organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,22-Dioxa-11,14-di­aza­penta­cyclo­[12.8.0.02,11.05,10.015,20]docosa-5(10),6,8,15(20),16,18-hexa­ene-4,21-dione

aInstitute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China, and bDepartment of Chemistry, Changzhi University, Changzhi, Shanxi 046011, People's Republic of China
*Correspondence e-mail: yangbs@sxu.edu.cn

(Received 31 August 2013; accepted 3 September 2013; online 12 September 2013)

In the title compound, C18H14N2O4, the piperazine ring adopts a chair conformation and the dihedral angle between the aromatic rings is 13.09 (9)°. In the crystal, mol­ecules are linked along the c axis by C—H⋯π and N⋯π [H(N)–centroid distances = 2.8030 (2) and 3.376 (2) Å] inter­actions between neighbouring mol­ecules.

Related literature

For applications of ππ inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For C—H⋯π inter­actions, see: Ciunik & Desiraju (2001[Ciunik, Z. & Desiraju, G. R. (2001). Chem. Commun. pp. 703-704.]) and for N⋯π inter­actions, see: Lindeman et al. (1998[Lindeman, S. V., Kosynkin, D. & Kochi, J. K. (1998). J. Am. Chem. Soc. 120, 13268-13269.]). For the synthesis of the 2,2′-(ethane-1,2-diylbis(aza­nedi­yl))di­benzoic acid precursor, see: Berger & Telford (2002[Berger, D. J. & Telford, J. R. (2002). Inorg. Chim. Acta, 341, 132-134.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2O4

  • Mr = 322.31

  • Triclinic, [P \overline 1]

  • a = 8.058 (1) Å

  • b = 8.2629 (11) Å

  • c = 12.0972 (14) Å

  • α = 74.956 (2)°

  • β = 73.868 (1)°

  • γ = 72.311 (1)°

  • V = 723.54 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.23 × 0.20 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.986

  • 3858 measured reflections

  • 2533 independent reflections

  • 1301 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.098

  • S = 1.01

  • 2533 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg1i 0.98 2.80 3.7337 (3) 159
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The C–H···π and ππ interactions are important noncovalent intermolecular forces in determining the crystal packing, molecular assemblies, and structures of large biological systems (Janiak, 2000). In the present work, the crystal of the title compound is generated by noncovalent interactions.

In the title molecule (Fig. 1), the piperazine ring adopts a chair conformation and the dihedral angle between two phenyl rings (C6—C11; C13—C18) is 13.09 (9)°.

As shown in Figure 2, the neighboring molecules of title compound are arranged in a mutual head-to-tail manner by C–H···Cg1i (Cg1 is the centroid of the C6—C11 benzene ring) interactions (black dotted lines) and N···Cg2ii (Cg2 is the centroid of the C13—C18 benzene ring) interactions (pink dotted lines)to form infinite one-dimensional chain structure along the c axis [symmetry code: (i) 1 - x, 1 - y,1 - z; (ii)1 - x, 1 - y, 2 - z].

The adjacent one-dimensional chains, by van der Waals contacts, stack in a side-by-side fashion along the c axis to form three-dimensional structure (Fig. 3).

Related literature top

For applications of ππ interactions, see: Janiak (2000). For C—H···π interactions, see: Ciunik & Desiraju (2001) and for N···π interactions, see: Lindeman et al. (1998). For the synthesis of the 2,2'-(ethane-1,2-diylbis(azanediyl))dibenzoic acid precursor, see: Berger & Telford (2002).

Experimental top

The precursor 2,2'-(ethane-1,2-diylbis(azanediyl))dibenzoic acid (EDA) was synthesized according to literature procedures (Berger et al., 2002). The title compound was prepared by stirring a methanolic solution of EDA (300 mg, 1.0 mmol) and triethylamine (1 ml) for 10 min at room temperature. Then, 10 ml of a methanol solution containing CuCl2·2H2O(170 mg, 1 mmol) was added to the mixture and refluxed for 2 h. The mixture was filtered and washed with methanol. The EDA-Cu compound is not achieved as predicted. However, orange single crystals of the title complex suitable for X-ray analysis were obtained after several days from the mother liquor by slow evaporation.

Refinement top

All H atoms were positioned geometrically [C–H = 0.97 Å for CH2, 0.93 Å for CH] and refined using a riding model, with Uiso = 1.2Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The one-dimensional chain structure of the title compound is formed by N···π interactions (pink dotted lines) and C–H···π interactions (black dotted lines) and extending along the c axis (all distances in Å).
[Figure 3] Fig. 3. Packing of the title compound viewed along the c axis
3,22-Dioxa-11,14-diazapentacyclo[12.8.0.02,11.05,10.015,20]docosa-5(10),6,8,15 (20),16,18-hexaene-4,21-dione top
Crystal data top
C18H14N2O4Z = 2
Mr = 322.31F(000) = 336
Triclinic, P1Dx = 1.479 Mg m3
a = 8.058 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2629 (11) ÅCell parameters from 695 reflections
c = 12.0972 (14) Åθ = 2.6–22.8°
α = 74.956 (2)°µ = 0.11 mm1
β = 73.868 (1)°T = 293 K
γ = 72.311 (1)°Block, orange
V = 723.54 (16) Å30.23 × 0.20 × 0.13 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2533 independent reflections
Radiation source: fine-focus sealed tube1301 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 79
Tmin = 0.976, Tmax = 0.986k = 99
3858 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0216P)2]
where P = (Fo2 + 2Fc2)/3
2533 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H14N2O4γ = 72.311 (1)°
Mr = 322.31V = 723.54 (16) Å3
Triclinic, P1Z = 2
a = 8.058 (1) ÅMo Kα radiation
b = 8.2629 (11) ŵ = 0.11 mm1
c = 12.0972 (14) ÅT = 293 K
α = 74.956 (2)°0.23 × 0.20 × 0.13 mm
β = 73.868 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2533 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1301 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.986Rint = 0.025
3858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
2533 reflectionsΔρmin = 0.19 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5762 (3)0.3589 (3)0.6287 (2)0.0388 (6)
N20.4532 (3)0.5027 (3)0.8359 (2)0.0397 (6)
O10.7212 (2)0.5863 (2)0.54220 (16)0.0450 (5)
O20.8892 (2)0.6033 (3)0.36520 (18)0.0583 (6)
O30.6612 (2)0.6710 (2)0.75579 (16)0.0481 (5)
O40.6823 (3)0.8514 (3)0.85352 (18)0.0624 (6)
C10.6664 (3)0.4729 (3)0.6484 (2)0.0390 (7)
H10.77060.40400.68090.047*
C20.5451 (3)0.5917 (3)0.7294 (2)0.0388 (7)
H20.45840.68040.68860.047*
C30.3676 (3)0.3824 (3)0.8175 (2)0.0485 (8)
H3A0.26590.44730.78300.058*
H3B0.32420.31440.89260.058*
C40.4938 (4)0.2636 (4)0.7389 (2)0.0494 (8)
H4A0.58620.18670.77860.059*
H4B0.42960.19320.72290.059*
C50.8153 (4)0.5144 (4)0.4472 (3)0.0441 (8)
C60.8080 (4)0.3362 (4)0.4543 (3)0.0415 (7)
C70.6848 (4)0.2634 (3)0.5421 (3)0.0398 (7)
C80.6709 (4)0.1016 (4)0.5381 (3)0.0527 (8)
H80.58820.05060.59550.063*
C90.7781 (4)0.0164 (4)0.4503 (3)0.0610 (9)
H90.76660.09160.44860.073*
C100.9023 (4)0.0876 (4)0.3648 (3)0.0623 (10)
H100.97590.02750.30650.075*
C110.9168 (4)0.2484 (4)0.3660 (3)0.0547 (9)
H110.99930.29850.30780.066*
C120.5914 (4)0.7686 (4)0.8402 (3)0.0468 (8)
C130.4154 (4)0.7550 (4)0.9111 (2)0.0420 (7)
C140.3523 (4)0.6153 (4)0.9128 (2)0.0419 (7)
C150.1977 (4)0.5903 (4)0.9944 (3)0.0554 (9)
H150.15450.49580.99910.066*
C160.1090 (4)0.7063 (5)1.0681 (3)0.0658 (10)
H160.00600.68821.12260.079*
C170.1676 (4)0.8473 (4)1.0639 (3)0.0652 (10)
H170.10380.92571.11300.078*
C180.3217 (4)0.8707 (4)0.9860 (3)0.0561 (9)
H180.36430.96480.98300.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0462 (14)0.0398 (14)0.0361 (15)0.0196 (11)0.0053 (13)0.0104 (12)
N20.0460 (14)0.0456 (15)0.0318 (15)0.0205 (11)0.0029 (12)0.0100 (12)
O10.0564 (13)0.0462 (12)0.0346 (13)0.0208 (10)0.0007 (11)0.0122 (11)
O20.0621 (14)0.0704 (16)0.0456 (14)0.0305 (12)0.0059 (12)0.0188 (12)
O30.0530 (12)0.0557 (13)0.0465 (13)0.0281 (10)0.0007 (11)0.0234 (11)
O40.0723 (15)0.0659 (15)0.0631 (16)0.0366 (11)0.0022 (12)0.0268 (12)
C10.0440 (17)0.0419 (18)0.0337 (18)0.0148 (14)0.0061 (15)0.0090 (15)
C20.0437 (17)0.0441 (18)0.0350 (18)0.0152 (13)0.0070 (15)0.0148 (15)
C30.0548 (19)0.058 (2)0.039 (2)0.0284 (16)0.0044 (16)0.0099 (17)
C40.063 (2)0.0487 (19)0.044 (2)0.0257 (15)0.0117 (17)0.0083 (17)
C50.0393 (18)0.058 (2)0.037 (2)0.0149 (15)0.0047 (16)0.0143 (18)
C60.0414 (18)0.0430 (18)0.044 (2)0.0074 (14)0.0105 (16)0.0172 (16)
C70.0449 (18)0.0387 (17)0.0404 (19)0.0071 (14)0.0157 (16)0.0125 (16)
C80.066 (2)0.0438 (19)0.055 (2)0.0168 (15)0.0167 (18)0.0139 (18)
C90.077 (3)0.045 (2)0.068 (3)0.0081 (18)0.023 (2)0.022 (2)
C100.064 (2)0.059 (2)0.064 (3)0.0005 (18)0.013 (2)0.032 (2)
C110.0494 (19)0.062 (2)0.053 (2)0.0088 (16)0.0069 (17)0.0213 (19)
C120.060 (2)0.0441 (19)0.041 (2)0.0139 (16)0.0116 (17)0.0147 (16)
C130.0457 (18)0.0486 (19)0.0317 (18)0.0102 (14)0.0056 (15)0.0125 (15)
C140.0414 (18)0.052 (2)0.0321 (18)0.0112 (15)0.0084 (15)0.0083 (16)
C150.049 (2)0.075 (2)0.047 (2)0.0219 (17)0.0087 (18)0.0140 (19)
C160.046 (2)0.100 (3)0.051 (2)0.0181 (19)0.0043 (18)0.031 (2)
C170.060 (2)0.083 (3)0.052 (2)0.0044 (19)0.007 (2)0.033 (2)
C180.062 (2)0.056 (2)0.051 (2)0.0088 (17)0.0126 (19)0.0195 (18)
Geometric parameters (Å, º) top
N1—C71.410 (3)C6—C71.385 (4)
N1—C11.450 (3)C6—C111.390 (3)
N1—C41.456 (3)C7—C81.389 (3)
N2—C141.401 (3)C8—C91.371 (4)
N2—C21.435 (3)C8—H80.9300
N2—C31.459 (3)C9—C101.373 (4)
O1—C51.359 (3)C9—H90.9300
O1—C11.426 (3)C10—C111.373 (4)
O2—C51.199 (3)C10—H100.9300
O3—C121.357 (3)C11—H110.9300
O3—C21.433 (3)C12—C131.460 (3)
O4—C121.208 (3)C13—C141.389 (3)
C1—C21.504 (3)C13—C181.391 (3)
C1—H10.9800C14—C151.391 (3)
C2—H20.9800C15—C161.378 (4)
C3—C41.497 (3)C15—H150.9300
C3—H3A0.9700C16—C171.368 (4)
C3—H3B0.9700C16—H160.9300
C4—H4A0.9700C17—C181.367 (4)
C4—H4B0.9700C17—H170.9300
C5—C61.471 (4)C18—H180.9300
C7—N1—C1111.2 (2)C11—C6—C5118.5 (3)
C7—N1—C4117.6 (2)C6—C7—C8118.1 (3)
C1—N1—C4111.3 (2)C6—C7—N1118.6 (3)
C14—N2—C2111.6 (2)C8—C7—N1123.2 (3)
C14—N2—C3117.4 (2)C9—C8—C7120.5 (3)
C2—N2—C3113.7 (2)C9—C8—H8119.7
C5—O1—C1117.6 (2)C7—C8—H8119.7
C12—O3—C2117.6 (2)C8—C9—C10121.1 (3)
O1—C1—N1111.1 (2)C8—C9—H9119.4
O1—C1—C2104.5 (2)C10—C9—H9119.4
N1—C1—C2112.0 (2)C11—C10—C9119.4 (3)
O1—C1—H1109.7C11—C10—H10120.3
N1—C1—H1109.7C9—C10—H10120.3
C2—C1—H1109.7C10—C11—C6119.9 (3)
O3—C2—N2109.6 (2)C10—C11—H11120.0
O3—C2—C1104.6 (2)C6—C11—H11120.0
N2—C2—C1113.3 (2)O4—C12—O3117.8 (3)
O3—C2—H2109.7O4—C12—C13126.2 (3)
N2—C2—H2109.7O3—C12—C13116.0 (3)
C1—C2—H2109.7C14—C13—C18120.6 (3)
N2—C3—C4111.6 (2)C14—C13—C12119.4 (3)
N2—C3—H3A109.3C18—C13—C12119.6 (3)
C4—C3—H3A109.3C13—C14—C15118.3 (3)
N2—C3—H3B109.3C13—C14—N2117.9 (3)
C4—C3—H3B109.3C15—C14—N2123.7 (3)
H3A—C3—H3B108.0C16—C15—C14119.6 (3)
N1—C4—C3111.8 (2)C16—C15—H15120.2
N1—C4—H4A109.3C14—C15—H15120.2
C3—C4—H4A109.3C17—C16—C15122.1 (3)
N1—C4—H4B109.3C17—C16—H16119.0
C3—C4—H4B109.3C15—C16—H16119.0
H4A—C4—H4B107.9C18—C17—C16118.7 (3)
O2—C5—O1117.5 (3)C18—C17—H17120.6
O2—C5—C6126.8 (3)C16—C17—H17120.6
O1—C5—C6115.6 (3)C17—C18—C13120.6 (3)
C7—C6—C11120.9 (3)C17—C18—H18119.7
C7—C6—C5120.4 (3)C13—C18—H18119.7
C5—O1—C1—N151.0 (3)C4—N1—C7—C6159.6 (2)
C5—O1—C1—C2172.0 (2)C1—N1—C7—C8152.4 (3)
C7—N1—C1—O156.5 (3)C4—N1—C7—C822.5 (4)
C4—N1—C1—O1170.4 (2)C6—C7—C8—C90.8 (4)
C7—N1—C1—C2172.9 (2)N1—C7—C8—C9178.7 (3)
C4—N1—C1—C253.9 (3)C7—C8—C9—C100.4 (5)
C12—O3—C2—N249.7 (3)C8—C9—C10—C111.3 (5)
C12—O3—C2—C1171.4 (2)C9—C10—C11—C60.9 (4)
C14—N2—C2—O359.1 (3)C7—C6—C11—C100.3 (4)
C3—N2—C2—O3165.26 (19)C5—C6—C11—C10174.5 (3)
C14—N2—C2—C1175.4 (2)C2—O3—C12—O4171.7 (2)
C3—N2—C2—C148.9 (3)C2—O3—C12—C1311.6 (4)
O1—C1—C2—O369.7 (2)O4—C12—C13—C14158.6 (3)
N1—C1—C2—O3169.9 (2)O3—C12—C13—C1417.8 (4)
O1—C1—C2—N2170.9 (2)O4—C12—C13—C1814.2 (4)
N1—C1—C2—N250.6 (3)O3—C12—C13—C18169.5 (3)
C14—N2—C3—C4176.7 (2)C18—C13—C14—C152.6 (4)
C2—N2—C3—C450.3 (3)C12—C13—C14—C15170.1 (2)
C7—N1—C4—C3174.0 (2)C18—C13—C14—N2179.6 (2)
C1—N1—C4—C356.1 (3)C12—C13—C14—N26.9 (4)
N2—C3—C4—N153.7 (3)C2—N2—C14—C1331.8 (3)
C1—O1—C5—O2166.5 (2)C3—N2—C14—C13165.6 (2)
C1—O1—C5—C616.3 (3)C2—N2—C14—C15151.4 (3)
O2—C5—C6—C7164.6 (3)C3—N2—C14—C1517.6 (4)
O1—C5—C6—C712.2 (4)C13—C14—C15—C161.9 (4)
O2—C5—C6—C1110.1 (4)N2—C14—C15—C16178.7 (3)
O1—C5—C6—C11173.0 (2)C14—C15—C16—C170.3 (5)
C11—C6—C7—C81.1 (4)C15—C16—C17—C181.8 (5)
C5—C6—C7—C8173.5 (2)C16—C17—C18—C131.1 (5)
C11—C6—C7—N1179.2 (2)C14—C13—C18—C171.1 (4)
C5—C6—C7—N14.5 (4)C12—C13—C18—C17171.6 (3)
C1—N1—C7—C629.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i0.982.803.7337 (3)159
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i0.9812.8033.7337 (3)158.7
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21271122 and 20901048) and Shanxi Scholarship Council of China (2013–018).

References

First citationBerger, D. J. & Telford, J. R. (2002). Inorg. Chim. Acta, 341, 132–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCiunik, Z. & Desiraju, G. R. (2001). Chem. Commun. pp. 703–704.  Web of Science CrossRef Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationLindeman, S. V., Kosynkin, D. & Kochi, J. K. (1998). J. Am. Chem. Soc. 120, 13268–13269.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds