organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1531-o1532

tert-Butyl N-{[5-(5-oxohexa­namido)­pyridin-2-yl]amino}­carbamate

aUniversité Bordeaux Segalen, CNRS FRE 3396 -Pharmacochimie, F-33076 Bordeaux, France, and bISM–CNRS UMR 5255, Université de Bordeaux, F-33405 Talence cedex, France
*Correspondence e-mail: jean.guillon@u-bordeaux2.fr

(Received 25 July 2013; accepted 3 September 2013; online 12 September 2013)

In the crystal structure of the title compound, C16H24N4O4, mol­ecules are linked by N—H⋯O hydrogen bonds between the carbonyl groups of the carbamoyl and amido functional groups and the amino groups, and by N—H⋯N hydrogen bonds between the amino group and the pyridine ring, forming two-dimensional networks parallel to the ab plane.

Related literature

For the synthesis, properties and biological activity of 2-hydrazino­pyridine derivatives, see: Ardisson et al. (2005[Ardisson, V., Mathieu, J. P., Ghezzi, C. & Fagret, D. (2005). Med. Nucl. 29, 168-178.]); Jurisson & Lydon (1999[Jurisson, S. S. & Lydon, J. D. (1999). Chem. Rev. 99, 2205-2218.]); Abrams et al. (1994[Abrams, M. J., Bridger, G. J., Schwartz, D. A., Padmanabhan, S. & Ultee, M. E. (1994). World Patent WO 94/10149.]); Liu et al. (2011[Liu, L., Zhang, M., Zhong, G. & Wang, X. (2011). J. Radioanal. Nucl. Chem. 287, 847-852.]); Lu et al. (2011[Lu, J., Pang, Y., Xie, F., Guo, H.-J., Li, Y., Yang, Z. & Wang, X.-B. (2011). Nucl. Med. Biol. 38, 557-565.]); Schwartz et al. (1990[Schwartz, D. A., Abrams, M. J., Giandomenico, C. M. & Zubieta, J. A. (1990). Eur. Patent EP 384769.]). For the crystal structures of related compounds, see: Banerjee et al. (2005[Banerjee, S. R., Schaffer, P., Babich, J. W., Valliant, J. F. & Zubieta, J. (2005). Dalton Trans. pp. 3886-3897.]); Rose et al. (1998[Rose, D. J., Maresca, K. P., Nicholson, T., Davison, A., Jones, A. G., Babich, J., Fischman, A., Graham, W., DeBord, J. R. D. & Zubieta, J. (1998). Inorg. Chem. 37, 2701-2716.]); Zora et al. (2006[Zora, M., Turgut, G., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o2677-o2679.]). For synthesis, see: Cugola et al. (1995[Cugola, A., Di Fabio, R. & Pentasuglia, G. (1995). World Patent WO 95/10517.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24N4O4

  • Mr = 336.39

  • Triclinic, [P \overline 1]

  • a = 6.2598 (4) Å

  • b = 9.2822 (6) Å

  • c = 16.0437 (12) Å

  • α = 84.387 (6)°

  • β = 88.957 (6)°

  • γ = 79.358 (6)°

  • V = 911.79 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.84 × 0.17 × 0.06 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.928, Tmax = 0.994

  • 20299 measured reflections

  • 3295 independent reflections

  • 2187 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.147

  • S = 1.04

  • 3295 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.06 2.888 (2) 161
N3—H3⋯N2ii 0.86 2.21 2.957 (3) 145
N4—H4⋯O2iii 0.86 2.06 2.827 (3) 149
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x, -y+2, -z+2; (iii) -x+1, -y+1, -z+2.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Radioisotopes conjugated to proteins provide a means for imaging and treatment of disease. The bifunctional 2-hydrazinopyridine derivatives are useful linker molecules for attaching metal ions such as 99mTc to macromolecules (Ardisson et al., 2005; Jurisson & Lydon, 1999). Hence, this 2-hydrazinopyridinyl moiety has previously been used for labeling bioactive molecules (Abrams et al., 1994; Banerjee et al. 2005; Rose et al., 1998; Schwartz et al., 1990). Thus, the use of Tc-labeled hydrazine derivatives continues to undergo further development (Liu et al., 2011; Lu et al., 2011). The wide spectrum of medicinal applications of this class of radiolabeled chelates prompted us to work in this domain and we report herein on the synthesis and crystal structure of the title compound, designed as a potential chelate for 99mTc.

