organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1539-o1540

5-Chloro-2-(thio­phen-2-yl)-1-(thio­phen-2-ylmeth­yl)-1H-benzimidazole–6-chloro-2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole (0.94/0.06)

aDepartment of Chemistry, State University of New York-College at Geneseo, 1 College Circle, Geneseo, NY 14454, USA
*Correspondence e-mail: geiger@geneseo.edu

(Received 28 August 2013; accepted 8 September 2013; online 12 September 2013)

There are two independent mol­ecules in the asymmetric unit of the title compound, C16H11ClN2S2. The structure exhibits rotational disorder of the 2-thio­phen-2-yl substituent in each of the unique mol­ecules with a major:minor component ratio of 0.927 (2):0.073 (2). For one of the symmetry-unique molecules, 6.0 (2)% of the sites are occupied by the 6-chloro-isomer. The major component thio­phene rings make dihedral angles of 38.90 (12) and 36.32 (11)° with the benzimidazole rings in the two independent mol­ecules. In the crystal, mol­ecules are linked into chains parallel to [100] via weak C—H⋯N inter­actions.

Related literature

For the structure of 6-chloro-2-(thio­phen-2-yl)-1-(thio­phen-2-ylmeth­yl)-1H-benzimidazole, see: Geiger & Nellist (2013[Geiger, D. K. & Nellist, M. R. (2013). Acta Cryst. E69, o807.]). For the structure of the 5-bromo analogue, see: Geiger & Destefano (2012[Geiger, D. K. & Destefano, M. R. (2012). Acta Cryst. E68, o3123.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11ClN2S2

  • Mr = 330.84

  • Monoclinic, P 21 /n

  • a = 12.7407 (11) Å

  • b = 10.5126 (8) Å

  • c = 22.955 (2) Å

  • β = 100.461 (3)°

  • V = 3023.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 200 K

  • 0.80 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.62, Tmax = 0.90

  • 32145 measured reflections

  • 5356 independent reflections

  • 4419 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 1.08

  • 5356 reflections

  • 420 parameters

  • 227 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯N2 0.95 2.68 3.581 (3) 159
C28—H28B⋯N2 0.99 2.58 3.460 (3) 148
C3i—H3i⋯N4 0.95 2.68 3.584 (3) 159
C12i—H12Ai⋯N4 0.99 2.62 3.514 (3) 150
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound crystallized with two independent molecules in the asymmetric unit and is isomorphic with the corresponding 5-bromo derivative (Geiger & Destefano, 2012). Crystallization occurs with 6.0 (2)% of one of the sites (molecule 1) occupied by 6-chloro-2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole. Interestingly, the previously reported structure of the 6-chloro analogue displays co-crystallization with 3.1 (2)% of the 5-chloro derivative (Geiger & Nellist, 2013). Figure 1 shows a perspective view of the two molecules in the asymmetric unit with the atom-labeling scheme. Bond distances and angles agree well those reported for the 6-chloro analogue (Geiger & Nellist, 2013).

The benzimidazole moieties are essentially planar with r. m. s. deviation = 0.0150 Å for molecule 1 and 0.0183 Å for molecule 2. The greatest deviation from planarity is 0.0235 (19) Å for C4 in molecule 1 and 0.0271 (19) Å for C21 in molecule 2. In both molecules, the 2-thiophene substituents are rotationally disordered with a major:minor component refined-occupancy ratio of 0.927 (2):0.073 (2). The major component thiophene rings are canted 38.90 (12)° and 36.32 (11)° from the benzimidazole rings for molecules 1 and 2, respectively.

Chains of molecules parallel to [1 0 0] are held together via weak C—H···N and C—H···thiophene ring interactions. The motif is shown in Figure 2. The H6···thiopheneS4 centroid distance is 2.60 Å and the H19···thiopheneS2 centroid distance is 2.66 Å.

Related literature top

For the structure of 6-chloro-2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole, see: Geiger & Nellist (2013). For the structure of the 5-bromo analogue, see: Geiger & Destefano (2012).

Experimental top

1,2-diamine-4-chlorobenzene (6.3 mmol, 0.90 g) was dissolved in 30 mL ethanol under nitrogen. Two equivalents of 2-thiophenecarboxaldehyde (1.3 mL) was added dropwise. After three days, the solvent was removed under reduced pressure and the crude product was chromatographed (silica gel) using a mixture of 30% hexane in ethyl acetate. The first fraction produced hexagonal shaped crystals (Geiger & Nellist, 2013) and the second fraction produced needle-shaped crystals on slow evaporation. Crystals from the second fraction were used for X-ray diffraction experiments. The overall yield was 59%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All hydrogen atoms were observed in difference fourier maps. The H atoms were refined using a riding model with a C—H distance of 0.99 Å for the methylene carbon atoms and 0.95 Å for the phenyl and thiophene carbon atoms. All C—H hydrogen atom thermal parameters were set using the approximation Uiso = 1.2Ueq.

The Cl and H atoms of the major and minor co-crystallization components were modeled as a disorder involving two parts, each containing a chlorine atom and a hydrogen atom. The disorder was statistically significant for only one of the molecules in the asymmetric unit. The site occupancy for the major component refined to 0.940 (2).

The 2-thiophene substituents are rotationally disordered. A model was developed in which the minor components of the thiophene rings were defined using the metrics of the major component as a guide. The disordered five-member rings were constrained to planarity using FLAT. Corresponding bond distances of the minor component and major component were set equal using SAME and corresponding thermal parameters were held the same using EADP. All atoms were refined anisotropically with hydrogen atoms in calculated positions using a riding model. With these constraints, the site occupancy of the major component refined to 0.927 (2).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker 2010); data reduction: SAINT (Bruker 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound. Thermal parameters are drawn at the 50% probability level. Only major contributors to the disorder model are shown.
[Figure 2] Fig. 2. Perspective drawing showing the intermolecular contacts forming chains parallel to [1 0 0]. Only the major components of the disorder model are shown.
5-Chloro-2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole–6-chloro-2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole (0.94/0.06) top
Crystal data top
C16H11ClN2S2F(000) = 1360
Mr = 330.84Dx = 1.454 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.7407 (11) ÅCell parameters from 9493 reflections
b = 10.5126 (8) Åθ = 2.6–24.9°
c = 22.955 (2) ŵ = 0.52 mm1
β = 100.461 (3)°T = 200 K
V = 3023.4 (4) Å3Plate, colourless
Z = 80.80 × 0.40 × 0.20 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
5356 independent reflections
Radiation source: XOS X-beam microfocus source4419 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.072
ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 1514
Tmin = 0.62, Tmax = 0.90k = 1211
32145 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0256P)2 + 1.7458P]
where P = (Fo2 + 2Fc2)/3
5356 reflections(Δ/σ)max < 0.001
420 parametersΔρmax = 0.34 e Å3
227 restraintsΔρmin = 0.44 e Å3
Crystal data top
C16H11ClN2S2V = 3023.4 (4) Å3
Mr = 330.84Z = 8
Monoclinic, P21/nMo Kα radiation
a = 12.7407 (11) ŵ = 0.52 mm1
b = 10.5126 (8) ÅT = 200 K
c = 22.955 (2) Å0.80 × 0.40 × 0.20 mm
β = 100.461 (3)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
5356 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
4419 reflections with I > 2σ(I)
Tmin = 0.62, Tmax = 0.90Rint = 0.072
32145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038227 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.08Δρmax = 0.34 e Å3
5356 reflectionsΔρmin = 0.44 e Å3
420 parameters
Special details top

Experimental. 1H NMR spectrum (CDCl3, 400 MHz, p.p.m.). 7.71 (1 H, d), 7.53 (1 H, d), 7.48 (1 H, d), 7.34 (1 H, s), 7.28 (2 H, m), 7.17 (1 H, t), 6.96 (1 H, t), 6.91 (1 H, d), 5.60 (2 H, s).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.61379 (6)0.64223 (7)0.03514 (3)0.0429 (2)0.9401 (19)
Cl110.8208 (9)0.6153 (12)0.0775 (5)0.049 (4)0.0599 (19)
Cl20.24867 (6)0.62779 (8)0.45858 (3)0.0552 (2)
S10.46460 (5)0.23990 (8)0.31622 (3)0.0333 (2)0.9272 (19)
C80.5695 (2)0.3464 (3)0.32835 (12)0.0277 (5)0.9272 (19)
C90.6012 (3)0.3670 (5)0.3868 (2)0.0408 (11)0.9272 (19)
H90.65820.42270.40230.049*0.9272 (19)
C100.5428 (4)0.2989 (4)0.42304 (16)0.0457 (9)0.9272 (19)
H100.55550.30360.46510.055*0.9272 (19)
C110.4661 (3)0.2258 (4)0.39051 (14)0.0415 (8)0.9272 (19)
H110.41880.17280.40710.05*0.9272 (19)
S2010.6207 (13)0.3828 (18)0.3975 (8)0.0333 (2)0.0728 (19)
C2080.5691 (18)0.347 (2)0.3258 (8)0.0277 (5)0.0728 (19)
C2090.495 (3)0.255 (4)0.3208 (14)0.0408 (11)0.0728 (19)
H2090.46150.21980.2840.049*0.0728 (19)
C2100.471 (4)0.218 (5)0.3759 (17)0.0457 (9)0.0728 (19)
H2100.41620.15970.38050.055*0.0728 (19)
C2110.537 (4)0.274 (5)0.4217 (14)0.0415 (8)0.0728 (19)
H2110.53720.25630.46230.05*0.0728 (19)
S30.08034 (5)0.24052 (8)0.17321 (4)0.0362 (2)0.9272 (19)
C240.0189 (2)0.3445 (3)0.16210 (12)0.0291 (5)0.9272 (19)
C250.0157 (3)0.3639 (5)0.10334 (19)0.0409 (10)0.9272 (19)
H250.06350.4190.08830.049*0.9272 (19)
C260.0651 (3)0.2945 (3)0.06668 (15)0.0427 (9)0.9272 (19)
H260.07730.29680.02460.051*0.9272 (19)
C270.1236 (2)0.2238 (4)0.09864 (14)0.0416 (8)0.9272 (19)
H270.18180.17130.08160.05*0.9272 (19)
S2030.0313 (13)0.3664 (18)0.0909 (8)0.0362 (2)0.0728 (19)
C2040.0221 (18)0.345 (2)0.1633 (8)0.0291 (5)0.0728 (19)
C2050.055 (3)0.263 (4)0.1702 (14)0.0409 (10)0.0728 (19)
H2050.07170.24020.20760.049*0.0728 (19)
C2060.110 (3)0.214 (5)0.1156 (16)0.0427 (9)0.0728 (19)
H2060.1680.15580.11210.051*0.0728 (19)
C2070.071 (4)0.261 (5)0.0688 (14)0.0416 (8)0.0728 (19)
H2070.09730.23850.02870.05*0.0728 (19)
N10.70729 (13)0.43276 (18)0.27330 (8)0.0266 (4)
N20.53427 (13)0.43584 (18)0.22876 (9)0.0289 (4)
N30.19102 (13)0.43204 (18)0.21832 (8)0.0274 (4)
N40.04623 (13)0.43177 (18)0.26202 (9)0.0284 (4)
C10.59642 (16)0.4881 (2)0.19105 (10)0.0268 (5)
C20.70448 (16)0.4859 (2)0.21790 (10)0.0260 (5)
C30.78547 (17)0.5283 (2)0.18928 (11)0.0318 (6)
H30.85830.52620.20810.038*
C40.75470 (18)0.5735 (2)0.13244 (11)0.0345 (6)
H40.80730.60190.11090.041*0.9401 (19)
C50.64661 (19)0.5781 (2)0.10605 (11)0.0315 (5)
H50.6280.61150.06710.038*0.0599 (19)
C60.56597 (17)0.5361 (2)0.13409 (10)0.0306 (5)
H60.49320.53990.11540.037*
C70.60260 (16)0.4044 (2)0.27688 (10)0.0262 (5)
C120.80522 (16)0.4025 (2)0.31486 (10)0.0289 (5)
H12A0.86180.38150.29210.035*
H12B0.79260.32590.33770.035*
C170.22345 (16)0.4840 (2)0.27401 (10)0.0258 (5)
C180.13203 (16)0.4836 (2)0.30049 (10)0.0267 (5)
C190.13799 (17)0.5298 (2)0.35781 (11)0.0306 (5)
H190.0770.53340.37620.037*
C200.23665 (18)0.5700 (2)0.38649 (10)0.0321 (5)
C210.32827 (17)0.5684 (2)0.36057 (11)0.0317 (5)
H210.39460.59640.38270.038*
C220.32240 (16)0.5266 (2)0.30348 (10)0.0292 (5)
H220.38320.52660.28490.035*
C230.08426 (15)0.4026 (2)0.21395 (10)0.0262 (5)
C280.26310 (16)0.4040 (2)0.17696 (10)0.0284 (5)
H28A0.23560.32890.15290.034*
H28B0.33410.38150.20.034*
S20.86470 (5)0.66077 (6)0.33429 (3)0.03759 (17)
C130.84454 (16)0.5082 (2)0.35767 (11)0.0282 (5)
C140.87606 (16)0.4981 (2)0.41784 (11)0.0325 (6)
H140.87250.42130.43920.039*
C150.91451 (18)0.6146 (3)0.44476 (12)0.0396 (6)
H150.9390.62460.48610.047*
C160.91244 (19)0.7094 (3)0.40503 (12)0.0418 (6)
H160.9350.79390.41530.05*
S40.31336 (5)0.66291 (6)0.16150 (3)0.03820 (17)
C290.27602 (16)0.5123 (2)0.13586 (11)0.0294 (5)
C300.26814 (17)0.5050 (2)0.07566 (11)0.0351 (6)
H300.24930.42970.05330.042*
C310.29151 (19)0.6233 (3)0.05033 (12)0.0403 (6)
H310.29020.63560.00920.048*
C320.3156 (2)0.7157 (3)0.09140 (12)0.0431 (7)
H320.3320.80080.08230.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0563 (4)0.0435 (4)0.0311 (4)0.0043 (3)0.0138 (3)0.0081 (3)
Cl110.051 (6)0.063 (9)0.034 (7)0.011 (5)0.009 (5)0.000 (6)
Cl20.0515 (4)0.0819 (6)0.0331 (4)0.0096 (4)0.0102 (3)0.0183 (4)
S10.0295 (4)0.0352 (4)0.0347 (4)0.0119 (3)0.0046 (3)0.0021 (3)
C80.0231 (10)0.0265 (13)0.0337 (14)0.0024 (9)0.0057 (9)0.0012 (11)
C90.033 (2)0.052 (2)0.038 (2)0.0188 (16)0.0054 (16)0.0017 (18)
C100.0437 (16)0.063 (3)0.0309 (16)0.0155 (16)0.0080 (12)0.0035 (15)
C110.0361 (14)0.0511 (19)0.038 (2)0.0146 (13)0.0099 (15)0.0091 (17)
S2010.0295 (4)0.0352 (4)0.0347 (4)0.0119 (3)0.0046 (3)0.0021 (3)
C2080.0231 (10)0.0265 (13)0.0337 (14)0.0024 (9)0.0057 (9)0.0012 (11)
C2090.033 (2)0.052 (2)0.038 (2)0.0188 (16)0.0054 (16)0.0017 (18)
C2100.0437 (16)0.063 (3)0.0309 (16)0.0155 (16)0.0080 (12)0.0035 (15)
C2110.0361 (14)0.0511 (19)0.038 (2)0.0146 (13)0.0099 (15)0.0091 (17)
S30.0271 (4)0.0369 (5)0.0435 (4)0.0089 (3)0.0037 (3)0.0040 (3)
C240.0210 (10)0.0310 (13)0.0346 (14)0.0000 (9)0.0032 (9)0.0021 (11)
C250.0257 (19)0.054 (2)0.043 (3)0.0045 (15)0.0062 (13)0.0012 (19)
C260.0367 (14)0.053 (3)0.0351 (16)0.0008 (15)0.0030 (12)0.0060 (15)
C270.0280 (14)0.0468 (19)0.046 (2)0.0060 (13)0.0046 (13)0.0113 (17)
S2030.0271 (4)0.0369 (5)0.0435 (4)0.0089 (3)0.0037 (3)0.0040 (3)
C2040.0210 (10)0.0310 (13)0.0346 (14)0.0000 (9)0.0032 (9)0.0021 (11)
C2050.0257 (19)0.054 (2)0.043 (3)0.0045 (15)0.0062 (13)0.0012 (19)
C2060.0367 (14)0.053 (3)0.0351 (16)0.0008 (15)0.0030 (12)0.0060 (15)
C2070.0280 (14)0.0468 (19)0.046 (2)0.0060 (13)0.0046 (13)0.0113 (17)
N10.0219 (8)0.0274 (11)0.0308 (11)0.0016 (7)0.0059 (8)0.0029 (9)
N20.0232 (9)0.0330 (11)0.0311 (11)0.0019 (8)0.0067 (8)0.0024 (9)
N30.0216 (9)0.0320 (11)0.0291 (11)0.0019 (8)0.0059 (7)0.0055 (9)
N40.0207 (9)0.0320 (11)0.0325 (11)0.0012 (8)0.0048 (8)0.0009 (9)
C10.0269 (11)0.0248 (13)0.0299 (13)0.0019 (9)0.0086 (9)0.0013 (10)
C20.0261 (10)0.0214 (12)0.0315 (13)0.0016 (9)0.0078 (9)0.0009 (10)
C30.0259 (11)0.0303 (14)0.0413 (15)0.0001 (9)0.0118 (10)0.0007 (11)
C40.0391 (13)0.0263 (14)0.0438 (16)0.0008 (10)0.0230 (11)0.0012 (12)
C50.0433 (13)0.0223 (13)0.0317 (14)0.0043 (10)0.0145 (11)0.0018 (11)
C60.0294 (11)0.0306 (14)0.0324 (14)0.0053 (10)0.0071 (10)0.0012 (11)
C70.0230 (10)0.0262 (13)0.0299 (13)0.0024 (9)0.0065 (9)0.0026 (10)
C120.0217 (10)0.0290 (13)0.0356 (14)0.0020 (9)0.0042 (9)0.0053 (11)
C170.0239 (10)0.0252 (13)0.0283 (13)0.0015 (9)0.0047 (9)0.0006 (10)
C180.0224 (10)0.0266 (13)0.0307 (13)0.0017 (9)0.0038 (9)0.0019 (10)
C190.0262 (11)0.0350 (14)0.0320 (14)0.0040 (10)0.0093 (10)0.0001 (11)
C200.0376 (12)0.0325 (14)0.0259 (13)0.0004 (10)0.0049 (10)0.0035 (11)
C210.0269 (11)0.0323 (14)0.0346 (14)0.0033 (10)0.0020 (10)0.0024 (11)
C220.0213 (10)0.0323 (14)0.0346 (14)0.0005 (9)0.0070 (9)0.0021 (11)
C230.0202 (10)0.0260 (13)0.0315 (13)0.0002 (9)0.0022 (9)0.0013 (10)
C280.0233 (10)0.0315 (13)0.0314 (13)0.0000 (9)0.0078 (9)0.0082 (11)
S20.0398 (3)0.0302 (4)0.0410 (4)0.0011 (3)0.0027 (3)0.0069 (3)
C130.0192 (10)0.0301 (13)0.0359 (14)0.0002 (9)0.0067 (9)0.0052 (11)
C140.0259 (11)0.0348 (14)0.0367 (15)0.0021 (10)0.0056 (10)0.0079 (12)
C150.0312 (12)0.0489 (17)0.0368 (15)0.0022 (11)0.0013 (10)0.0028 (13)
C160.0397 (13)0.0332 (15)0.0501 (17)0.0011 (11)0.0018 (12)0.0039 (13)
S40.0412 (3)0.0324 (4)0.0424 (4)0.0001 (3)0.0117 (3)0.0055 (3)
C290.0193 (10)0.0344 (14)0.0353 (14)0.0007 (9)0.0070 (9)0.0054 (11)
C300.0282 (11)0.0452 (16)0.0336 (14)0.0016 (11)0.0100 (10)0.0029 (12)
C310.0371 (13)0.0501 (18)0.0352 (15)0.0061 (12)0.0103 (11)0.0070 (13)
C320.0464 (14)0.0340 (15)0.0520 (18)0.0050 (12)0.0176 (13)0.0077 (14)
Geometric parameters (Å, º) top
Cl1—C51.741 (2)N3—C171.383 (3)
Cl11—C41.696 (10)N3—C281.466 (3)
Cl2—C201.743 (2)N4—C231.319 (3)
S1—C111.708 (3)N4—C181.386 (3)
S1—C81.728 (3)C1—C61.390 (3)
C8—C91.347 (5)C1—C21.403 (3)
C8—C71.457 (3)C2—C31.393 (3)
C9—C101.408 (5)C3—C41.377 (3)
C9—H90.95C3—H30.95
C10—C111.355 (4)C4—C51.401 (3)
C10—H100.95C4—H40.95
C11—H110.95C5—C61.380 (3)
S201—C2081.701 (16)C5—H50.95
S201—C2111.719 (16)C6—H60.95
C208—C2091.337 (16)C12—C131.507 (3)
C208—C71.410 (17)C12—H12A0.99
C209—C2101.410 (16)C12—H12B0.99
C209—H2090.95C17—C221.392 (3)
C210—C2111.359 (16)C17—C181.408 (3)
C210—H2100.95C18—C191.392 (3)
C211—H2110.95C19—C201.375 (3)
S3—C271.709 (3)C19—H190.95
S3—C241.725 (3)C20—C211.403 (3)
C24—C251.358 (5)C21—C221.371 (3)
C24—C231.457 (3)C21—H210.95
C25—C261.410 (5)C22—H220.95
C25—H250.95C28—C291.507 (3)
C26—C271.358 (4)C28—H28A0.99
C26—H260.95C28—H28B0.99
C27—H270.95S2—C161.706 (3)
S203—C2041.703 (16)S2—C131.725 (2)
S203—C2071.717 (16)C13—C141.371 (3)
C204—C2051.340 (16)C14—C151.418 (4)
C204—C231.419 (16)C14—H140.95
C205—C2061.415 (16)C15—C161.348 (4)
C205—H2050.95C15—H150.95
C206—C2071.357 (15)C16—H160.95
C206—H2060.95S4—C321.707 (3)
C207—H2070.95S4—C291.726 (2)
N1—C21.383 (3)C29—C301.369 (3)
N1—C71.384 (3)C30—C311.427 (4)
N1—C121.461 (3)C30—H300.95
N2—C71.319 (3)C31—C321.350 (4)
N2—C11.388 (3)C31—H310.95
N3—C231.381 (3)C32—H320.95
C11—S1—C891.57 (14)C6—C5—Cl1119.14 (19)
C9—C8—C7131.5 (3)C4—C5—Cl1117.90 (18)
C9—C8—S1110.3 (2)C6—C5—H5118.5
C7—C8—S1118.0 (2)C4—C5—H5118.5
C8—C9—C10114.3 (3)Cl1—C5—H51.2
C8—C9—H9122.8C5—C6—C1116.8 (2)
C10—C9—H9122.8C5—C6—H6121.6
C11—C10—C9111.6 (3)C1—C6—H6121.6
C11—C10—H10124.2N2—C7—N1113.1 (2)
C9—C10—H10124.2N2—C7—C208121.8 (10)
C10—C11—S1112.2 (2)N1—C7—C208125.1 (10)
C10—C11—H11123.9N2—C7—C8122.7 (2)
S1—C11—H11123.9N1—C7—C8124.2 (2)
C208—S201—C21190.7 (11)C208—C7—C81.3 (12)
C209—C208—C7123 (2)N1—C12—C13114.12 (18)
C209—C208—S201112.8 (13)N1—C12—H12A108.7
C7—C208—S201123.7 (19)C13—C12—H12A108.7
C208—C209—C210112.7 (16)N1—C12—H12B108.7
C208—C209—H209123.6C13—C12—H12B108.7
C210—C209—H209123.6H12A—C12—H12B107.6
C211—C210—C209111.7 (17)N3—C17—C22132.0 (2)
C211—C210—H210124.2N3—C17—C18105.43 (18)
C209—C210—H210124.2C22—C17—C18122.6 (2)
C210—C211—S201111.9 (15)N4—C18—C19129.87 (19)
C210—C211—H211124.1N4—C18—C17110.2 (2)
S201—C211—H211124.1C19—C18—C17120.0 (2)
C27—S3—C2491.65 (14)C20—C19—C18116.6 (2)
C25—C24—C23131.2 (3)C20—C19—H19121.7
C25—C24—S3110.6 (2)C18—C19—H19121.7
C23—C24—S3118.1 (2)C19—C20—C21123.5 (2)
C24—C25—C26113.7 (3)C19—C20—Cl2118.46 (18)
C24—C25—H25123.1C21—C20—Cl2118.05 (18)
C26—C25—H25123.1C22—C21—C20120.3 (2)
C27—C26—C25111.9 (3)C22—C21—H21119.9
C27—C26—H26124.0C20—C21—H21119.9
C25—C26—H26124.0C21—C22—C17117.1 (2)
C26—C27—S3112.1 (2)C21—C22—H22121.5
C26—C27—H27123.9C17—C22—H22121.5
S3—C27—H27123.9N4—C23—N3113.17 (19)
C204—S203—C20791.1 (11)N4—C23—C204123.4 (10)
C205—C204—C23120 (2)N3—C23—C204123.5 (10)
C205—C204—S203112.5 (13)N4—C23—C24122.6 (2)
C23—C204—S203128.0 (19)N3—C23—C24124.3 (2)
C204—C205—C206112.7 (16)C204—C23—C241.0 (9)
C204—C205—H205123.7N3—C28—C29113.96 (18)
C206—C205—H205123.7N3—C28—H28A108.8
C207—C206—C205112.1 (17)C29—C28—H28A108.8
C207—C206—H206124.0N3—C28—H28B108.8
C205—C206—H206124.0C29—C28—H28B108.8
C206—C207—S203111.6 (15)H28A—C28—H28B107.7
C206—C207—H207124.2C16—S2—C1391.71 (13)
S203—C207—H207124.2C14—C13—C12127.0 (2)
C2—N1—C7106.10 (18)C14—C13—S2110.64 (18)
C2—N1—C12124.36 (17)C12—C13—S2122.21 (18)
C7—N1—C12129.22 (19)C13—C14—C15112.8 (2)
C7—N2—C1104.91 (17)C13—C14—H14123.6
C23—N3—C17106.32 (17)C15—C14—H14123.6
C23—N3—C28129.24 (19)C16—C15—C14112.4 (2)
C17—N3—C28124.14 (17)C16—C15—H15123.8
C23—N4—C18104.92 (17)C14—C15—H15123.8
N2—C1—C6129.6 (2)C15—C16—S2112.5 (2)
N2—C1—C2110.2 (2)C15—C16—H16123.8
C6—C1—C2120.2 (2)S2—C16—H16123.8
N1—C2—C3131.7 (2)C32—S4—C2991.59 (13)
N1—C2—C1105.68 (18)C30—C29—C28126.4 (2)
C3—C2—C1122.6 (2)C30—C29—S4111.14 (19)
C4—C3—C2116.7 (2)C28—C29—S4122.31 (17)
C4—C3—H3121.6C29—C30—C31112.3 (2)
C2—C3—H3121.6C29—C30—H30123.8
C3—C4—C5120.7 (2)C31—C30—H30123.8
C3—C4—Cl11134.4 (4)C32—C31—C30112.4 (2)
C5—C4—Cl11104.5 (4)C32—C31—H31123.8
C3—C4—H4119.7C30—C31—H31123.8
C5—C4—H4119.7C31—C32—S4112.6 (2)
Cl11—C4—H416.2C31—C32—H32123.7
C6—C5—C4123.0 (2)S4—C32—H32123.7
C11—S1—C8—C90.0 (3)C9—C8—C7—N141.4 (5)
C11—S1—C8—C7175.5 (2)S1—C8—C7—N1144.2 (2)
C7—C8—C9—C10174.6 (3)C9—C8—C7—C208180.100
S1—C8—C9—C100.1 (5)S1—C8—C7—C20810.40
C8—C9—C10—C110.2 (6)C2—N1—C12—C1391.6 (3)
C9—C10—C11—S10.2 (5)C7—N1—C12—C1395.8 (3)
C8—S1—C11—C100.1 (3)C23—N3—C17—C22177.4 (2)
C211—S201—C208—C2091 (3)C28—N3—C17—C223.2 (4)
C211—S201—C208—C7179.9 (16)C23—N3—C17—C180.4 (2)
C7—C208—C209—C210177 (2)C28—N3—C17—C18174.5 (2)
S201—C208—C209—C2104 (4)C23—N4—C18—C19179.4 (2)
C208—C209—C210—C2116 (5)C23—N4—C18—C170.3 (3)
C209—C210—C211—S2015 (5)N3—C17—C18—N40.4 (3)
C208—S201—C211—C2102 (4)C22—C17—C18—N4177.6 (2)
C27—S3—C24—C250.5 (3)N3—C17—C18—C19179.6 (2)
C27—S3—C24—C23176.1 (2)C22—C17—C18—C191.6 (4)
C23—C24—C25—C26175.6 (3)N4—C18—C19—C20176.7 (2)
S3—C24—C25—C260.8 (5)C17—C18—C19—C202.3 (3)
C24—C25—C26—C270.7 (5)C18—C19—C20—C211.2 (4)
C25—C26—C27—S30.4 (4)C18—C19—C20—Cl2179.58 (17)
C24—S3—C27—C260.1 (3)C19—C20—C21—C220.7 (4)
C207—S203—C204—C2051 (3)Cl2—C20—C21—C22178.49 (19)
C207—S203—C204—C23179.9 (18)C20—C21—C22—C171.5 (3)
C23—C204—C205—C206180 (2)N3—C17—C22—C21177.1 (2)
S203—C204—C205—C2060 (3)C18—C17—C22—C210.3 (3)
C204—C205—C206—C2070 (5)C18—N4—C23—N30.1 (3)
C205—C206—C207—S2031 (5)C18—N4—C23—C204179.0 (12)
C204—S203—C207—C2061 (4)C18—N4—C23—C24179.8 (2)
C7—N2—C1—C6179.3 (2)C17—N3—C23—N40.2 (3)
C7—N2—C1—C20.6 (2)C28—N3—C23—N4174.0 (2)
C7—N1—C2—C3177.6 (2)C17—N3—C23—C204178.8 (12)
C12—N1—C2—C33.6 (4)C28—N3—C23—C2045.0 (12)
C7—N1—C2—C10.8 (2)C17—N3—C23—C24179.5 (2)
C12—N1—C2—C1174.8 (2)C28—N3—C23—C245.7 (4)
N2—C1—C2—N10.9 (2)C205—C204—C23—N433 (2)
C6—C1—C2—N1179.8 (2)S203—C204—C23—N4146.3 (13)
N2—C1—C2—C3177.7 (2)C205—C204—C23—N3146 (2)
C6—C1—C2—C31.2 (3)S203—C204—C23—N335 (2)
N1—C2—C3—C4178.1 (2)C205—C204—C23—C2470.80
C1—C2—C3—C40.0 (3)S203—C204—C23—C24110.80
C2—C3—C4—C51.3 (3)C25—C24—C23—N4141.0 (4)
C2—C3—C4—Cl11170.1 (6)S3—C24—C23—N433.6 (3)
C3—C4—C5—C61.4 (4)C25—C24—C23—N339.4 (5)
Cl11—C4—C5—C6172.3 (5)S3—C24—C23—N3146.1 (2)
C3—C4—C5—Cl1177.54 (19)C25—C24—C23—C20480.80
Cl11—C4—C5—Cl18.8 (5)S3—C24—C23—C204110.80
C4—C5—C6—C10.1 (3)C23—N3—C28—C2996.9 (3)
Cl1—C5—C6—C1178.77 (17)C17—N3—C28—C2990.3 (3)
N2—C1—C6—C5177.5 (2)N1—C12—C13—C14132.0 (2)
C2—C1—C6—C51.1 (3)N1—C12—C13—S252.9 (2)
C1—N2—C7—N10.1 (3)C16—S2—C13—C141.03 (17)
C1—N2—C7—C208179.4 (12)C16—S2—C13—C12176.80 (18)
C1—N2—C7—C8179.5 (2)C12—C13—C14—C15176.60 (19)
C2—N1—C7—N20.5 (3)S2—C13—C14—C151.1 (2)
C12—N1—C7—N2174.1 (2)C13—C14—C15—C160.6 (3)
C2—N1—C7—C208178.9 (13)C14—C15—C16—S20.2 (3)
C12—N1—C7—C2085.3 (13)C13—S2—C16—C150.73 (19)
C2—N1—C7—C8179.9 (2)N3—C28—C29—C30131.2 (2)
C12—N1—C7—C86.4 (4)N3—C28—C29—S453.8 (2)
C209—C208—C7—N241 (2)C32—S4—C29—C301.10 (18)
S201—C208—C7—N2140.1 (12)C32—S4—C29—C28176.82 (18)
C209—C208—C7—N1138 (2)C28—C29—C30—C31176.18 (19)
S201—C208—C7—N141 (2)S4—C29—C30—C310.7 (2)
C209—C208—C7—C8180.100C29—C30—C31—C320.3 (3)
S201—C208—C7—C80.40C30—C31—C32—S41.1 (3)
C9—C8—C7—N2138.1 (4)C29—S4—C32—C311.3 (2)
S1—C8—C7—N236.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···N20.952.683.581 (3)159
C28—H28B···N20.992.583.460 (3)148
C3i—H3i···N40.952.683.584 (3)159
C12i—H12Ai···N40.992.623.514 (3)150
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···N20.952.683.581 (3)158.7
C28—H28B···N20.992.583.460 (3)148.1
C3i—H3i···N40.952.683.584 (3)159.4
C12i—H12Ai···N40.992.623.514 (3)150.3
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by a Congressionally directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation. MRN thanks Dr Bruce Ristow for a summer research fellowship administered by the Geneseo Foundation.

References

First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGeiger, D. K. & Destefano, M. R. (2012). Acta Cryst. E68, o3123.  CSD CrossRef IUCr Journals Google Scholar
First citationGeiger, D. K. & Nellist, M. R. (2013). Acta Cryst. E69, o807.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1539-o1540
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds