organic compounds
tert-Butyl N-{[5-(5-oxohexanamido)pyridin-2-yl]amino}carbamate
aUniversité Bordeaux Segalen, CNRS FRE 3396 -Pharmacochimie, F-33076 Bordeaux, France, and bISM–CNRS UMR 5255, Université de Bordeaux, F-33405 Talence cedex, France
*Correspondence e-mail: jean.guillon@u-bordeaux2.fr
In the 16H24N4O4, molecules are linked by N—H⋯O hydrogen bonds between the carbonyl groups of the carbamoyl and amido functional groups and the amino groups, and by N—H⋯N hydrogen bonds between the amino group and the pyridine ring, forming two-dimensional networks parallel to the ab plane.
of the title compound, CRelated literature
For the synthesis, properties and biological activity of 2-hydrazinopyridine derivatives, see: Ardisson et al. (2005); Jurisson & Lydon (1999); Abrams et al. (1994); Liu et al. (2011); Lu et al. (2011); Schwartz et al. (1990). For the crystal structures of related compounds, see: Banerjee et al. (2005); Rose et al. (1998); Zora et al. (2006). For synthesis, see: Cugola et al. (1995).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813024598/ff2115sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813024598/ff2115Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813024598/ff2115Isup3.cml
To a stirred solution of 5-oxohexanoic acid (2.45 mmol) in 15 ml of tetrahydrofurane was added triethylamine (2.45 mmol). After 10 min of stirring at room temperature was added isobutyl chloroformate (2.45 mmol). The reaction mixture was stirred at room temperature for 5 h, then 2-(t-butoxycarbonyl hydrazine)-5-amino-pyridine (2.23 mmol) (Cugola et al.,19955) was added and the reaction stirred for 12 h. The mixture was evaporated to dryness, and the residue was triturated in water. The solid precipitate was filtered off and washed with water then with ethanol, and purified by ν/cm-1: 3270, 3230, 3185, 3082, 2982, 1704, 1662, 1601, 1537, 1276, 1182. 1H NMR (300 MHz, DMSO-d6, 298 K): δ = 1.41 (s, 9H, 3 CH3), 1.75 (qt, 2H, J = 6.10, CH2), 2.09 (s, 3H, CH3), 2.26 (t, 2H, J = 6.10, CH2), 2.48 (t, 2H, J = 6.10, CH2), 6.49 (d, 1H, J = 7.50, H-3), 7.71 (dd, 1H, J = 7.50 and 1.55, H-4), 7.95 (s, 1H, NH), 8.20 (d, 1H, J = 1.55, H-6), 8.75 (s, 1H, NH), 9.70 (s, 1H, NH). Anal. Calcd. for C16H24N4O4: C, 57.13; H, 7.19; N, 16.66 Found: C, 57.26; H, 7.25; N, 16.52.
using CHCl3/methanol (9/1, v/v) as to give the title compound as white crystals (Rf = 1/4). Yield is 48%. The single-crystal of the title product was obtained by slow crystallization from a mixture DMSO/methanol (9/1, v/v). M.p. = 219°C. IR (KBr),Crystallographic data were collected at 293 K on a Brucker nonius k-CCD diffractometer with monochromatic Mo—Kα radiation (λ = 0.71073 Å). At 293 K, the full sphere data collection was performed using ϕ scans and ω scans. The determination and data reduction were performed using DIRAX/LSQ (Duisenberg, 1992) and Collect (Nonius, 1998) programs on the full set of data. The was solved by and successive Fourier difference syntheses with SHELXS97 program (Sheldrick, 2008). The refinements of the were performed on F2 by weighted anisotropic full-matrix least squares methods using the SHELXL97 program (Sheldrick, 2008). Both pieces of software were used within OLEX2 package (Dolomanov et al., 2009). All the non-H atoms were refined with anisotropic temperature parameters. The positions of the H atoms were deduced from coordinates of the non-H atoms and confirmed by Fourier synthesis and treated according to the riding model during with isotropic displacement parameters, corresponding to the atom they are linked to. H atoms were included for calculations but not refined.
Data collection: COLLECT (Nonius, 1998); cell
DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. Crystal packing of the title compound viewed down the a axis. Only hydrogen atoms involved in hydrogen bonding (dashed lines) are shown. |
C16H24N4O4 | Z = 2 |
Mr = 336.39 | F(000) = 360 |
Triclinic, P1 | Dx = 1.225 Mg m−3 |
a = 6.2598 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.2822 (6) Å | Cell parameters from 8003 reflections |
c = 16.0437 (12) Å | θ = 3.2–25.3° |
α = 84.387 (6)° | µ = 0.09 mm−1 |
β = 88.957 (6)° | T = 293 K |
γ = 79.358 (6)° | Plate, colourless |
V = 911.79 (11) Å3 | 0.84 × 0.17 × 0.06 mm |
Bruker–Nonius KappaCCD diffractometer | 2187 reflections with I > 2σ(I) |
intensities from ϕ scan and ω scan | Rint = 0.038 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | θmax = 25.3°, θmin = 3.2° |
Tmin = 0.928, Tmax = 0.994 | h = −7→7 |
20299 measured reflections | k = −11→11 |
3295 independent reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.147 | w = 1/[σ2(Fo2) + (0.061P)2 + 0.4578P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3295 reflections | Δρmax = 0.29 e Å−3 |
221 parameters | Δρmin = −0.25 e Å−3 |
0 restraints |
C16H24N4O4 | γ = 79.358 (6)° |
Mr = 336.39 | V = 911.79 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.2598 (4) Å | Mo Kα radiation |
b = 9.2822 (6) Å | µ = 0.09 mm−1 |
c = 16.0437 (12) Å | T = 293 K |
α = 84.387 (6)° | 0.84 × 0.17 × 0.06 mm |
β = 88.957 (6)° |
Bruker–Nonius KappaCCD diffractometer | 3295 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2187 reflections with I > 2σ(I) |
Tmin = 0.928, Tmax = 0.994 | Rint = 0.038 |
20299 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.29 e Å−3 |
3295 reflections | Δρmin = −0.25 e Å−3 |
221 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N2 | 0.2722 (3) | 0.91380 (18) | 0.96382 (11) | 0.0383 (4) | |
N1 | 0.8167 (3) | 0.79747 (19) | 0.88090 (12) | 0.0420 (5) | |
H1 | 0.8436 | 0.8828 | 0.8633 | 0.050* | |
C8 | 0.6222 (4) | 0.6875 (2) | 0.99807 (14) | 0.0452 (6) | |
H8 | 0.7405 | 0.6120 | 1.0105 | 0.054* | |
N3 | 0.0661 (3) | 0.8185 (2) | 1.06579 (12) | 0.0480 (5) | |
H3 | −0.0492 | 0.8704 | 1.0424 | 0.058* | |
O4 | 0.0851 (3) | 0.71283 (17) | 1.28015 (10) | 0.0579 (5) | |
C10 | 0.2624 (3) | 0.8083 (2) | 1.02536 (13) | 0.0376 (5) | |
C11 | 0.4549 (3) | 0.9045 (2) | 0.91869 (13) | 0.0388 (5) | |
H11 | 0.4618 | 0.9774 | 0.8752 | 0.047* | |
O2 | 0.9342 (3) | 0.55429 (18) | 0.87934 (12) | 0.0663 (5) | |
N4 | 0.0544 (3) | 0.7449 (2) | 1.14426 (12) | 0.0476 (5) | |
H4 | 0.0149 | 0.6605 | 1.1495 | 0.057* | |
C7 | 0.6329 (3) | 0.7943 (2) | 0.93254 (13) | 0.0369 (5) | |
O3 | 0.1590 (3) | 0.92288 (18) | 1.21135 (11) | 0.0640 (5) | |