The title compound, C16H24N4O4, has the triclinic (P1) symmetry. It crystalizes with one molecule in the asymmetric unit. In the crystal, the molecules are linked together by N—H···O hydrogen bonding between the carbonyl groups of the carbamoyl and amido functional groups and the amino groups and by N—H···N hydrogen bonding between amino and pyridine moiety leading to a two-dimensional network within the ab plane. The network cohesion in the 3rd direction is assured by Van der Waals interactions and H-bond like interactions between the carbonyl and the BOC group.

Related literature top

For the synthesis, properties and biological activity of 2-hydrazinopyridine derivatives, see: Ardisson et al. (2005); Jurisson & Lydon (1999); Abrams et al. (1994); Liu et al. (2011); Lu et al. (2011); Schwartz et al. (1990). For the crystal structures of related compounds, see: Banerjee et al. (2005); Rose et al. (1998); Zora et al. (2006). For synthesis, see: Cugola et al. (1995).

Experimental top

To a stirred solution of 5-oxohexanoic acid (2.45 mmol) in 15 ml of tetrahydrofurane was added triethylamine (2.45 mmol). After 10 min of stirring at room temperature was added isobutyl chloroformate (2.45 mmol). The reaction mixture was stirred at room temperature for 5 h, then 2-(t-butoxycarbonyl hydrazine)-5-amino-pyridine (2.23 mmol) (Cugola et al.,19955) was added and the reaction stirred for 12 h. The mixture was evaporated to dryness, and the residue was triturated in water. The solid precipitate was filtered off and washed with water then with ethanol, and purified by column chromatography using CHCl3/methanol (9/1, v/v) as eluent to give the title compound as white crystals (Rf = 1/4). Yield is 48%. The single-crystal of the title product was obtained by slow crystallization from a mixture DMSO/methanol (9/1, v/v). M.p. = 219°C. IR (KBr), ν/cm-1: 3270, 3230, 3185, 3082, 2982, 1704, 1662, 1601, 1537, 1276, 1182. 1H NMR (300 MHz, DMSO-d6, 298 K): δ = 1.41 (s, 9H, 3 CH3), 1.75 (qt, 2H, J = 6.10, CH2), 2.09 (s, 3H, CH3), 2.26 (t, 2H, J = 6.10, CH2), 2.48 (t, 2H, J = 6.10, CH2), 6.49 (d, 1H, J = 7.50, H-3), 7.71 (dd, 1H, J = 7.50 and 1.55, H-4), 7.95 (s, 1H, NH), 8.20 (d, 1H, J = 1.55, H-6), 8.75 (s, 1H, NH), 9.70 (s, 1H, NH). Anal. Calcd. for C16H24N4O4: C, 57.13; H, 7.19; N, 16.66 Found: C, 57.26; H, 7.25; N, 16.52.

Refinement top

Crystallographic data were collected at 293 K on a Brucker nonius k-CCD diffractometer with monochromatic Mo—Kα radiation (λ = 0.71073 Å). At 293 K, the full sphere data collection was performed using ϕ scans and ω scans. The unit cell determination and data reduction were performed using DIRAX/LSQ (Duisenberg, 1992) and Collect (Nonius, 1998) programs on the full set of data. The crystal structure was solved by direct methods and successive Fourier difference syntheses with SHELXS97 program (Sheldrick, 2008). The refinements of the crystal structure were performed on F2 by weighted anisotropic full-matrix least squares methods using the SHELXL97 program (Sheldrick, 2008). Both pieces of software were used within OLEX2 package (Dolomanov et al., 2009). All the non-H atoms were refined with anisotropic temperature parameters. The positions of the H atoms were deduced from coordinates of the non-H atoms and confirmed by Fourier synthesis and treated according to the riding model during refinement with isotropic displacement parameters, corresponding to the atom they are linked to. H atoms were included for structure factor calculations but not refined.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the a axis. Only hydrogen atoms involved in hydrogen bonding (dashed lines) are shown.
tert-Butyl N-{[5-(5-oxohexanamido)pyridin-2-yl]amino}carbamate top
Crystal data top
C16H24N4O4Z = 2
Mr = 336.39F(000) = 360
Triclinic, P1Dx = 1.225 Mg m3
a = 6.2598 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2822 (6) ÅCell parameters from 8003 reflections
c = 16.0437 (12) Åθ = 3.2–25.3°
α = 84.387 (6)°µ = 0.09 mm1
β = 88.957 (6)°T = 293 K
γ = 79.358 (6)°Plate, colourless
V = 911.79 (11) Å30.84 × 0.17 × 0.06 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2187 reflections with I > 2σ(I)
intensities from ϕ scan and ω scanRint = 0.038
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.3°, θmin = 3.2°
Tmin = 0.928, Tmax = 0.994h = 77
20299 measured reflectionsk = 1111
3295 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.061P)2 + 0.4578P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3295 reflectionsΔρmax = 0.29 e Å3
221 parametersΔρmin = 0.25 e Å3
0 restraints
Crystal data top
C16H24N4O4γ = 79.358 (6)°
Mr = 336.39V = 911.79 (11) Å3
Triclinic, P1Z = 2
a = 6.2598 (4) ÅMo Kα radiation
b = 9.2822 (6) ŵ = 0.09 mm1
c = 16.0437 (12) ÅT = 293 K
α = 84.387 (6)°0.84 × 0.17 × 0.06 mm
β = 88.957 (6)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3295 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2187 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.994Rint = 0.038
20299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
3295 reflectionsΔρmin = 0.25 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.2722 (3)0.91380 (18)0.96382 (11)0.0383 (4)
N10.8167 (3)0.79747 (19)0.88090 (12)0.0420 (5)
H10.84360.88280.86330.050*
C80.6222 (4)0.6875 (2)0.99807 (14)0.0452 (6)
H80.74050.61201.01050.054*
N30.0661 (3)0.8185 (2)1.06579 (12)0.0480 (5)
H30.04920.87041.04240.058*
O40.0851 (3)0.71283 (17)1.28015 (10)0.0579 (5)
C100.2624 (3)0.8083 (2)1.02536 (13)0.0376 (5)
C110.4549 (3)0.9045 (2)0.91869 (13)0.0388 (5)
H110.46180.97740.87520.047*
O20.9342 (3)0.55429 (18)0.87934 (12)0.0663 (5)
N40.0544 (3)0.7449 (2)1.14426 (12)0.0476 (5)
H40.01490.66051.14950.057*
C70.6329 (3)0.7943 (2)0.93254 (13)0.0369 (5)
O30.1590 (3)0.92288 (18)1.21135 (11)0.0640 (5)
C60.9535 (4)0.6804 (2)0.85656 (14)0.0439 (6)
C90.4362 (4)0.6941 (2)1.04441 (14)0.0462 (6)
H90.42600.62261.08840.055*
C120.1045 (4)0.8044 (2)1.21198 (15)0.0461 (6)
C51.1308 (4)0.7170 (3)0.79916 (18)0.0620 (7)
H5A1.06440.77590.74990.074*
H5B1.21210.77760.82720.074*
C21.4473 (6)0.7179 (4)0.6461 (2)0.0740 (8)
C130.1179 (5)0.7546 (3)1.36427 (16)0.0663 (8)
C41.2840 (5)0.5918 (4)0.7717 (2)0.0931 (12)
H4A1.21090.54230.73340.112*
H4B1.33070.52220.81990.112*
O11.2875 (5)0.7200 (4)0.60720 (16)0.1353 (12)
C150.0383 (7)0.8914 (4)1.3805 (2)0.1030 (13)
H15A0.00140.97421.34730.154*
H15B0.03410.90631.43880.154*
H15C0.18250.88151.36580.154*
C31.4820 (5)0.6376 (5)0.7287 (2)0.1002 (13)
H3A1.54200.69830.76460.120*
H3B1.59060.54970.72370.120*
C11.6198 (8)0.7953 (5)0.6113 (3)0.1350 (18)
H1A1.61000.80710.55130.203*
H1B1.75930.73870.62790.203*
H1C1.60220.89030.63210.203*
C160.0675 (7)0.6234 (4)1.41952 (19)0.0943 (11)
H16A0.07860.61161.40920.142*
H16B0.08210.63911.47720.142*
H16C0.16690.53631.40720.142*
C140.3522 (7)0.7691 (5)1.3740 (2)0.1111 (13)
H14A0.44540.67931.36170.167*
H14B0.37700.78811.43040.167*
H14C0.38320.84911.33590.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0429 (11)0.0323 (10)0.0384 (10)0.0052 (8)0.0023 (8)0.0001 (8)
N10.0428 (11)0.0303 (10)0.0531 (12)0.0092 (8)0.0086 (9)0.0018 (8)
C80.0449 (14)0.0346 (12)0.0516 (14)0.0005 (10)0.0001 (11)0.0037 (10)
N30.0438 (12)0.0504 (12)0.0432 (11)0.0003 (9)0.0058 (9)0.0115 (9)
O40.0911 (13)0.0425 (10)0.0428 (10)0.0241 (9)0.0090 (8)0.0042 (7)
C100.0424 (13)0.0334 (12)0.0373 (12)0.0090 (9)0.0000 (9)0.0020 (9)
C110.0465 (14)0.0312 (12)0.0383 (12)0.0090 (10)0.0011 (10)0.0016 (9)
O20.0826 (13)0.0343 (10)0.0792 (13)0.0052 (9)0.0231 (10)0.0060 (9)
N40.0630 (13)0.0354 (10)0.0437 (11)0.0130 (9)0.0095 (9)0.0049 (9)
C70.0384 (12)0.0313 (11)0.0424 (12)0.0096 (9)0.0017 (9)0.0046 (9)
O30.0948 (14)0.0404 (10)0.0608 (11)0.0279 (9)0.0081 (10)0.0031 (8)
C60.0468 (14)0.0367 (13)0.0488 (14)0.0076 (10)0.0007 (10)0.0077 (10)
C90.0507 (14)0.0358 (13)0.0471 (13)0.0022 (10)0.0045 (11)0.0100 (10)
C120.0535 (15)0.0349 (13)0.0479 (14)0.0088 (11)0.0110 (11)0.0050 (11)
C50.0559 (16)0.0620 (17)0.0733 (18)0.0168 (13)0.0195 (13)0.0244 (14)
C20.073 (2)0.089 (2)0.0620 (19)0.0139 (17)0.0123 (17)0.0204 (17)
C130.096 (2)0.0598 (18)0.0455 (15)0.0248 (15)0.0073 (14)0.0013 (13)
C40.089 (2)0.079 (2)0.087 (2)0.0318 (18)0.0401 (19)0.0168 (18)
O10.112 (2)0.239 (4)0.0606 (16)0.050 (2)0.0055 (15)0.0106 (19)
C150.154 (4)0.075 (2)0.080 (2)0.018 (2)0.038 (2)0.0189 (18)
C30.063 (2)0.147 (3)0.071 (2)0.027 (2)0.0151 (16)0.000 (2)
C10.126 (4)0.117 (4)0.169 (5)0.046 (3)0.046 (3)0.009 (3)
C160.156 (3)0.077 (2)0.0518 (18)0.037 (2)0.0132 (19)0.0112 (16)
C140.122 (3)0.133 (4)0.086 (3)0.050 (3)0.025 (2)0.011 (2)
Geometric parameters (Å, º) top
N2—C101.330 (3)C5—C41.462 (4)
N2—C111.336 (3)C2—O11.185 (4)
N1—H10.8600C2—C31.454 (4)
N1—C71.409 (3)C2—C11.476 (5)
N1—C61.339 (3)C13—C151.494 (4)
C8—H80.9300C13—C161.513 (4)
C8—C71.382 (3)C13—C141.510 (5)
C8—C91.365 (3)C4—H4A0.9700
N3—H30.8600C4—H4B0.9700
N3—C101.372 (3)C4—C31.517 (4)
N3—N41.380 (2)C15—H15A0.9600
O4—C121.336 (3)C15—H15B0.9600
O4—C131.468 (3)C15—H15C0.9600
C10—C91.386 (3)C3—H3A0.9700
C11—H110.9300C3—H3B0.9700
C11—C71.372 (3)C1—H1A0.9600
O2—C61.219 (3)C1—H1B0.9600
N4—H40.8600C1—H1C0.9600
N4—C121.333 (3)C16—H16A0.9600
O3—C121.209 (3)C16—H16B0.9600
C6—C51.495 (3)C16—H16C0.9600
C9—H90.9300C14—H14A0.9600
C5—H5A0.9700C14—H14B0.9600
C5—H5B0.9700C14—H14C0.9600
C10—N2—C11117.63 (18)O4—C13—C16101.9 (2)
C7—N1—H1116.9O4—C13—C14109.3 (3)
C6—N1—H1116.9C15—C13—C16110.7 (3)
C6—N1—C7126.27 (18)C15—C13—C14112.9 (3)
C7—C8—H8120.4C14—C13—C16110.8 (3)
C9—C8—H8120.4C5—C4—H4A109.1
C9—C8—C7119.3 (2)C5—C4—H4B109.1
C10—N3—H3120.2C5—C4—C3112.4 (3)
C10—N3—N4119.59 (18)H4A—C4—H4B107.8
N4—N3—H3120.2C3—C4—H4A109.1
C12—O4—C13121.02 (19)C3—C4—H4B109.1
N2—C10—N3114.92 (18)C13—C15—H15A109.5
N2—C10—C9122.0 (2)C13—C15—H15B109.5
N3—C10—C9123.07 (19)C13—C15—H15C109.5
N2—C11—H11117.9H15A—C15—H15B109.5
N2—C11—C7124.12 (19)H15A—C15—H15C109.5
C7—C11—H11117.9H15B—C15—H15C109.5
N3—N4—H4120.0C2—C3—C4116.5 (3)
C12—N4—N3120.07 (19)C2—C3—H3A108.2
C12—N4—H4120.0C2—C3—H3B108.2
C8—C7—N1123.77 (19)C4—C3—H3A108.2
C11—C7—N1118.68 (19)C4—C3—H3B108.2
C11—C7—C8117.5 (2)H3A—C3—H3B107.3
N1—C6—C5114.7 (2)C2—C1—H1A109.5
O2—C6—N1122.5 (2)C2—C1—H1B109.5
O2—C6—C5122.8 (2)C2—C1—H1C109.5
C8—C9—C10119.5 (2)H1A—C1—H1B109.5
C8—C9—H9120.3H1A—C1—H1C109.5
C10—C9—H9120.3H1B—C1—H1C109.5
N4—C12—O4109.39 (19)C13—C16—H16A109.5
O3—C12—O4125.6 (2)C13—C16—H16B109.5
O3—C12—N4125.0 (2)C13—C16—H16C109.5
C6—C5—H5A108.3H16A—C16—H16B109.5
C6—C5—H5B108.3H16A—C16—H16C109.5
H5A—C5—H5B107.4H16B—C16—H16C109.5
C4—C5—C6116.1 (2)C13—C14—H14A109.5
C4—C5—H5A108.3C13—C14—H14B109.5
C4—C5—H5B108.3C13—C14—H14C109.5
O1—C2—C3121.4 (3)H14A—C14—H14B109.5
O1—C2—C1120.7 (4)H14A—C14—H14C109.5
C3—C2—C1117.8 (4)H14B—C14—H14C109.5
O4—C13—C15110.7 (3)
N2—C10—C9—C81.1 (3)C7—N1—C6—C5178.0 (2)
N2—C11—C7—N1179.53 (19)C7—C8—C9—C100.6 (4)
N2—C11—C7—C80.9 (3)C6—N1—C7—C834.9 (3)
N1—C6—C5—C4179.6 (3)C6—N1—C7—C11146.5 (2)
N3—C10—C9—C8176.3 (2)C6—C5—C4—C3168.4 (3)
N3—N4—C12—O4178.94 (18)C9—C8—C7—N1179.9 (2)
N3—N4—C12—O31.0 (4)C9—C8—C7—C111.5 (3)
C10—N2—C11—C70.7 (3)C12—O4—C13—C1559.1 (3)
C10—N3—N4—C1282.6 (3)C12—O4—C13—C16176.9 (2)
C11—N2—C10—N3175.89 (18)C12—O4—C13—C1465.8 (3)
C11—N2—C10—C91.7 (3)C5—C4—C3—C270.8 (4)
O2—C6—C5—C40.5 (4)C13—O4—C12—N4176.3 (2)
N4—N3—C10—N2160.78 (19)C13—O4—C12—O33.8 (4)
N4—N3—C10—C921.6 (3)O1—C2—C3—C415.7 (5)
C7—N1—C6—O21.8 (4)C1—C2—C3—C4165.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.062.888 (2)161
N3—H3···N2ii0.862.212.957 (3)145
N4—H4···O2iii0.862.062.827 (3)149
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+2; (iii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.062.888 (2)160.5
N3—H3···N2ii0.862.212.957 (3)144.5
N4—H4···O2iii0.862.062.827 (3)148.6
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+2; (iii) x+1, y+1, z+2.
 

Acknowledgements

This publication was supported by a grant from the Ligue Nationale contre le Cancer (Comité Aquitaine-Charentes, Bordeaux, France).

References

First citationAbrams, M. J., Bridger, G. J., Schwartz, D. A., Padmanabhan, S. & Ultee, M. E. (1994). World Patent WO 94/10149.  Google Scholar
First citationArdisson, V., Mathieu, J. P., Ghezzi, C. & Fagret, D. (2005). Med. Nucl. 29, 168–178.  Google Scholar
First citationBanerjee, S. R., Schaffer, P., Babich, J. W., Valliant, J. F. & Zubieta, J. (2005). Dalton Trans. pp. 3886–3897.  Web of Science CSD CrossRef Google Scholar
First citationCugola, A., Di Fabio, R. & Pentasuglia, G. (1995). World Patent WO 95/10517.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJurisson, S. S. & Lydon, J. D. (1999). Chem. Rev. 99, 2205–2218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, L., Zhang, M., Zhong, G. & Wang, X. (2011). J. Radioanal. Nucl. Chem. 287, 847–852.  Web of Science CrossRef CAS Google Scholar
First citationLu, J., Pang, Y., Xie, F., Guo, H.-J., Li, Y., Yang, Z. & Wang, X.-B. (2011). Nucl. Med. Biol. 38, 557–565.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationRose, D. J., Maresca, K. P., Nicholson, T., Davison, A., Jones, A. G., Babich, J., Fischman, A., Graham, W., DeBord, J. R. D. & Zubieta, J. (1998). Inorg. Chem. 37, 2701–2716.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchwartz, D. A., Abrams, M. J., Giandomenico, C. M. & Zubieta, J. A. (1990). Eur. Patent EP 384769.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZora, M., Turgut, G., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o2677–o2679.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1531-o1532
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds