Nb1vi2.038 (5)
Nb1—O2Aix2.002 (5)O2B—Sr2vii3.052 (5)
Nb1—O2A1.948 (5)O3A—Ba1xvii3.161 (6)
Nb1—O2Bix2.038 (5)O3A—Ba1ix2.649 (6)
Nb1—O2B1.979 (5)O3A—Nb2xviii1.983 (5)
Nb1—O3A1.964 (5)O3B—Nb2xviii1.965 (4)
Nb1—O3B1.935 (4)O3B—Sr1ix2.915 (5)
Nb1—O4A1.846 (5)O3B—Sr1xvii2.760 (6)
Nb1—O4Ai2.135 (4)O4A—Ba1xvii3.112 (6)
Nb1—O4B1.870 (5)O4A—Nb1vii2.135 (4)
Nb1—O4Bi2.133 (4)O4A—Sr2vii2.755 (5)
Nb2—O3Ax1.983 (5)O4B—Nb1vii2.133 (4)
Nb2—O3Axi1.983 (5)O4B—Sr1vii2.870 (6)
Nb2—O3Aiii1.983 (5)O4B—Sr2vii2.694 (5)
Nb2—O3Aiv1.983 (5)O5A—Ba1xii3.0395 (11)
Nb2—O3Biii1.965 (4)O5A—Nb2vii2.0871 (10)
Nb2—O3Biv1.965 (4)O5B—Nb2vii2.157 (5)
Nb2—O3Bxi1.965 (4)O5B—O5Bxii0.74 (3)
Nb2—O3Bx1.965 (4)
O1i—Ba1—Nb2100.70 (12)O3Ax—Nb2—O3Aiii89.4 (3)
O1—Ba1—Nb2167.60 (13)O3Ax—Nb2—O5Ai76.71 (17)
O1—Ba1—O1i91.70 (11)O3Aiii—Nb2—O5Ai76.71 (17)
O1—Ba1—O2Ai103.37 (12)O3Aiv—Nb2—O5Ai76.71 (17)
O1i—Ba1—O2Ai55.08 (11)O3Axi—Nb2—O5Ai76.71 (17)
O1—Ba1—O2Aii103.37 (12)O3Bxi—Nb2—O3Ax85.71 (16)
O1i—Ba1—O2Aii55.08 (11)O3Bx—Nb2—O3Ax14.4 (2)
O1i—Ba1—O3Aiii78.78 (15)O3Biv—Nb2—O3Ax167.5 (3)
O1—Ba1—O3Aiii152.97 (11)O3Biii—Nb2—O3Ax94.74 (16)
O1—Ba1—O3Aiv152.97 (11)O3Bx—Nb2—O3Axi85.71 (16)
O1i—Ba1—O3Aiv78.78 (15)O3Biv—Nb2—O3Axi94.74 (16)
O1i—Ba1—O4Aiv100.74 (10)O3Biii—Nb2—O3Axi167.5 (3)
O1—Ba1—O4Aiv104.68 (10)O3Bxi—Nb2—O3Axi14.4 (2)
O1i—Ba1—O4Aiii100.74 (10)O3Biii—Nb2—O3Aiv85.71 (16)
O1—Ba1—O4Aiii104.68 (10)O3Bxi—Nb2—O3Aiv94.74 (16)
O1—Ba1—O5A136.48 (14)O3Bx—Nb2—O3Aiv167.5 (3)
O1i—Ba1—O5A131.81 (13)O3Biv—Nb2—O3Aiv14.4 (2)
O2Aii—Ba1—Nb284.01 (10)O3Biii—Nb2—O3Aiii14.4 (2)
O2Ai—Ba1—Nb284.01 (11)O3Bxi—Nb2—O3Aiii167.5 (3)
O2Aii—Ba1—O2Ai104.6 (2)O3Bx—Nb2—O3Aiii94.74 (16)
O3Av—Ba1—Nb277.88 (13)O3Biv—Nb2—O3Aiii85.71 (16)
O3Aiii—Ba1—Nb233.50 (10)O3Bx—Nb2—O3Biv178.0 (4)
O3Avi—Ba1—Nb277.88 (13)O3Bxi—Nb2—O3Biv96.7 (2)
O3Aiv—Ba1—Nb233.50 (10)O3Biii—Nb2—O3Biv83.2 (3)
O3Avi—Ba1—O1i149.58 (12)O3Biii—Nb2—O3Bx96.7 (2)
O3Av—Ba1—O1i149.58 (11)O3Bxi—Nb2—O3Bx83.2 (3)
O3Avi—Ba1—O191.44 (17)O3Biii—Nb2—O3Bxi178.0 (4)
O3Av—Ba1—O191.44 (17)O3Bx—Nb2—O5Ai90.98 (18)
O3Av—Ba1—O2Ai151.82 (14)O3Biii—Nb2—O5Ai90.98 (18)
O3Avi—Ba1—O2Ai94.82 (16)O3Biv—Nb2—O5Ai90.98 (18)
O3Av—Ba1—O2Aii94.82 (16)O3Bxi—Nb2—O5Ai90.98 (18)
O3Avi—Ba1—O2Aii151.82 (15)O5A—Nb2—O3Axi103.29 (17)
O3Aiv—Ba1—O2Ai50.56 (14)O5A—Nb2—O3Ax103.29 (17)
O3Aiii—Ba1—O2Ai91.89 (17)O5A—Nb2—O3Aiii103.29 (17)
O3Aiii—Ba1—O2Aii50.56 (14)O5A—Nb2—O3Aiv103.29 (17)
O3Aiv—Ba1—O2Aii91.89 (17)O5A—Nb2—O3Bxi89.02 (18)
O3Av—Ba1—O3Avi60.5 (2)O5A—Nb2—O3Bx89.02 (18)
O3Av—Ba1—O3Aiv109.6 (2)O5A—Nb2—O3Biv89.02 (18)
O3Avi—Ba1—O3Aiii109.6 (2)O5A—Nb2—O3Biii89.02 (18)
O3Av—Ba1—O3Aiii84.84 (16)O5A—Nb2—O5Ai180.000 (1)
O3Avi—Ba1—O3Aiv84.84 (16)O5B—Nb2—O3Ax111.5 (4)
O3Aiii—Ba1—O3Aiv49.95 (19)O5Bxii—Nb2—O3Ax94.8 (4)
O3Avi—Ba1—O4Aiii107.68 (15)O5B—Nb2—O3Axi111.5 (4)
O3Avi—Ba1—O4Aiv49.36 (15)O5Bxii—Nb2—O3Axi94.8 (4)
O3Av—Ba1—O4Aiv107.68 (15)O5Bxii—Nb2—O3Aiii111.5 (4)
O3Av—Ba1—O4Aiii49.36 (15)O5Bxii—Nb2—O3Aiv111.5 (4)
O3Av—Ba1—O5A52.21 (13)O5B—Nb2—O3Aiv94.8 (4)
O3Avi—Ba1—O5A52.21 (13)O5B—Nb2—O3Aiii94.8 (4)
O4Aiii—Ba1—Nb273.20 (10)O5Bxii—Nb2—O3Biii97.6 (4)
O4Aiv—Ba1—Nb273.20 (10)O5B—Nb2—O3Biii80.4 (4)
O4Aiv—Ba1—O2Ai45.66 (14)O5Bxii—Nb2—O3Bx80.4 (4)
O4Aiv—Ba1—O2Aii143.25 (16)O5B—Nb2—O3Bx97.6 (4)
O4Aiii—Ba1—O2Aii45.66 (14)O5Bxii—Nb2—O3Biv97.6 (4)
O4Aiii—Ba1—O2Ai143.25 (16)O5B—Nb2—O3Biv80.4 (4)
O4Aiii—Ba1—O3Aiv101.95 (14)O5Bxii—Nb2—O3Bxi80.4 (4)
O4Aiv—Ba1—O3Aiii101.95 (14)O5B—Nb2—O3Bxi97.6 (4)
O4Aiii—Ba1—O3Aiii53.62 (13)O5Bxii—Nb2—O5A11.6 (4)
O4Aiv—Ba1—O3Aiv53.62 (13)O5B—Nb2—O5A11.6 (4)
O4Aiii—Ba1—O4Aiv142.8 (2)O5B—Nb2—O5Ai168.4 (4)
O5A—Ba1—Nb231.12 (2)O5Bxii—Nb2—O5Ai168.4 (4)
O5A—Ba1—O2Aii102.82 (9)O5Bxii—Nb2—O5B23.1 (9)
O5A—Ba1—O2Ai102.82 (9)O2Ai—Sr2—O2Axiv59.91 (16)
O5A—Ba1—O3Aiii57.98 (11)O2Axiii—Sr2—O2Axiv59.91 (16)