C6 | 0.9535 (4) | 0.6804 (2) | 0.85656 (14) | 0.0439 (6) | |
C9 | 0.4362 (4) | 0.6941 (2) | 1.04441 (14) | 0.0462 (6) | |
H9 | 0.4260 | 0.6226 | 1.0884 | 0.055* | |
C12 | 0.1045 (4) | 0.8044 (2) | 1.21198 (15) | 0.0461 (6) | |
C5 | 1.1308 (4) | 0.7170 (3) | 0.79916 (18) | 0.0620 (7) | |
H5A | 1.0644 | 0.7759 | 0.7499 | 0.074* | |
H5B | 1.2121 | 0.7776 | 0.8272 | 0.074* | |
C2 | 1.4473 (6) | 0.7179 (4) | 0.6461 (2) | 0.0740 (8) | |
C13 | 0.1179 (5) | 0.7546 (3) | 1.36427 (16) | 0.0663 (8) | |
C4 | 1.2840 (5) | 0.5918 (4) | 0.7717 (2) | 0.0931 (12) | |
H4A | 1.2109 | 0.5423 | 0.7334 | 0.112* | |
H4B | 1.3307 | 0.5222 | 0.8199 | 0.112* | |
O1 | 1.2875 (5) | 0.7200 (4) | 0.60720 (16) | 0.1353 (12) | |
C15 | −0.0383 (7) | 0.8914 (4) | 1.3805 (2) | 0.1030 (13) | |
H15A | 0.0014 | 0.9742 | 1.3473 | 0.154* | |
H15B | −0.0341 | 0.9063 | 1.4388 | 0.154* | |
H15C | −0.1825 | 0.8815 | 1.3658 | 0.154* | |
C3 | 1.4820 (5) | 0.6376 (5) | 0.7287 (2) | 0.1002 (13) | |
H3A | 1.5420 | 0.6983 | 0.7646 | 0.120* | |
H3B | 1.5906 | 0.5497 | 0.7237 | 0.120* | |
C1 | 1.6198 (8) | 0.7953 (5) | 0.6113 (3) | 0.1350 (18) | |
H1A | 1.6100 | 0.8071 | 0.5513 | 0.203* | |
H1B | 1.7593 | 0.7387 | 0.6279 | 0.203* | |
H1C | 1.6022 | 0.8903 | 0.6321 | 0.203* | |
C16 | 0.0675 (7) | 0.6234 (4) | 1.41952 (19) | 0.0943 (11) | |
H16A | −0.0786 | 0.6116 | 1.4092 | 0.142* | |
H16B | 0.0821 | 0.6391 | 1.4772 | 0.142* | |
H16C | 0.1669 | 0.5363 | 1.4072 | 0.142* | |
C14 | 0.3522 (7) | 0.7691 (5) | 1.3740 (2) | 0.1111 (13) | |
H14A | 0.4454 | 0.6793 | 1.3617 | 0.167* | |
H14B | 0.3770 | 0.7881 | 1.4304 | 0.167* | |
H14C | 0.3832 | 0.8491 | 1.3359 | 0.167* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N2 | 0.0429 (11) | 0.0323 (10) | 0.0384 (10) | −0.0052 (8) | 0.0023 (8) | −0.0001 (8) |
N1 | 0.0428 (11) | 0.0303 (10) | 0.0531 (12) | −0.0092 (8) | 0.0086 (9) | −0.0018 (8) |
C8 | 0.0449 (14) | 0.0346 (12) | 0.0516 (14) | 0.0005 (10) | 0.0001 (11) | 0.0037 (10) |
N3 | 0.0438 (12) | 0.0504 (12) | 0.0432 (11) | −0.0003 (9) | 0.0058 (9) | 0.0115 (9) |
O4 | 0.0911 (13) | 0.0425 (10) | 0.0428 (10) | −0.0241 (9) | 0.0090 (8) | 0.0042 (7) |
C10 | 0.0424 (13) | 0.0334 (12) | 0.0373 (12) | −0.0090 (9) | 0.0000 (9) | −0.0020 (9) |
C11 | 0.0465 (14) | 0.0312 (12) | 0.0383 (12) | −0.0090 (10) | 0.0011 (10) | 0.0016 (9) |
O2 | 0.0826 (13) | 0.0343 (10) | 0.0792 (13) | −0.0052 (9) | 0.0231 (10) | −0.0060 (9) |
N4 | 0.0630 (13) | 0.0354 (10) | 0.0437 (11) | −0.0130 (9) | 0.0095 (9) | 0.0049 (9) |
C7 | 0.0384 (12) | 0.0313 (11) | 0.0424 (12) | −0.0096 (9) | 0.0017 (9) | −0.0046 (9) |
O3 | 0.0948 (14) | 0.0404 (10) | 0.0608 (11) | −0.0279 (9) | 0.0081 (10) | 0.0031 (8) |
C6 | 0.0468 (14) | 0.0367 (13) | 0.0488 (14) | −0.0076 (10) | 0.0007 (10) | −0.0077 (10) |
C9 | 0.0507 (14) | 0.0358 (13) | 0.0471 (13) | −0.0022 (10) | 0.0045 (11) | 0.0100 (10) |
C12 | 0.0535 (15) | 0.0349 (13) | 0.0479 (14) | −0.0088 (11) | 0.0110 (11) | 0.0050 (11) |
C5 | 0.0559 (16) | 0.0620 (17) | 0.0733 (18) | −0.0168 (13) | 0.0195 (13) | −0.0244 (14) |
C2 | 0.073 (2) | 0.089 (2) | 0.0620 (19) | −0.0139 (17) | 0.0123 (17) | −0.0204 (17) |
C13 | 0.096 (2) | 0.0598 (18) | 0.0455 (15) | −0.0248 (15) | 0.0073 (14) | 0.0013 (13) |
C4 | 0.089 (2) | 0.079 (2) | 0.087 (2) | 0.0318 (18) | 0.0401 (19) | 0.0168 (18) |
O1 | 0.112 (2) | 0.239 (4) | 0.0606 (16) | −0.050 (2) | −0.0055 (15) | −0.0106 (19) |
C15 | 0.154 (4) | 0.075 (2) | 0.080 (2) | −0.018 (2) | 0.038 (2) | −0.0189 (18) |
C3 | 0.063 (2) | 0.147 (3) | 0.071 (2) | 0.027 (2) | 0.0151 (16) | 0.000 (2) |
C1 | 0.126 (4) | 0.117 (4) | 0.169 (5) | −0.046 (3) | 0.046 (3) | −0.009 (3) |
C16 | 0.156 (3) | 0.077 (2) | 0.0518 (18) | −0.037 (2) | 0.0132 (19) | 0.0112 (16) |
C14 | 0.122 (3) | 0.133 (4) | 0.086 (3) | −0.050 (3) | −0.025 (2) | 0.011 (2) |
N2—C10 | 1.330 (3) | C5—C4 | 1.462 (4) |
N2—C11 | 1.336 (3) | C2—O1 | 1.185 (4) |
N1—H1 | 0.8600 | C2—C3 | 1.454 (4) |
N1—C7 | 1.409 (3) | C2—C1 | 1.476 (5) |
N1—C6 | 1.339 (3) | C13—C15 | 1.494 (4) |
C8—H8 | 0.9300 | C13—C16 | 1.513 (4) |
C8—C7 | 1.382 (3) | C13—C14 | 1.510 (5) |
C8—C9 | 1.365 (3) | C4—H4A | 0.9700 |
N3—H3 | 0.8600 | C4—H4B | 0.9700 |
N3—C10 | 1.372 (3) | C4—C3 | 1.517 (4) |
N3—N4 | 1.380 (2) | C15—H15A | 0.9600 |
O4—C12 | 1.336 (3) | C15—H15B | 0.9600 |
O4—C13 | 1.468 (3) | C15—H15C | 0.9600 |
C10—C9 | 1.386 (3) | C3—H3A | 0.9700 |
C11—H11 | 0.9300 | C3—H3B | 0.9700 |
C11—C7 | 1.372 (3) | C1—H1A | 0.9600 |
O2—C6 | 1.219 (3) | C1—H1B | 0.9600 |
N4—H4 | 0.8600 | C1—H1C | 0.9600 |
N4—C12 | 1.333 (3) | C16—H16A | 0.9600 |
O3—C12 | 1.209 (3) | C16—H16B | 0.9600 |
C6—C5 | 1.495 (3) | C16—H16C | 0.9600 |
C9—H9 | 0.9300 | C14—H14A | 0.9600 |
C5—H5A | 0.9700 | C14—H14B | 0.9600 |
C5—H5B | 0.9700 | C14—H14C | 0.9600 |
C10—N2—C11 | 117.63 (18) | O4—C13—C16 | 101.9 (2) |
C7—N1—H1 | 116.9 | O4—C13—C14 | 109.3 (3) |
C6—N1—H1 | 116.9 | C15—C13—C16 | 110.7 (3) |
C6—N1—C7 | 126.27 (18) | C15—C13—C14 | 112.9 (3) |
C7—C8—H8 | 120.4 | C14—C13—C16 | 110.8 (3) |
C9—C8—H8 | 120.4 | C5—C4—H4A | 109.1 |
C9—C8—C7 | 119.3 (2) | C5—C4—H4B | 109.1 |
C10—N3—H3 | 120.2 | C5—C4—C3 | 112.4 (3) |
C10—N3—N4 | 119.59 (18) | H4A—C4—H4B | 107.8 |
N4—N3—H3 | 120.2 | C3—C4—H4A | 109.1 |
C12—O4—C13 | 121.02 (19) | C3—C4—H4B | 109.1 |
N2—C10—N3 | 114.92 (18) | C13—C15—H15A | 109.5 |
N2—C10—C9 | 122.0 (2) | C13—C15—H15B | 109.5 |
N3—C10—C9 | 123.07 (19) | C13—C15—H15C | 109.5 |
N2—C11—H11 | 117.9 | H15A—C15—H15B | 109.5 |
N2—C11—C7 | 124.12 (19) | H15A—C15—H15C | 109.5 |
C7—C11—H11 | 117.9 | H15B—C15—H15C | 109.5 |
N3—N4—H4 | 120.0 | C2—C3—C4 | 116.5 (3) |
C12—N4—N3 | 120.07 (19) | C2—C3—H3A | 108.2 |
C12—N4—H4 | 120.0 | C2—C3—H3B | 108.2 |
C8—C7—N1 | 123.77 (19) | C4—C3—H3A | 108.2 |
C11—C7—N1 | 118.68 (19) | C4—C3—H3B | 108.2 |
C11—C7—C8 | 117.5 (2) | H3A—C3—H3B | 107.3 |
N1—C6—C5 | 114.7 (2) | C2—C1—H1A | 109.5 |
O2—C6—N1 | 122.5 (2) | C2—C1—H1B | 109.5 |
O2—C6—C5 | 122.8 (2) | C2—C1—H1C | 109.5 |
C8—C9—C10 | 119.5 (2) | H1A—C1—H1B | 109.5 |
C8—C9—H9 | 120.3 | H1A—C1—H1C | 109.5 |
C10—C9—H9 | 120.3 | H1B—C1—H1C | 109.5 |
N4—C12—O4 | 109.39 (19) | C13—C16—H16A | 109.5 |
O3—C12—O4 | 125.6 (2) | C13—C16—H16B | 109.5 |
O3—C12—N4 | 125.0 (2) | C13—C16—H16C | 109.5 |
C6—C5—H5A | 108.3 | H16A—C16—H16B | 109.5 |
C6—C5—H5B | 108.3 | H16A—C16—H16C | 109.5 |
H5A—C5—H5B | 107.4 | H16B—C16—H16C | 109.5 |
C4—C5—C6 | 116.1 (2) | C13—C14—H14A | 109.5 |
C4—C5—H5A | 108.3 | C13—C14—H14B | 109.5 |
C4—C5—H5B | 108.3 | C13—C14—H14C | 109.5 |
O1—C2—C3 | 121.4 (3) | H14A—C14—H14B | 109.5 |
O1—C2—C1 | 120.7 (4) | H14A—C14—H14C | 109.5 |
C3—C2—C1 | 117.8 (4) | H14B—C14—H14C | 109.5 |
O4—C13—C15 | 110.7 (3) | ||
N2—C10—C9—C8 | −1.1 (3) | C7—N1—C6—C5 | 178.0 (2) |
N2—C11—C7—N1 | −179.53 (19) | C7—C8—C9—C10 | −0.6 (4) |
N2—C11—C7—C8 | −0.9 (3) | C6—N1—C7—C8 | 34.9 (3) |
N1—C6—C5—C4 | 179.6 (3) | C6—N1—C7—C11 | −146.5 (2) |
N3—C10—C9—C8 | 176.3 (2) | C6—C5—C4—C3 | −168.4 (3) |
N3—N4—C12—O4 | −178.94 (18) | C9—C8—C7—N1 | −179.9 (2) |
N3—N4—C12—O3 | 1.0 (4) | C9—C8—C7—C11 | 1.5 (3) |
C10—N2—C11—C7 | −0.7 (3) | C12—O4—C13—C15 | 59.1 (3) |
C10—N3—N4—C12 | 82.6 (3) | C12—O4—C13—C16 | 176.9 (2) |
C11—N2—C10—N3 | −175.89 (18) | C12—O4—C13—C14 | −65.8 (3) |
C11—N2—C10—C9 | 1.7 (3) | C5—C4—C3—C2 | −70.8 (4) |
O2—C6—C5—C4 | −0.5 (4) | C13—O4—C12—N4 | −176.3 (2) |
N4—N3—C10—N2 | −160.78 (19) | C13—O4—C12—O3 | 3.8 (4) |
N4—N3—C10—C9 | 21.6 (3) | O1—C2—C3—C4 | −15.7 (5) |
C7—N1—C6—O2 | −1.8 (4) | C1—C2—C3—C4 | 165.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.86 | 2.06 | 2.888 (2) | 161 |
N3—H3···N2ii | 0.86 | 2.21 | 2.957 (3) | 145 |
N4—H4···O2iii | 0.86 | 2.06 | 2.827 (3) | 149 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x, −y+2, −z+2; (iii) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.86 | 2.06 | 2.888 (2) | 160.5 |
N3—H3···N2ii | 0.86 | 2.21 | 2.957 (3) | 144.5 |
N4—H4···O2iii | 0.86 | 2.06 | 2.827 (3) | 148.6 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x, −y+2, −z+2; (iii) −x+1, −y+1, −z+2. |
Acknowledgements
This publication was supported by a grant from the Ligue Nationale contre le Cancer (Comité Aquitaine-Charentes, Bordeaux, France).
References
Abrams, M. J., Bridger, G. J., Schwartz, D. A., Padmanabhan, S. & Ultee, M. E. (1994). World Patent WO 94/10149. Google Scholar
Ardisson, V., Mathieu, J. P., Ghezzi, C. & Fagret, D. (2005). Med. Nucl. 29, 168–178. Google Scholar
Banerjee, S. R., Schaffer, P., Babich, J. W., Valliant, J. F. & Zubieta, J. (2005). Dalton Trans. pp. 3886–3897. Web of Science CSD CrossRef Google Scholar
Cugola, A., Di Fabio, R. & Pentasuglia, G. (1995). World Patent WO 95/10517. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jurisson, S. S. & Lydon, J. D. (1999). Chem. Rev. 99, 2205–2218. Web of Science CrossRef PubMed CAS Google Scholar
Liu, L., Zhang, M., Zhong, G. & Wang, X. (2011). J. Radioanal. Nucl. Chem. 287, 847–852. Web of Science CrossRef CAS Google Scholar
Lu, J., Pang, Y., Xie, F., Guo, H.-J., Li, Y., Yang, Z. & Wang, X.-B. (2011). Nucl. Med. Biol. 38, 557–565. Web of Science CrossRef CAS PubMed Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Rose, D. J., Maresca, K. P., Nicholson, T., Davison, A., Jones, A. G., Babich, J., Fischman, A., Graham, W., DeBord, J. R. D. & Zubieta, J. (1998). Inorg. Chem. 37, 2701–2716. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schwartz, D. A., Abrams, M. J., Giandomenico, C. M. & Zubieta, J. A. (1990). Eur. Patent EP 384769. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zora, M., Turgut, G., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o2677–o2679. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Radioisotopes conjugated to proteins provide a means for imaging and treatment of disease. The bifunctional 2-hydrazinopyridine derivatives are useful linker molecules for attaching metal ions such as 99mTc to macromolecules (Ardisson et al., 2005; Jurisson & Lydon, 1999). Hence, this 2-hydrazinopyridinyl moiety has previously been used for labeling bioactive molecules (Abrams et al., 1994; Banerjee et al. 2005; Rose et al., 1998; Schwartz et al., 1990). Thus, the use of Tc-labeled hydrazine derivatives continues to undergo further development (Liu et al., 2011; Lu et al., 2011). The wide spectrum of medicinal applications of this class of radiolabeled chelates prompted us to work in this domain and we report herein on the synthesis and crystal structure of the title compound, designed as a potential chelate for 99mTc.
The title compound, C16H24N4O4, has the triclinic (P1) symmetry. It crystalizes with one molecule in the asymmetric unit. In the crystal, the molecules are linked together by N—H···O hydrogen bonding between the carbonyl groups of the carbamoyl and amido functional groups and the amino groups and by N—H···N hydrogen bonding between amino and pyridine moiety leading to a two-dimensional network within the ab plane. The network cohesion in the 3rd direction is assured by Van der Waals interactions and H-bond like interactions between the carbonyl and the BOC group.