O5A—Ba1—O3Aiv57.98 (11)O2Aiv—Sr2—O2Ai59.91 (16)
O5A—Ba1—O4Aiii71.50 (10)O2Aiv—Sr2—O2Axiv89.8 (3)
O5A—Ba1—O4Aiv71.50 (10)O2Ai—Sr2—O2Axiii89.8 (3)
Ba1Bviii—Ba1B—Ba1Bi90.001 (1)O2Aiv—Sr2—O2Axiii59.91 (16)
Ba1Bviii—Ba1B—Ba1Bvii90.0O2Aiv—Sr2—O4Bi113.59 (15)
Ba1Bi—Ba1B—Ba1Bvii179.999 (3)O2Aiv—Sr2—O4Biv54.00 (15)
Ba1Bviii—Ba1B—Nb1114.56 (7)O2Ai—Sr2—O4Bi54.00 (15)
Ba1Bviii—Ba1B—Nb1iv142.21 (13)O2Axiii—Sr2—O4Bi122.79 (15)
Ba1Bviii—Ba1B—Nb1ii55.97 (11)O2Axiv—Sr2—O4Bi63.48 (16)
Ba1Bviii—Ba1B—Nb1vi141.65 (13)O2Axiv—Sr2—O4Bxiv54.00 (15)
Ba1Bviii—Ba1B—Nb1i114.75 (7)O2Axiv—Sr2—O4Bxiii113.59 (15)
Ba1Bvii—Ba1B—Nb1ii119.09 (12)O2Axiii—Sr2—O4Bxiii54.00 (15)
Ba1Bi—Ba1B—Nb1ii60.91 (12)O2Ai—Sr2—O4Bxiii122.79 (15)
Ba1Bviii—Ba1B—Nb284.18 (9)O2Aiv—Sr2—O4Bxiii63.48 (16)
Ba1Bviii—Ba1B—Nb2vii84.32 (8)O2Axiii—Sr2—O4Bxiv63.48 (16)
Ba1Bviii—Ba1B—O1i83.04 (12)O2Ai—Sr2—O4Biv63.48 (16)
Ba1Bviii—Ba1B—O182.66 (13)O2Axiii—Sr2—O4Biv113.59 (15)
Nb1i—Ba1B—Ba1Bi57.81 (13)O2Axiv—Sr2—O4Biv122.79 (16)
Nb1iv—Ba1B—Ba1Bi57.25 (13)O2Aiv—Sr2—O4Bxiv122.79 (16)
Nb1vi—Ba1B—Ba1Bi123.42 (13)O2Ai—Sr2—O4Bxiv113.59 (15)
Nb1—Ba1B—Ba1Bi122.85 (14)O2B—Sr2—O2Axiv116.58 (18)
Nb1iv—Ba1B—Ba1Bvii122.75 (13)O2Bvi—Sr2—O2Axiv174.1 (2)
Nb1i—Ba1B—Ba1Bvii122.19 (13)O2Bix—Sr2—O2Ai116.61 (17)
Nb1—Ba1B—Ba1Bvii57.15 (14)O2Bxv—Sr2—O2Ai174.1 (2)
Nb1vi—Ba1B—Ba1Bvii56.58 (13)O2Bvi—Sr2—O2Ai116.58 (18)
Nb1vi—Ba1B—Nb1ii154.0 (2)O2B—Sr2—O2Aiv116.61 (17)
Nb1vi—Ba1B—Nb1i100.09 (17)O2Bix—Sr2—O2Aiv174.1 (2)
Nb1iv—Ba1B—Nb1100.09 (17)O2Bxv—Sr2—O2Aiv116.58 (18)
Nb1—Ba1B—Nb1ii90.37 (11)O2Bvi—Sr2—O2Aiv84.29 (16)
Nb1i—Ba1B—Nb1ii58.79 (10)O2B—Sr2—O2Axiii174.1 (2)
Nb1i—Ba1B—Nb165.04 (12)O2Bix—Sr2—O2Axiv84.29 (16)
Nb1iv—Ba1B—Nb1vi66.17 (7)O2Bxv—Sr2—O2Axiv116.61 (17)
Nb1vi—Ba1B—Nb165.41 (13)O2Bvi—Sr2—O2Axiii116.61 (17)
Nb1iv—Ba1B—Nb1ii111.9 (2)O2B—Sr2—O2Ai84.29 (16)
Nb1iv—Ba1B—Nb1i65.96 (14)O2Bix—Sr2—O2Axiii116.58 (18)
Nb2—Ba1B—Ba1Bi57.21 (14)O2Bxv—Sr2—O2Axiii84.29 (16)
Nb2vii—Ba1B—Ba1Bvii55.18 (13)O2Bxv—Sr2—O2B101.6 (2)
Nb2—Ba1B—Ba1Bvii122.79 (14)O2Bix—Sr2—O2B66.44 (13)
Nb2vii—Ba1B—Ba1Bi124.83 (13)O2Bxv—Sr2—O2Bvi66.44 (13)
Nb2—Ba1B—Nb1vi98.01 (8)O2Bix—Sr2—O2Bvi101.6 (2)
Nb2vii—Ba1B—Nb1vi61.99 (11)O2Bix—Sr2—O2Bxv66.44 (13)
Nb2—Ba1B—Nb1i111.6 (2)O2Bvi—Sr2—O2B66.44 (13)
Nb2vii—Ba1B—Nb1iv98.78 (8)O2Bix—Sr2—O4Bi63.67 (15)
Nb2vii—Ba1B—Nb1ii140.28 (19)O2Bxv—Sr2—O4Bi129.83 (15)
Nb2—Ba1B—Nb1ii103.9 (2)O2Bvi—Sr2—O4Bi119.00 (16)
Nb2—Ba1B—Nb1iv63.06 (11)O2B—Sr2—O4Bi53.19 (16)
Nb2vii—Ba1B—Nb1i160.91 (15)O2B—Sr2—O4Bxiii129.83 (15)
Nb2vii—Ba1B—Nb1109.0 (2)O2Bix—Sr2—O4Bxiv53.19 (16)
Nb2—Ba1B—Nb1160.94 (14)O2Bxv—Sr2—O4Bxiv63.67 (15)
Nb2—Ba1B—Nb2vii67.62 (11)O2Bvi—Sr2—O4Bxiv129.83 (15)
O1i—Ba1B—Ba1Bi44.76 (17)O2B—Sr2—O4Biv63.67 (15)
O1—Ba1B—Ba1Bi132.0 (2)O2Bix—Sr2—O4Biv129.83 (15)
O1i—Ba1B—Ba1Bvii135.24 (17)O2Bxv—Sr2—O4Biv119.00 (16)
O1—Ba1B—Ba1Bvii48.0 (2)O2Bvi—Sr2—O4Biv53.19 (16)
O1i—Ba1B—Nb1iv84.9 (2)O2Bix—Sr2—O4Bxiii119.00 (16)
O1—Ba1B—Nb1ii76.29 (12)O2Bxv—Sr2—O4Bxiii53.19 (16)
O1i—Ba1B—Nb1ii28.53 (5)O2Bvi—Sr2—O4Bxiii63.67 (15)
O1—Ba1B—Nb1iv132.4 (2)O2B—Sr2—O4Bxiv119.00 (16)
O1i—Ba1B—Nb1vi133.2 (2)O4Bxiii—Sr2—O4Bi176.3 (2)
O1i—Ba1B—Nb1i33.11 (9)O4Bxiv—Sr2—O4Bi89.939 (7)
O1i—Ba1B—Nb185.94 (18)O4Biv—Sr2—O4Bi89.939 (8)
O1—Ba1B—Nb1i82.66 (19)O4Bxiv—Sr2—O4Bxiii89.939 (7)
O1—Ba1B—Nb132.41 (9)O4Biv—Sr2—O4Bxiii89.939 (7)
O1—Ba1B—Nb1vi86.6 (2)O4Biv—Sr2—O4Bxiv176.3 (2)
O1—Ba1B—Nb2163.8 (3)Ba1—O1—Ba1vii91.70 (11)
O1i—Ba1B—Nb2100.5 (3)Ba1—O1—Ba1Bxvi89.96 (19)
O1—Ba1B—Nb2vii101.6 (3)Ba1—O1—Ba1Bvii89.96 (19)
O1i—Ba1B—Nb2vii163.5 (3)Ba1—O1—Sr1vii91.70 (11)
O1—Ba1B—O1i87.28 (17)Ba1Bviii—O1—Ba1vii89.9 (2)
O1—Nb1—Sr2vii128.49 (14)Ba1B—O1—Ba1vii89.9 (2)
O1—Nb1—O2Aix176.4 (2)Ba1B—O1—Ba1Bxvi89.1 (2)
O1—Nb1—O2Bix165.2 (2)Ba1Bviii—O1—Ba1Bxvi87.28 (17)
O1—Nb1—O4Ai92.6 (2)Ba1B—O1—Ba1Bvii87.28 (17)
O1—Nb1—O4Bi81.9 (2)Ba1Bviii—O1—Ba1Bvii89.1 (2)
O2A—Nb1—Sr2vii50.9 (2)Ba1Bviii—O1—Sr1vii89.9 (2)
O2Aix—Nb1—Sr2vii51.0 (2)Ba1B—O1—Sr1vii89.9 (2)
O2A—Nb1—O193.65 (19)Nb1viii—O1—Ba1106.33 (15)
O2A—Nb1—O2Aix83.6 (3)Nb1—O1—Ba1vii99.86 (16)
O2A—Nb1—O2B13.5 (2)Nb1viii—O1—Ba1vii99.86 (16)
O2A—Nb1—O2Bix87.83 (17)Nb1—O1—Ba1106.33 (15)
O2Aix—Nb1—O2Bix13.1 (2)Nb1viii—O1—Ba1Bvii107.0 (2)
O2A—Nb1—O3A167.1 (3)Nb1—O1—Ba1Bvii93.69 (19)
O2Aix—Nb1—O4Ai85.4 (3)Nb1—O1—Ba1B99.43 (19)
O2A—Nb1—O4Ai95.9 (3)Nb1viii—O1—Ba1B113.88 (19)
O2A—Nb1—O4Bi83.2 (3)Nb1viii—O1—Ba1Bviii99.43 (19)
O2Aix—Nb1—O4Bi95.4 (3)Nb1—O1—Ba1Bviii113.88 (19)
O2Bix—Nb1—Sr2vii62.81 (15)Nb1viii—O1—Ba1Bxvi93.69 (19)
O2B—Nb1—Sr2vii63.07 (16)Nb1—O1—Ba1Bxvi107.0 (2)
O2B—Nb1—O188.8 (2)Nb1—O1—Nb1viii141.0 (2)
O2B—Nb1—O2Aix87.94 (17)Nb1—O1—Sr1vii99.86 (16)
O2B—Nb1—O2Bix89.3 (4)Nb1viii—O1—Sr1vii99.86 (16)
O2B—Nb1—O4Ai83.6 (2)Nb1vi—O2A—Ba1vii91.01 (19)
O2Bix—Nb1—O4Ai72.6 (2)Nb1—O2A—Ba1vii85.61 (18)
O2Bix—Nb1—O4Bi83.6 (2)Nb1—O2A—Nb1vi172.8 (4)
O2B—Nb1—O4Bi70.0 (2)Nb1vi—O2A—Sr290.3 (2)
O3A—Nb1—Sr2vii129.63 (17)Nb1—O2A—Sr2vii94.1 (2)
O3A—Nb1—O193.5 (2)Nb1vi—O2A—Sr2vii92.8 (2)
O3A—Nb1—O2Aix88.8 (2)Nb1—O2A—Sr291.5 (2)
O3A—Nb1—O2Bix82.5 (2)Sr2—O2A—Ba1vii166.3 (3)
O3A—Nb1—O2B156.5 (2)Sr2vii—O2A—Ba1vii100.4 (2)
O3A—Nb1—O4Ai73.0 (2)Sr2vii—O2A—Sr293.13 (17)
O3A—Nb1—O4Bi87.2 (2)Nb1—O2B—Nb1vi157.8 (3)
O3B—Nb1—Sr2vii118.74 (17)Nb1vi—O2B—Sr2vii80.75 (16)
O3B—Nb1—O196.90 (17)Nb1—O2B—Sr2vii81.61 (17)
O3B—Nb1—O2Aix86.0 (2)Nb1vi—O2B—Sr295.7 (2)
O3B—Nb1—O2A168.9 (2)Nb1—O2B—Sr297.2 (2)
O3B—Nb1—O2Bix82.9 (2)Sr2—O2B—Sr2vii88.37 (17)
O3B—Nb1—O2B169.2 (2)Ba1ix—O3A—Ba1xvii84.84 (16)
O3B—Nb1—O3A14.6 (2)Nb1—O3A—Ba1xvii96.7 (2)
O3B—Nb1—O4Ai87.1 (2)Nb1—O3A—Ba1ix116.5 (3)
O3B—Nb1—O4Bi101.7 (2)Nb1—O3A—Nb2xviii139.8 (3)
O4Ai—Nb1—Sr2vii122.92 (14)Nb2xviii—O3A—Ba1xvii84.90 (18)
O4A—Nb1—Sr2vii54.38 (16)Nb2xviii—O3A—Ba1ix103.6 (2)
O4A—Nb1—O1101.4 (3)Nb1—O3B—Nb2xviii143.8 (3)
O4A—Nb1—O2A93.3 (3)Nb1—O3B—Sr1ix106.9 (2)
O4A—Nb1—O2Aix81.2 (3)Nb1—O3B—Sr1xvii111.6 (2)
O4A—Nb1—O2B106.6 (2)Nb2xviii—O3B—Sr1xvii97.06 (18)
O4A—Nb1—O2Bix93.3 (2)Nb2xviii—O3B—Sr1ix95.35 (18)
O4A—Nb1—O3A95.9 (2)Sr1xvii—O3B—Sr1ix87.81 (12)
O4A—Nb1—O3B81.3 (2)Nb1—O4A—Ba1xvii101.1 (2)
O4A—Nb1—O4Ai162.7 (4)Nb1vii—O4A—Ba1xvii95.49 (19)
O4A—Nb1—O4B19.8 (2)Nb1—O4A—Nb1vii162.7 (4)
O4A—Nb1—O4Bi175.3 (2)Nb1vii—O4A—Sr2vii88.40 (16)
O4B—Nb1—Sr2vii52.52 (15)Nb1—O4A—Sr2vii92.61 (19)
O4Bi—Nb1—Sr2vii120.98 (13)Sr2vii—O4A—Ba1xvii103.11 (19)
O4B—Nb1—O189.0 (2)Nb1—O4B—Nb1vii159.1 (3)
O4B—Nb1—O2A78.6 (3)Nb1—O4B—Sr1vii101.4 (2)
O4B—Nb1—O2Aix92.7 (3)Nb1vii—O4B—Sr1vii96.07 (19)
O4B—Nb1—O2Bix105.8 (2)Nb1vii—O4B—Sr2vii90.09 (16)
O4B—Nb1—O2B91.1 (2)Nb1—O4B—Sr2vii94.05 (19)
O4B—Nb1—O3A112.3 (2)Sr2vii—O4B—Sr1vii111.53 (17)
O4B—Nb1—O3B98.1 (2)Ba1—O5A—Ba1xii178.46 (10)
O4Bi—Nb1—O4Ai17.2 (2)Nb2—O5A—Ba1xii90.77 (5)
O4B—Nb1—O4Ai174.4 (2)Nb2vii—O5A—Ba1xii89.23 (5)
O4B—Nb1—O4Bi159.1 (3)Nb2vii—O5A—Ba189.23 (5)
O3Axi—Nb2—O3Aiv89.4 (3)Nb2—O5A—Ba190.77 (5)
O3Aiii—Nb2—O3Aiv84.6 (3)Nb2—O5A—Nb2vii180.0
O3Ax—Nb2—O3Aiv153.4 (3)Nb2—O5B—Nb2vii158.6 (8)
O3Axi—Nb2—O3Ax84.6 (3)O5Bxii—O5B—Nb2vii80.1 (4)
O3Axi—Nb2—O3Aiii153.4 (3)O5Bxii—O5B—Nb278.4 (4)
Ba1Bi—Ba1B—O1—Ba169.4 (15)O2Bvi—Sr2—O2A—Nb1155.5 (3)
Ba1Bvii—Ba1B—O1—Ba1110.6 (15)O2Bix—Sr2—O2A—Sr2vii61.38 (19)
Ba1Bviii—Ba1B—O1—Ba1vii89.99 (3)O2B—Sr2—O2A—Sr2vii179.9 (12)
Ba1Bviii—Ba1B—O1—Ba114.0 (16)O2Bvi—Sr2—O2A—Sr2vii61.40 (19)
Ba1Bvii—Ba1B—O1—Ba1vii6.69 (12)O2Bxv—Sr2—O2A—Sr2vii0.02 (19)
Ba1Bi—Ba1B—O1—Ba1vii173.32 (12)O2Bix—Sr2—O2B—Nb1vi138.24 (11)
Ba1Bviii—Ba1B—O1—Ba1Bvii96.67 (13)O2Bxv—Sr2—O2B—Nb1vi80.54 (17)
Ba1Bvii—Ba1B—O1—Ba1Bxvi13.8 (2)O2Bvi—Sr2—O2B—Nb1vi22.8 (2)
Ba1Bi—Ba1B—O1—Ba1Bxvi166.2 (2)O2Bvi—Sr2—O2B—Nb1139.03 (12)
Ba1Bviii—Ba1B—O1—Ba1Bxvi82.86 (11)O2Bix—Sr2—O2B—Nb123.6 (2)
Ba1Bi—Ba1B—O1—Ba1Bvii180.0O2Bxv—Sr2—O2B—Nb181.33 (18)
Ba1Bi—Ba1B—O1—Ba1Bviii83.33 (13)O2Bvi—Sr2—O2B—Sr2vii57.70 (7)
Ba1Bvii—Ba1B—O1—Ba1Bviii96.67 (13)O2Bxv—Sr2—O2B—Sr2vii0.0
Ba1Bvii—Ba1B—O1—Nb193.29 (19)O2Bix—Sr2—O2B—Sr2vii57.70 (7)
Ba1Bviii—Ba1B—O1—Nb1170.04 (18)O3Aiii—Ba1—O1—Ba1vii111.7 (3)
Ba1Bi—Ba1B—O1—Nb186.71 (19)O3Aiv—Ba1—O1—Ba1vii111.7 (3)
Ba1Bi—Ba1B—O1—Nb1viii72.6 (3)O3Av—Ba1—O1—Ba1vii30.27 (11)
Ba1Bvii—Ba1B—O1—Nb1viii107.4 (3)O3Avi—Ba1—O1—Ba1vii30.27 (11)
Ba1Bviii—Ba1B—O1—Nb1viii10.75 (19)O3Aiv—Ba1—O1—Ba1Bvii104.8 (3)
Ba1Bvii—Ba1B—O1—Sr1vii6.69 (12)O3Avi—Ba1—O1—Ba1Bxvi37.22 (17)
Ba1Bviii—Ba1B—O1—Sr1vii89.99 (3)O3Aiv—Ba1—O1—Ba1Bxvi118.7 (4)
Ba1Bi—Ba1B—O1—Sr1vii173.32 (12)O3Aiii—Ba1—O1—Ba1Bxvi104.8 (3)
Nb1—Ba1B—O1—Ba1vii99.97 (17)O3Av—Ba1—O1—Ba1Bxvi23.31 (16)
Nb1—Ba1B—O1—Ba1156.1 (16)O3Aiii—Ba1—O1—Ba1Bvii118.7 (4)
Nb1ii—Ba1B—O1—Ba142.7 (15)O3Avi—Ba1—O1—Ba1Bvii23.31 (16)
Nb1i—Ba1B—O1—Ba1vii153.76 (8)O3Av—Ba1—O1—Ba1Bvii37.22 (17)
Nb1vi—Ba1B—O1—Ba1vii53.13 (12)O3Aiv—Ba1—O1—Ba1Bviii172.1 (17)
Nb1iv—Ba1B—O1—Ba1150.0 (19)O3Aiii—Ba1—O1—Ba1Bviii35.6 (15)
Nb1iv—Ba1B—O1—Ba1vii106.1 (3)O3Avi—Ba1—O1—Ba1Bviii106.4 (16)
Nb1ii—Ba1B—O1—Ba1vii146.66 (8)O3Av—Ba1—O1—Ba1Bviii45.9 (16)
Nb1vi—Ba1B—O1—Ba1157.1 (17)O3Aiv—Ba1—O1—Ba1B35.6 (15)
Nb1i—Ba1B—O1—Ba1102.3 (16)O3Aiii—Ba1—O1—Ba1B172.1 (17)
Nb1ii—Ba1B—O1—Ba1Bvii153.35 (6)O3Av—Ba1—O1—Ba1B106.4 (16)
Nb1vi—Ba1B—O1—Ba1Bviii143.11 (10)O3Avi—Ba1—O1—Ba1B45.9 (16)
Nb1iv—Ba1B—O1—Ba1Bviii163.9 (3)O3Aiii—Ba1—O1—Nb1147.5 (3)
Nb1vi—Ba1B—O1—Ba1Bvii46.4 (2)O3Aiv—Ba1—O1—Nb110.9 (5)
Nb1i—Ba1B—O1—Ba1Bvii147.08 (9)O3Avi—Ba1—O1—Nb170.5 (2)
Nb1—Ba1B—O1—Ba1Bxvi107.1 (2)O3Av—Ba1—O1—Nb1131.1 (2)
Nb1vi—Ba1B—O1—Ba1Bxvi60.25 (7)O3Aiv—Ba1—O1—Nb1viii147.5 (3)
Nb1iv—Ba1B—O1—Ba1Bvii99.4 (4)O3Aiii—Ba1—O1—Nb1viii10.9 (5)
Nb1—Ba1B—O1—Ba1Bvii93.29 (19)O3Avi—Ba1—O1—Nb1viii131.1 (2)
Nb1i—Ba1B—O1—Ba1Bxvi160.89 (17)O3Av—Ba1—O1—Nb1viii70.5 (2)
Nb1ii—Ba1B—O1—Ba1Bviii56.68 (9)O3Aiv—Ba1—O1—Sr1vii111.7 (3)
Nb1iv—Ba1B—O1—Ba1Bxvi113.2 (3)O3Aiii—Ba1—O1—Sr1vii111.7 (3)
Nb1ii—Ba1B—O1—Ba1Bxvi139.54 (19)O3Avi—Ba1—O1—Sr1vii30.27 (11)
Nb1i—Ba1B—O1—Ba1Bviii116.25 (7)O3Av—Ba1—O1—Sr1vii30.27 (11)
Nb1—Ba1B—O1—Ba1Bviii170.04 (18)O3Aiii—Ba1—O5A—Nb2vii150.14 (12)
Nb1ii—Ba1B—O1—Nb1viii45.9 (2)O3Av—Ba1—O5A—Nb2140.39 (14)
Nb1iv—Ba1B—O1—Nb1viii153.2 (3)O3Avi—Ba1—O5A—Nb2140.39 (14)
Nb1iv—Ba1B—O1—Nb16.1 (4)O3Aiv—Ba1—O5A—Nb2vii150.14 (12)
Nb1ii—Ba1B—O1—Nb1113.36 (18)O3Aiii—Ba1—O5A—Nb229.86 (12)
Nb1i—Ba1B—O1—Nb1viii105.5 (2)O3Avi—Ba1—O5A—Nb2vii39.61 (14)
Nb1—Ba1B—O1—Nb1viii159.3 (4)O3Aiv—Ba1—O5A—Nb229.86 (12)
Nb1vi—Ba1B—O1—Nb1viii153.9 (2)O3Av—Ba1—O5A—Nb2vii39.61 (14)
Nb1i—Ba1B—O1—Nb153.79 (18)O3A—Nb1—O1—Ba1vii142.7 (2)
Nb1vi—Ba1B—O1—Nb146.8 (2)O3A—Nb1—O1—Ba1122.6 (2)
Nb1i—Ba1B—O1—Sr1vii153.76 (8)O3A—Nb1—O1—Ba1Bviii123.0 (3)
Nb1—Ba1B—O1—Sr1vii99.97 (17)O3A—Nb1—O1—Ba1Bxvi142.3 (3)
Nb1ii—Ba1B—O1—Sr1vii146.66 (8)O3A—Nb1—O1—Ba1Bvii146.4 (2)
Nb1iv—Ba1B—O1—Sr1vii106.1 (3)O3A—Nb1—O1—Ba1B125.8 (3)
Nb1vi—Ba1B—O1—Sr1vii53.13 (12)O3A—Nb1—O1—Nb1viii23.3 (5)
Nb2—Ba1—O1—Ba1vii0.0O3A—Nb1—O1—Sr1vii142.7 (2)
Nb2—Ba1—O1—Ba1Bvii6.96 (12)O3A—Nb1—O2A—Ba1vii162.1 (11)
Nb2—Ba1—O1—Ba1Bviii76.2 (16)O3A—Nb1—O2A—Sr24.6 (13)
Nb2—Ba1—O1—Ba1B76.2 (16)O3A—Nb1—O2A—Sr2vii97.8 (12)
Nb2—Ba1—O1—Ba1Bxvi6.96 (12)O3A—Nb1—O2B—Nb1vi166.4 (7)
Nb2—Ba1—O1—Nb1viii100.79 (18)O3A—Nb1—O2B—Sr241.5 (7)
Nb2—Ba1—O1—Nb1100.79 (18)O3A—Nb1—O2B—Sr2vii128.7 (6)
Nb2—Ba1—O1—Sr1vii0.0O3A—Nb1—O3B—Nb2xviii75.8 (12)
Nb2—Ba1—O5A—Nb2vii180.0O3A—Nb1—O3B—Sr1ix49.7 (10)
Nb2—Ba1B—O1—Ba1vii54.0 (9)O3A—Nb1—O3B—Sr1xvii144.1 (11)
Nb2—Ba1B—O1—Ba149.9 (11)O3A—Nb1—O4A—Ba1xvii31.8 (2)
Nb2vii—Ba1B—O1—Ba196.6 (16)O3A—Nb1—O4A—Nb1vii131.3 (10)
Nb2vii—Ba1B—O1—Ba1vii7.36 (12)O3A—Nb1—O4A—Sr2vii135.7 (2)
Nb2vii—Ba1B—O1—Ba1Bviii82.62 (12)O3A—Nb1—O4B—Nb1vii22.8 (9)
Nb2vii—Ba1B—O1—Ba1Bvii14.0 (2)O3A—Nb1—O4B—Sr1vii123.4 (2)
Nb2—Ba1B—O1—Ba1Bvii60.7 (9)O3A—Nb1—O4B—Sr2vii123.7 (2)
Nb2—Ba1B—O1—Ba1Bxvi46.9 (9)O3Axi—Nb2—O5A—Ba1xii43.73 (17)
Nb2vii—Ba1B—O1—Ba1Bxvi0.24 (7)O3Ax—Nb2—O5A—Ba1xii43.73 (17)
Nb2—Ba1B—O1—Ba1Bviii35.9 (9)O3Aiv—Nb2—O5A—Ba1xii136.27 (17)
Nb2vii—Ba1B—O1—Nb1107.3 (2)O3Aiii—Nb2—O5A—Ba1xii136.27 (17)
Nb2—Ba1B—O1—Nb1154.0 (8)O3Axi—Nb2—O5A—Ba1136.27 (17)
Nb2vii—Ba1B—O1—Nb1viii93.4 (2)O3Ax—Nb2—O5A—Ba1136.27 (17)
Nb2—Ba1B—O1—Nb1viii46.7 (10)O3Aiii—Nb2—O5A—Ba143.73 (17)
Nb2—Ba1B—O1—Sr1vii54.0 (9)O3Aiv—Nb2—O5A—Ba143.73 (17)
Nb2vii—Ba1B—O1—Sr1vii7.36 (12)O3Aiii—Nb2—O5B—Nb2vii137.53 (17)
Sr2vii—Nb1—O1—Ba187.5 (2)O3Ax—Nb2—O5B—Nb2vii46.3 (2)
Sr2vii—Nb1—O1—Ba1vii7.2 (2)O3Axi—Nb2—O5B—Nb2vii46.3 (2)
Sr2vii—Nb1—O1—Ba1Bviii87.1 (3)O3Aiv—Nb2—O5B—Nb2vii137.53 (17)
Sr2vii—Nb1—O1—Ba1B84.3 (3)O3Axi—Nb2—O5B—O5Bxii46.3 (2)
Sr2vii—Nb1—O1—Ba1Bxvi7.6 (3)O3Aiii—Nb2—O5B—O5Bxii137.53 (17)
Sr2vii—Nb1—O1—Ba1Bvii3.5 (2)O3Ax—Nb2—O5B—O5Bxii46.3 (2)
Sr2vii—Nb1—O1—Nb1viii126.6 (4)O3Aiv—Nb2—O5B—O5Bxii137.53 (17)
Sr2vii—Nb1—O1—Sr1vii7.2 (2)O3B—Nb1—O1—Ba1vii128.4 (2)
Sr2vii—Nb1—O2A—Ba1vii100.1 (2)O3B—Nb1—O1—Ba1136.9 (2)
Sr2vii—Nb1—O2A—Sr293.24 (19)O3B—Nb1—O1—Ba1B140.0 (3)
Sr2vii—Nb1—O2B—Nb1vi37.7 (8)O3B—Nb1—O1—Ba1Bviii137.3 (3)
Sr2vii—Nb1—O2B—Sr287.28 (17)O3B—Nb1—O1—Ba1Bxvi128.0 (3)
Sr2vii—Nb1—O3A—Ba1ix70.9 (3)O3B—Nb1—O1—Ba1Bvii132.1 (2)
Sr2vii—Nb1—O3A—Ba1xvii16.7 (3)O3B—Nb1—O1—Nb1viii9.0 (5)
Sr2vii—Nb1—O3A—Nb2xviii106.8 (4)O3B—Nb1—O1—Sr1vii128.4 (2)
Sr2vii—Nb1—O3B—Nb2xviii142.8 (5)O3B—Nb1—O2A—Ba1vii123.3 (14)
Sr2vii—Nb1—O3B—Sr1xvii2.8 (3)O3B—Nb1—O2A—Sr270.1 (15)
Sr2vii—Nb1—O3B—Sr1ix91.7 (2)O3B—Nb1—O2A—Sr2vii23.1 (15)
Sr2vii—Nb1—O4A—Ba1xvii103.9 (2)O3B—Nb1—O2B—Nb1vi140.1 (10)
Sr2vii—Nb1—O4A—Nb1vii93.0 (10)O3B—Nb1—O2B—Sr2vii102.4 (12)
Sr2vii—Nb1—O4B—Nb1vii100.9 (8)O3B—Nb1—O2B—Sr215.2 (13)
Sr2vii—Nb1—O4B—Sr1vii112.9 (2)O3B—Nb1—O3A—Ba1xvii28.6 (9)
O1i—Ba1—O1—Ba1vii180.0O3B—Nb1—O3A—Ba1ix116.2 (11)
O1i—Ba1—O1—Ba1Bvii173.04 (12)O3B—Nb1—O3A—Nb2xviii61.4 (9)
O1i—Ba1—O1—Ba1Bviii103.8 (16)O3B—Nb1—O4A—Ba1xvii31.21 (17)
O1i—Ba1—O1—Ba1Bxvi173.04 (12)O3B—Nb1—O4A—Nb1vii131.9 (10)
O1i—Ba1—O1—Ba1B103.8 (16)O3B—Nb1—O4A—Sr2vii135.1 (2)
O1i—Ba1—O1—Nb179.21 (17)O3B—Nb1—O4B—Nb1vii19.3 (8)
O1i—Ba1—O1—Nb1viii79.21 (17)O3B—Nb1—O4B—Sr1vii126.83 (18)
O1i—Ba1—O1—Sr1vii180.0O3B—Nb1—O4B—Sr2vii120.23 (18)
O1—Ba1—O5A—Nb2180.0O3Biii—Nb2—O5A—Ba141.63 (12)
O1i—Ba1—O5A—Nb20.0O3Biv—Nb2—O5A—Ba141.63 (12)
O1i—Ba1—O5A—Nb2vii180.0O3Biii—Nb2—O5A—Ba1xii138.37 (12)
O1—Ba1—O5A—Nb2vii0.0O3Bxi—Nb2—O5A—Ba1xii41.63 (12)
O1i—Ba1B—O1—Ba1vii173.32 (12)O3Bx—Nb2—O5A—Ba1xii41.63 (12)
O1i—Ba1B—O1—Ba169.4 (15)O3Biv—Nb2—O5A—Ba1xii138.37 (12)
O1i—Ba1B—O1—Ba1Bviii83.33 (13)O3Bxi—Nb2—O5A—Ba1138.37 (12)
O1i—Ba1B—O1—Ba1Bxvi166.2 (2)O3Bx—Nb2—O5A—Ba1138.37 (12)
O1i—Ba1B—O1—Ba1Bvii180.0O3Bx—Nb2—O5B—Nb2vii42.08 (13)
O1i—Ba1B—O1—Nb1viii72.6 (3)O3Biv—Nb2—O5B—Nb2vii137.66 (13)
O1i—Ba1B—O1—Nb186.71 (19)O3Biii—Nb2—O5B—Nb2vii137.66 (13)
O1i—Ba1B—O1—Sr1vii173.32 (12)O3Bxi—Nb2—O5B—O5Bxii42.08 (13)
O1—Nb1—O2A—Ba1vii38.6 (2)O3Bx—Nb2—O5B—O5Bxii42.08 (13)
O1—Nb1—O2A—Sr2vii138.7 (2)O3Biv—Nb2—O5B—O5Bxii137.66 (13)
O1—Nb1—O2A—Sr2128.1 (2)O3Biii—Nb2—O5B—O5Bxii137.66 (13)
O1—Nb1—O2B—Nb1vi97.4 (9)O4Aiii—Ba1—O1—Ba1vii78.44 (11)
O1—Nb1—O2B—Sr2vii135.11 (19)O4Aiv—Ba1—O1—Ba1vii78.44 (11)
O1—Nb1—O2B—Sr2137.6 (2)O4Aiii—Ba1—O1—Ba1B154.6 (16)
O1—Nb1—O3A—Ba1ix139.8 (3)O4Aiv—Ba1—O1—Ba1B2.3 (15)
O1—Nb1—O3A—Ba1xvii132.6 (2)O4Aiv—Ba1—O1—Ba1Bxvi85.39 (17)
O1—Nb1—O3A—Nb2xviii42.6 (5)O4Aiii—Ba1—O1—Ba1Bxvi71.48 (15)
O1—Nb1—O3B—Nb2xviii1.5 (6)O4Aiii—Ba1—O1—Ba1Bviii2.3 (15)
O1—Nb1—O3B—Sr1ix126.9 (2)O4Aiii—Ba1—O1—Ba1Bvii85.39 (17)
O1—Nb1—O3B—Sr1xvii138.6 (2)O4Aiv—Ba1—O1—Ba1Bvii71.48 (15)
O1—Nb1—O4A—Ba1xvii126.55 (16)O4Aiv—Ba1—O1—Ba1Bviii154.6 (16)
O1—Nb1—O4A—Nb1vii36.5 (10)O4Aiv—Ba1—O1—Nb122.4 (2)
O1—Nb1—O4A—Sr2vii129.55 (16)O4Aiii—Ba1—O1—Nb1179.22 (18)
O1—Nb1—O4B—Nb1vii116.1 (8)O4Aiv—Ba1—O1—Nb1viii179.22 (18)
O1—Nb1—O4B—Sr1vii30.01 (16)O4Aiii—Ba1—O1—Nb1viii22.4 (2)
O1—Nb1—O4B—Sr2vii142.94 (16)O4Aiv—Ba1—O1—Sr1vii78.44 (11)
O2Ai—Ba1—O1—Ba1vii125.56 (12)O4Aiii—Ba1—O1—Sr1vii78.44 (11)
O2Aii—Ba1—O1—Ba1vii125.56 (12)O4Aiii—Ba1—O5A—Nb287.96 (9)
O2Aii—Ba1—O1—Ba1Bxvi118.60 (16)O4Aiv—Ba1—O5A—Nb287.96 (9)
O2Ai—Ba1—O1—Ba1Bvii118.60 (16)O4Aiii—Ba1—O5A—Nb2vii92.04 (9)
O2Aii—Ba1—O1—Ba1Bvii132.52 (18)O4Aiv—Ba1—O5A—Nb2vii92.04 (9)
O2Ai—Ba1—O1—Ba1Bxvi132.52 (18)O4A—Nb1—O1—Ba1140.7 (2)
O2Ai—Ba1—O1—Ba1B49.4 (16)O4Ai—Nb1—O1—Ba149.5 (2)
O2Aii—Ba1—O1—Ba1B158.3 (16)O4Ai—Nb1—O1—Ba1vii144.22 (19)
O2Ai—Ba1—O1—Ba1Bviii158.3 (16)O4A—Nb1—O1—Ba1vii46.0 (2)
O2Aii—Ba1—O1—Ba1Bviii49.4 (16)O4A—Nb1—O1—Ba1Bvii49.7 (2)
O2Aii—Ba1—O1—Nb1viii24.8 (2)O4Ai—Nb1—O1—Ba1B52.7 (3)
O2Ai—Ba1—O1—Nb1viii133.65 (19)O4Ai—Nb1—O1—Ba1Bxvi144.6 (2)
O2Aii—Ba1—O1—Nb1133.65 (19)O4A—Nb1—O1—Ba1Bviii140.3 (3)
O2Ai—Ba1—O1—Nb124.8 (2)O4A—Nb1—O1—Ba1Bxvi45.6 (3)
O2Ai—Ba1—O1—Sr1vii125.56 (12)O4Ai—Nb1—O1—Ba1Bviii49.9 (3)
O2Aii—Ba1—O1—Sr1vii125.56 (12)O4A—Nb1—O1—Ba1B137.5 (3)
O2Ai—Ba1—O5A—Nb2vii125.74 (14)O4Ai—Nb1—O1—Ba1Bvii140.5 (2)
O2Aii—Ba1—O5A—Nb2vii125.74 (14)O4A—Nb1—O1—Nb1viii73.4 (5)
O2Aii—Ba1—O5A—Nb254.26 (14)O4Ai—Nb1—O1—Nb1viii96.4 (5)
O2Ai—Ba1—O5A—Nb254.26 (14)O4Ai—Nb1—O1—Sr1vii144.22 (19)
O2A—Nb1—O1—Ba146.6 (3)O4A—Nb1—O1—Sr1vii46.0 (2)
O2A—Nb1—O1—Ba1vii48.1 (3)O4A—Nb1—O2A—Ba1vii63.1 (2)
O2A—Nb1—O1—Ba1Bvii44.4 (3)O4Ai—Nb1—O2A—Ba1vii131.6 (2)
O2A—Nb1—O1—Ba1Bviii46.2 (4)O4Ai—Nb1—O2A—Sr235.0 (2)
O2A—Nb1—O1—Ba1B43.4 (3)O4Ai—Nb1—O2A—Sr2vii128.3 (2)
O2A—Nb1—O1—Ba1Bxvi48.5 (3)O4A—Nb1—O2A—Sr2vii37.1 (3)
O2A—Nb1—O1—Nb1viii167.5 (5)O4A—Nb1—O2A—Sr2130.3 (2)
O2A—Nb1—O1—Sr1vii48.1 (3)O4Ai—Nb1—O2B—Nb1vi169.8 (9)
O2Aix—Nb1—O2A—Ba1vii143.76 (11)O4A—Nb1—O2B—Nb1vi4.1 (10)
O2Aix—Nb1—O2A—Sr249.6 (3)O4Ai—Nb1—O2B—Sr244.8 (2)
O2Aix—Nb1—O2A—Sr2vii43.6 (3)O4A—Nb1—O2B—Sr2vii33.6 (2)
O2A—Nb1—O2B—Nb1vi13.5 (7)O4Ai—Nb1—O2B—Sr2vii132.1 (2)
O2Aix—Nb1—O2B—Nb1vi84.2 (10)O4A—Nb1—O2B—Sr2120.9 (2)
O2Aix—Nb1—O2B—Sr240.7 (3)O4Ai—Nb1—O3A—Ba1ix48.1 (3)
O2Aix—Nb1—O2B—Sr2vii46.6 (3)O4A—Nb1—O3A—Ba1xvii30.8 (2)
O2A—Nb1—O2B—Sr2vii24.2 (12)O4Ai—Nb1—O3A—Ba1xvii135.7 (2)
O2A—Nb1—O2B—Sr2111.4 (13)O4A—Nb1—O3A—Ba1ix118.4 (3)
O2Aix—Nb1—O3A—Ba1xvii50.2 (2)O4A—Nb1—O3A—Nb2xviii59.2 (5)
O2Aix—Nb1—O3A—Ba1ix37.4 (3)O4Ai—Nb1—O3A—Nb2xviii134.3 (5)
O2A—Nb1—O3A—Ba1ix16.3 (13)O4Ai—Nb1—O3B—Nb2xviii90.8 (6)
O2A—Nb1—O3A—Ba1xvii103.8 (12)O4A—Nb1—O3B—Nb2xviii102.0 (6)
O2A—Nb1—O3A—Nb2xviii166.1 (10)O4Ai—Nb1—O3B—Sr1ix34.7 (2)
O2Aix—Nb1—O3A—Nb2xviii140.2 (5)O4A—Nb1—O3B—Sr1xvii38.1 (2)
O2Aix—Nb1—O3B—Nb2xviii176.4 (6)O4A—Nb1—O3B—Sr1ix132.5 (3)
O2A—Nb1—O3B—Nb2xviii163.2 (11)O4Ai—Nb1—O3B—Sr1xvii129.1 (3)
O2Aix—Nb1—O3B—Sr1xvii43.6 (3)O4Ai—Nb1—O4A—Ba1xvii16.9 (11)
O2A—Nb1—O3B—Sr1ix71.3 (15)O4Ai—Nb1—O4A—Nb1vii180.003 (2)
O2A—Nb1—O3B—Sr1xvii23.1 (15)O4Ai—Nb1—O4A—Sr2vii87.0 (10)
O2Aix—Nb1—O3B—Sr1ix50.9 (3)O4A—Nb1—O4B—Nb1vii13.0 (6)
O2Aix—Nb1—O4A—Ba1xvii56.1 (2)O4A—Nb1—O4B—Sr1vii159.2 (7)
O2A—Nb1—O4A—Ba1xvii139.1 (2)O4A—Nb1—O4B—Sr2vii87.9 (7)
O2Aix—Nb1—O4A—Nb1vii140.8 (10)O4B—Nb1—O1—Ba1vii30.43 (19)
O2A—Nb1—O4A—Nb1vii57.9 (10)O4B—Nb1—O1—Ba1125.2 (2)
O2Aix—Nb1—O4A—Sr2vii47.8 (2)O4Bi—Nb1—O1—Ba1vii130.67 (18)
O2A—Nb1—O4A—Sr2vii35.2 (2)O4Bi—Nb1—O1—Ba135.9 (2)
O2Aix—Nb1—O4B—Nb1vii67.0 (8)O4Bi—Nb1—O1—Ba1Bvii127.0 (2)
O2A—Nb1—O4B—Nb1vii149.9 (8)O4B—Nb1—O1—Ba1Bviii124.7 (3)
O2Aix—Nb1—O4B—Sr1vii146.8 (2)O4Bi—Nb1—O1—Ba1Bviii36.4 (3)
O2A—Nb1—O4B—Sr1vii63.9 (2)O4B—Nb1—O1—Ba1Bvii34.1 (2)
O2A—Nb1—O4B—Sr2vii49.0 (2)O4Bi—Nb1—O1—Ba1B39.1 (2)
O2Aix—Nb1—O4B—Sr2vii33.9 (2)O4B—Nb1—O1—Ba1Bxvi30.1 (2)
O2Axiv—Sr2—O2A—Ba1vii47.7 (9)O4Bi—Nb1—O1—Ba1Bxvi131.0 (2)
O2Ai—Sr2—O2A—Ba1vii8.5 (8)O4B—Nb1—O1—Ba1B122.0 (3)
O2Aiv—Sr2—O2A—Ba1vii64.6 (9)O4Bi—Nb1—O1—Nb1viii109.9 (5)
O2Ai—Sr2—O2A—Nb1vi87.2 (2)O4B—Nb1—O1—Nb1viii89.0 (5)
O2Ai—Sr2—O2A—Nb185.9 (2)O4Bi—Nb1—O1—Sr1vii130.67 (18)
O2Aiv—Sr2—O2A—Nb1142.0 (2)O4B—Nb1—O1—Sr1vii30.43 (19)
O2Aiv—Sr2—O2A—Nb1vi31.0 (4)O4Bi—Nb1—O2A—Ba1vii120.0 (2)
O2Axiv—Sr2—O2A—Nb129.7 (4)O4B—Nb1—O2A—Ba1vii49.64 (19)
O2Axiv—Sr2—O2A—Nb1vi143.36 (19)O4Bi—Nb1—O2A—Sr246.7 (2)
O2Aiv—Sr2—O2A—Sr2vii123.84 (16)O4Bi—Nb1—O2A—Sr2vii139.9 (2)
O2Ai—Sr2—O2A—Sr2vii180.0O4B—Nb1—O2A—Sr2vii50.5 (2)
O2Axiv—Sr2—O2A—Sr2vii123.84 (16)O4B—Nb1—O2A—Sr2143.7 (3)
O2Axiv—Sr2—O2B—Nb146.5 (3)O4B—Nb1—O2B—Nb1vi8.5 (9)
O2Aiv—Sr2—O2B—Nb1vi47.3 (3)O4Bi—Nb1—O2B—Nb1vi179.3 (10)
O2Ai—Sr2—O2B—Nb1vi99.4 (2)O4Bi—Nb1—O2B—Sr2vii143.1 (2)
O2Axiv—Sr2—O2B—Nb1vi151.60 (16)O4B—Nb1—O2B—Sr2vii46.15 (19)
O2Aiv—Sr2—O2B—Nb1150.83 (17)O4Bi—Nb1—O2B—Sr255.80 (19)
O2Ai—Sr2—O2B—Nb198.7 (2)O4B—Nb1—O2B—Sr2133.4 (2)
O2Ai—Sr2—O2B—Sr2vii179.98 (17)O4B—Nb1—O3A—Ba1ix129.9 (3)
O2Axiv—Sr2—O2B—Sr2vii127.86 (17)O4B—Nb1—O3A—Ba1xvii42.3 (3)
O2Aiv—Sr2—O2B—Sr2vii127.84 (19)O4Bi—Nb1—O3A—Ba1xvii145.6 (2)
O2Bix—Nb1—O1—Ba1vii143.5 (7)O4Bi—Nb1—O3A—Ba1ix58.1 (3)
O2B—Nb1—O1—Ba1vii60.7 (2)O4B—Nb1—O3A—Nb2xviii47.8 (5)
O2Bix—Nb1—O1—Ba148.7 (8)O4Bi—Nb1—O3A—Nb2xviii124.3 (5)
O2B—Nb1—O1—Ba134.0 (2)O4B—Nb1—O3B—Nb2xviii91.4 (6)
O2B—Nb1—O1—Ba1Bxvi61.1 (3)O4Bi—Nb1—O3B—Nb2xviii81.7 (6)
O2Bix—Nb1—O1—Ba1Bvii139.8 (8)O4B—Nb1—O3B—Sr1ix143.1 (2)
O2B—Nb1—O1—Ba1Bvii57.0 (2)O4Bi—Nb1—O3B—Sr1xvii138.3 (2)
O2Bix—Nb1—O1—Ba1Bxvi143.8 (8)O4B—Nb1—O3B—Sr1xvii48.7 (2)
O2B—Nb1—O1—Ba1Bviii33.6 (3)O4Bi—Nb1—O3B—Sr1ix43.8 (2)
O2Bix—Nb1—O1—Ba1Bviii49.2 (8)O4B—Nb1—O4A—Ba1xvii178.8 (7)
O2B—Nb1—O1—Ba1B30.8 (3)O4B—Nb1—O4A—Nb1vii15.7 (7)
O2Bix—Nb1—O1—Ba1B51.9 (8)O4B—Nb1—O4A—Sr2vii77.3 (6)
O2Bix—Nb1—O1—Nb1viii97.1 (9)O4Bi—Nb1—O4B—Nb1vii180.003 (2)
O2B—Nb1—O1—Nb1viii179.9 (5)O4Bi—Nb1—O4B—Sr1vii33.9 (9)
O2B—Nb1—O1—Sr1vii60.7 (2)O4Bi—Nb1—O4B—Sr2vii79.1 (8)
O2Bix—Nb1—O1—Sr1vii143.5 (7)O4Bxiii—Sr2—O2A—Ba1vii142.2 (7)
O2B—Nb1—O2A—Ba1vii107.9 (13)O4Bxiv—Sr2—O2A—Ba1vii109.5 (7)
O2Bix—Nb1—O2A—Ba1vii156.19 (15)O4Biv—Sr2—O2A—Ba1vii68.2 (7)
O2B—Nb1—O2A—Sr2vii152.0 (14)O4Bi—Sr2—O2A—Ba1vii35.7 (7)
O2Bix—Nb1—O2A—Sr2vii56.1 (2)O4Biv—Sr2—O2A—Nb1vi27.5 (2)
O2B—Nb1—O2A—Sr258.7 (12)O4Bi—Sr2—O2A—Nb141.66 (19)
O2Bix—Nb1—O2A—Sr237.2 (2)O4Biv—Sr2—O2A—Nb1145.5 (3)
O2Bix—Nb1—O2B—Nb1vi97.3 (9)O4Bxiv—Sr2—O2A—Nb132.1 (3)
O2Bix—Nb1—O2B—Sr227.7 (3)O4Bxiii—Sr2—O2A—Nb1140.4 (2)
O2Bix—Nb1—O2B—Sr2vii59.6 (2)O4Bi—Sr2—O2A—Nb1vi131.4 (3)
O2B—Nb1—O3A—Ba1xvii132.2 (6)O4Bxiii—Sr2—O2A—Nb1vi46.5 (3)
O2Bix—Nb1—O3A—Ba1ix25.9 (3)O4Bxiv—Sr2—O2A—Nb1vi154.87 (19)
O2B—Nb1—O3A—Ba1ix44.6 (7)O4Bxiii—Sr2—O2A—Sr2vii46.3 (2)
O2Bix—Nb1—O3A—Ba1xvii61.7 (2)O4Bxiv—Sr2—O2A—Sr2vii62.06 (18)
O2B—Nb1—O3A—Nb2xviii137.8 (5)O4Bi—Sr2—O2A—Sr2vii135.8 (2)
O2Bix—Nb1—O3A—Nb2xviii151.8 (5)O4Biv—Sr2—O2A—Sr2vii120.32 (18)
O2Bix—Nb1—O3B—Nb2xviii163.6 (6)O4Biv—Sr2—O2B—Nb1161.9 (3)
O2B—Nb1—O3B—Nb2xviii120.3 (11)O4Bi—Sr2—O2B—Nb150.22 (18)
O2B—Nb1—O3B—Sr1xvii99.6 (12)O4Biv—Sr2—O2B—Nb1vi36.26 (17)
O2Bix—Nb1—O3B—Sr1xvii56.3 (2)O4Bxiv—Sr2—O2B—Nb1vi146.70 (17)
O2Bix—Nb1—O3B—Sr1ix38.1 (2)O4Bxiii—Sr2—O2B—Nb1vi29.3 (3)
O2B—Nb1—O3B—Sr1ix5.1 (13)O4Bi—Sr2—O2B—Nb1vi147.9 (3)
O2B—Nb1—O4A—Ba1xvii141.2 (2)O4Bxiii—Sr2—O2B—Nb1132.61 (19)
O2Bix—Nb1—O4A—Ba1xvii51.0 (2)O4Bxiv—Sr2—O2B—Nb115.2 (3)
O2B—Nb1—O4A—Nb1vii55.7 (10)O4Bxiii—Sr2—O2B—Sr2vii51.3 (2)
O2Bix—Nb1—O4A—Nb1vii145.9 (10)O4Bi—Sr2—O2B—Sr2vii131.6 (2)
O2B—Nb1—O4A—Sr2vii37.3 (3)O4Bxiv—Sr2—O2B—Sr2vii66.16 (17)
O2Bix—Nb1—O4A—Sr2vii52.9 (2)O4Biv—Sr2—O2B—Sr2vii116.80 (17)
O2B—Nb1—O4B—Nb1vii155.0 (8)O5A—Ba1—O1—Ba1vii0.0
O2Bix—Nb1—O4B—Nb1vii65.5 (8)O5A—Ba1—O1—Ba1Bviii76.2 (16)
O2Bix—Nb1—O4B—Sr1vii148.4 (2)O5A—Ba1—O1—Ba1Bxvi6.96 (12)
O2B—Nb1—O4B—Sr1vii58.8 (2)O5A—Ba1—O1—Ba1B76.2 (16)
O2Bix—Nb1—O4B—Sr2vii35.4 (2)O5A—Ba1—O1—Ba1Bvii6.96 (12)
O2B—Nb1—O4B—Sr2vii54.1 (2)O5A—Ba1—O1—Nb1100.79 (18)
O2Bxv—Sr2—O2A—Ba1vii171.5 (7)O5A—Ba1—O1—Nb1viii100.79 (17)
O2Bix—Sr2—O2A—Ba1vii110.1 (7)O5A—Ba1—O1—Sr1vii0.0
O2Bvi—Sr2—O2A—Ba1vii127.1 (8)O5Ai—Nb2—O5B—Nb2vii180.000 (1)
O2B—Sr2—O2A—Ba1vii8.3 (7)O5A—Nb2—O5B—Nb2vii0.0
O2B—Sr2—O2A—Nb1vi87.3 (12)O5A—Nb2—O5B—O5Bxii0.000 (3)
O2Bvi—Sr2—O2A—Nb1vi31.40 (18)O5Ai—Nb2—O5B—O5Bxii180.000 (4)
O2Bxv—Sr2—O2A—Nb1vi92.8 (2)O5B—Nb2—O5A—Ba10.0
O2Bix—Sr2—O2A—Nb1vi154.2 (3)O5Bxii—Nb2—O5A—Ba1180.000 (2)
O2Bxv—Sr2—O2A—Nb194.2 (2)O5Bxii—Nb2—O5A—Ba1xii0.000 (2)
O2Bix—Sr2—O2A—Nb132.76 (19)O5B—Nb2—O5A—Ba1xii180.0
O2B—Sr2—O2A—Nb185.7 (12)O5Bxii—Nb2—O5B—Nb2vii0.0
Symmetry codes: (i) x, y, z+1; (ii) y+1/2, x1/2, z+1; (iii) x+1/2, y+1/2, z+1; (iv) y+1, x, z+1; (v) x+1/2, y+1/2, z; (vi) y+1, x, z; (vii) x, y, z1; (viii) y+1/2, x1/2, z; (ix) y, x+1, z; (x) y+1, x+1, z+1; (xi) x+3/2, y+1/2, z+1; (xii) x+2, y+1, z; (xiii) x+1, y+1, z+1; (xiv) y, x+1, z+1; (xv) x+1, y+1, z; (xvi) y+1/2, x1/2, z1; (xvii) y, x+1, z1; (xviii) y+1, x1, z1.

Experimental details

Crystal data
Chemical formulaSr0.6Ba0.4Nb2O6
Mr389.33
Crystal system, space groupTetragonal, P4bm
Temperature (K)100
a, c (Å)12.43478 (12), 3.93697 (6)
V3)608.75 (1)
Z5
Radiation typeMo Kα
µ (mm1)14.32
Crystal size (mm)0.12 × 0.12 × 0.12 × 0.06 (radius)
Data collection
DiffractometerAgilent Xcalibur Opal
diffractometer
Absorption correctionFor a sphere
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.278, 0.278
No. of measured, independent and
observed [I > 2σ(I)] reflections
31766, 2265, 2204
Rint0.030
(sin θ/λ)max1)0.947
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.16
No. of reflections2265
No. of parameters82
No. of restraints15
Δρmax, Δρmin (e Å3)2.15, 1.96
Absolute structureFlack parameter determined using 942 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Absolute structure parameter0.07 (7)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The research for this paper was in part supported by the EU through the European Social Fund, contract No. UDA-POKL.04.01.01–00–072/09–00.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChernaya, T. S., Volk, T. R., Maksimov, B. A., Blomberg, M. K., Ivleva, L. I., Verin, I. A. & Simonov, V. I. (2003). Cryst. Rep. 48, 933–938.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLukasiewicz, T., Swirkowicz, M. A., Dec, J., Hofman, W. & Szyrski, W. (2008). J. Cryst. Growth, 310, 1464–1469.  Web of Science CrossRef CAS Google Scholar
First citationMegumi, K., Nagatsuma, N., Ksashiwada, Y. & Furuhata, Y. (1976). J. Mater. Sci. 11, 1583–1592.  CrossRef CAS Web of Science Google Scholar
First citationNeurgaonkar, R. R., Hall, W. F., Oliver, J. R., Ho, W. H. & Cory, W. K. (1988). Ferroelectrics, 87, 167–179.  CrossRef CAS Web of Science Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationPodlozhenov, S., Graetsch, H. A., Schneider, J., Ulex, M., Wöhlecke, M. & Betzler, K. (2006). Acta Cryst. B62, 960–965.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchefer, J., Schaniel, D., Petříček, V., Woike, T., Cousson, A. & Woehlecke, M. (2008). Z. Kristallogr. 223, 399–407.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoike, T., Petříček, V., Dušek, M., Hansen, N. K., Fertey, P., Lecomte, C., Arakcheeva, A., Chapuis, G., Imlau, M. & Pankrath, R. (2003). Acta Cryst. B59, 28–35.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages i69-i70
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds