organic compounds
2-Benzyl-5-methoxyisoindoline-1,3-dione
aDepartment of Organic Chemistry, University of Vigo, E-36310 Vigo, Spain
*Correspondence e-mail: mcteran@uvigo.es
The title N-benzylphthalimide derivative, C16H13NO3, consists of two planar moieties, viz. the phthalimide system (r.m.s. deviation = 0.007 Å) and the phenyl ring, which make a dihedral angle of 84.7 (6)°. The methoxy group is almost coplanar with the phathalimide ring, as shown by the C—C—O—C torsion angle of −171.5 (2)°. In the crystal, the molecules are self-assembled via non-classical C—H⋯O hydrogen bonds, forming a tape motif along [110].
CCDC reference: 962872
Related literature
For background to the applications of phthalimide derivatives, see: Luzzio (2005); Barooah & Baruah (2007); Sharma et al. (2010); Warzecha et al. (2006). For different approaches to synthesize N-benzylphthalimides, see: Luzzio (2005); Cao & Alper (2010); Vidal et al. (2000). For the synthesis of the title compound, see: Favor et al. (2008); Haj-Yehia & Khan (2004). For related structures, see: Warzecha et al. (2006a,b,c); Jiang et al. (2008).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
CCDC reference: 962872
10.1107/S160053681302638X/fy2100sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681302638X/fy2100Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681302638X/fy2100Isup3.cml
The synthesis of 2-benzyl-5-methoxyisoindoline-1,3-dione was carried out in a microwave oven (CEM discover system 908010, monomode) according to the following protocol: a solution of dimethyl 4-methoxyphthalate (50 mg, 0.22 mmol), benzylhydrazine dihydrochloride (174 mg, 0.89 mmol) and triethylamine (0.37 ml, 2.65 mmol), in ethanol (5 ml) was introduced in a Pyrex flask and submitted to microwave irradiation (280 W, 185 °C) for 30 min. The solvent was evaporated under reduced pressure and the residue was purified by → 20:1) to afford a white solid (9.3 mg, 15%). The product was dissolved in ethyl acetate (3 ml) and the solution was kept at room temperature for 1 d. Natural evaporation gave colourless block-like crystals of the title compound (m.p. 448–449 K) suitable for X-ray diffraction analysis.
on silica gel (hexane/ethyl acetate 40:1All H-atoms were positioned and refined using a riding model with d(C—H)= 0.95 Å, Uiso = 1.2Ueq(C) for aromatic CH, d(C—H)= 0.99 Å, Uiso = 1.2Ueq(C) for CH2 group and d(C—H)= 0.98 Å, Uiso = 1.5Ueq(C) for CH3 group.
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C16H13NO3 | F(000) = 560 |
Mr = 267.27 | Dx = 1.409 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.476 (4) Å | Cell parameters from 1091 reflections |
b = 5.264 (3) Å | θ = 2.6–24.8° |
c = 28.295 (13) Å | µ = 0.10 mm−1 |
β = 93.589 (9)° | T = 100 K |
V = 1260.0 (11) Å3 | Prism, colourless |
Z = 4 | 0.49 × 0.13 × 0.07 mm |
Bruker SMART 1000 CCD diffractometer | 2204 independent reflections |
Radiation source: fine-focus sealed tube | 1433 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.083 |
ϕ and ω scans | θmax = 25.1°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→9 |
Tmin = 0.954, Tmax = 0.993 | k = −5→6 |
5768 measured reflections | l = −33→31 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.137 | w = 1/[σ2(Fo2) + (0.0548P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2204 reflections | Δρmax = 0.30 e Å−3 |
183 parameters | Δρmin = −0.27 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.022 (4) |
C16H13NO3 | V = 1260.0 (11) Å3 |
Mr = 267.27 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.476 (4) Å | µ = 0.10 mm−1 |
b = 5.264 (3) Å | T = 100 K |
c = 28.295 (13) Å | 0.49 × 0.13 × 0.07 mm |
β = 93.589 (9)° |
Bruker SMART 1000 CCD diffractometer | 2204 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1433 reflections with I > 2σ(I) |
Tmin = 0.954, Tmax = 0.993 | Rint = 0.083 |
5768 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.30 e Å−3 |
2204 reflections | Δρmin = −0.27 e Å−3 |
183 parameters |
Experimental. 1H NMR (400 MHz, CDCl3) δ p.p.m.: 7.77 (d, J = 8.3 Hz, 1H, H7), 7.44 (m, 2H, H—Ph), 7.31 (m, 4H, H4, 3xH-Ph), 7.16 (dd, J = 8.3 Hz, 2.3 Hz, 1H, H6), 4.85 (s, 2H, CH2), 3.95 (s, 3H, OCH3). 13C MNR (100 MHz, CDCl3) δ p.p.m.: 167.9 (2xCO), 164.7 (C5), 136.5 (C), 134.7 (C), 128.7 (CH—Ar), 128.6 (CH—Ar), 127.8 (CH—Ar), 125.1 (C7), 124.0 (C), 119.7 (C6), 108.2 (C4), 56.1 (CH3), 41.6 (CH2). EMAR (ESI) calcld. for: [C16H14NO3]+ 268.09682; Found: 268.09697 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3240 (3) | 0.6996 (5) | 0.92388 (10) | 0.0213 (6) | |
O1 | 0.4087 (2) | 0.5180 (4) | 0.91838 (6) | 0.0267 (5) | |
N2 | 0.2352 (3) | 0.8192 (4) | 0.88663 (7) | 0.0211 (6) | |
C3 | 0.1503 (3) | 1.0257 (5) | 0.90228 (10) | 0.0215 (7) | |
O3 | 0.0646 (2) | 1.1594 (4) | 0.87683 (7) | 0.0288 (5) | |
C3A | 0.1874 (3) | 1.0402 (5) | 0.95430 (9) | 0.0195 (6) | |
C4 | 0.1349 (3) | 1.2090 (5) | 0.98669 (10) | 0.0231 (7) | |
H4 | 0.0649 | 1.3435 | 0.9774 | 0.028* | |
C5 | 0.1887 (3) | 1.1749 (5) | 1.03403 (9) | 0.0217 (6) | |
O5 | 0.1292 (2) | 1.3429 (4) | 1.06478 (6) | 0.0270 (5) | |
C6 | 0.2935 (3) | 0.9800 (5) | 1.04724 (10) | 0.0230 (7) | |
H6 | 0.3303 | 0.9626 | 1.0795 | 0.028* | |
C7 | 0.3447 (3) | 0.8103 (5) | 1.01369 (10) | 0.0241 (7) | |
H7 | 0.4147 | 0.6754 | 1.0227 | 0.029* | |
C7A | 0.2915 (3) | 0.8428 (5) | 0.96708 (9) | 0.0197 (6) | |
C8 | 0.1941 (3) | 1.3450 (6) | 1.11298 (10) | 0.0310 (8) | |
H8A | 0.1716 | 1.1825 | 1.1281 | 0.047* | |
H8B | 0.1462 | 1.4834 | 1.1303 | 0.047* | |
H8C | 0.3087 | 1.3704 | 1.1134 | 0.047* | |
C9 | 0.2351 (3) | 0.7371 (5) | 0.83788 (9) | 0.0232 (7) | |
H9A | 0.1327 | 0.7845 | 0.8215 | 0.028* | |
H9B | 0.2432 | 0.5495 | 0.8372 | 0.028* | |
C10 | 0.3673 (3) | 0.8478 (5) | 0.81074 (9) | 0.0195 (6) | |
C11 | 0.3994 (3) | 0.7401 (5) | 0.76729 (9) | 0.0232 (7) | |
H11 | 0.3424 | 0.5937 | 0.7565 | 0.028* | |
C12 | 0.5122 (3) | 0.8419 (6) | 0.73974 (10) | 0.0253 (7) | |
H12 | 0.5313 | 0.7673 | 0.7101 | 0.030* | |
C13 | 0.5972 (3) | 1.0524 (6) | 0.75539 (10) | 0.0281 (7) | |
H13 | 0.6753 | 1.1231 | 0.7366 | 0.034* | |
C14 | 0.5679 (3) | 1.1605 (5) | 0.79876 (10) | 0.0277 (7) | |
H14 | 0.6267 | 1.3050 | 0.8096 | 0.033* | |
C15 | 0.4534 (3) | 1.0593 (5) | 0.82639 (10) | 0.0226 (7) | |
H15 | 0.4340 | 1.1348 | 0.8560 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0199 (14) | 0.0202 (15) | 0.0238 (16) | −0.0009 (12) | 0.0017 (12) | 0.0003 (12) |
O1 | 0.0280 (11) | 0.0264 (11) | 0.0255 (11) | 0.0068 (10) | 0.0011 (9) | −0.0021 (9) |
N2 | 0.0249 (13) | 0.0229 (13) | 0.0156 (12) | 0.0022 (10) | 0.0021 (10) | −0.0003 (10) |
C3 | 0.0205 (14) | 0.0225 (15) | 0.0219 (15) | 0.0000 (13) | 0.0047 (12) | 0.0022 (12) |
O3 | 0.0307 (11) | 0.0333 (12) | 0.0222 (11) | 0.0097 (9) | −0.0004 (9) | 0.0040 (9) |
C3A | 0.0157 (13) | 0.0227 (15) | 0.0201 (15) | −0.0023 (11) | 0.0027 (11) | 0.0035 (12) |
C4 | 0.0216 (14) | 0.0237 (15) | 0.0245 (16) | 0.0014 (12) | 0.0058 (12) | 0.0017 (12) |
C5 | 0.0202 (14) | 0.0248 (15) | 0.0207 (15) | −0.0026 (13) | 0.0059 (12) | −0.0024 (13) |
O5 | 0.0278 (11) | 0.0317 (11) | 0.0213 (11) | 0.0052 (9) | 0.0000 (9) | −0.0049 (9) |
C6 | 0.0237 (15) | 0.0268 (16) | 0.0182 (15) | −0.0041 (13) | −0.0001 (12) | 0.0008 (13) |
C7 | 0.0224 (15) | 0.0241 (15) | 0.0257 (16) | −0.0017 (12) | 0.0001 (12) | 0.0039 (13) |
C7A | 0.0205 (14) | 0.0192 (14) | 0.0197 (15) | −0.0022 (12) | 0.0043 (12) | 0.0020 (12) |
C8 | 0.0300 (17) | 0.0402 (19) | 0.0231 (16) | 0.0028 (14) | 0.0029 (13) | −0.0070 (14) |
C9 | 0.0256 (16) | 0.0252 (16) | 0.0190 (15) | 0.0025 (12) | 0.0017 (12) | −0.0026 (12) |
C10 | 0.0193 (14) | 0.0223 (15) | 0.0167 (14) | 0.0054 (12) | −0.0008 (11) | 0.0005 (12) |
C11 | 0.0213 (15) | 0.0257 (16) | 0.0223 (16) | 0.0008 (12) | −0.0014 (13) | −0.0036 (12) |
C12 | 0.0244 (15) | 0.0313 (17) | 0.0202 (15) | 0.0030 (13) | 0.0019 (12) | −0.0031 (13) |
C13 | 0.0240 (15) | 0.0374 (18) | 0.0232 (16) | −0.0008 (14) | 0.0044 (13) | 0.0011 (14) |
C14 | 0.0279 (16) | 0.0269 (16) | 0.0279 (17) | −0.0027 (13) | −0.0026 (13) | 0.0001 (14) |
C15 | 0.0247 (15) | 0.0254 (16) | 0.0177 (15) | 0.0034 (13) | 0.0015 (12) | −0.0017 (12) |
C1—O1 | 1.211 (3) | C8—H8A | 0.9800 |
C1—N2 | 1.405 (3) | C8—H8B | 0.9800 |
C1—C7A | 1.476 (4) | C8—H8C | 0.9800 |
N2—C3 | 1.391 (3) | C9—C10 | 1.514 (4) |
N2—C9 | 1.445 (3) | C9—H9A | 0.9900 |
C3—O3 | 1.215 (3) | C9—H9B | 0.9900 |
C3—C3A | 1.488 (4) | C10—C15 | 1.388 (4) |
C3A—C4 | 1.371 (4) | C10—C11 | 1.396 (4) |
C3A—C7A | 1.396 (4) | C11—C12 | 1.379 (4) |
C4—C5 | 1.399 (4) | C11—H11 | 0.9500 |
C4—H4 | 0.9500 | C12—C13 | 1.379 (4) |
C5—O5 | 1.359 (3) | C12—H12 | 0.9500 |
C5—C6 | 1.393 (4) | C13—C14 | 1.389 (4) |
O5—C8 | 1.438 (3) | C13—H13 | 0.9500 |
C6—C7 | 1.393 (4) | C14—C15 | 1.390 (4) |
C6—H6 | 0.9500 | C14—H14 | 0.9500 |
C7—C7A | 1.378 (4) | C15—H15 | 0.9500 |
C7—H7 | 0.9500 | ||
O1—C1—N2 | 123.4 (2) | O5—C8—H8B | 109.5 |
O1—C1—C7A | 130.7 (2) | H8A—C8—H8B | 109.5 |
N2—C1—C7A | 105.9 (2) | O5—C8—H8C | 109.5 |
C3—N2—C1 | 112.0 (2) | H8A—C8—H8C | 109.5 |
C3—N2—C9 | 124.6 (2) | H8B—C8—H8C | 109.5 |
C1—N2—C9 | 123.4 (2) | N2—C9—C10 | 114.4 (2) |
O3—C3—N2 | 124.5 (3) | N2—C9—H9A | 108.7 |
O3—C3—C3A | 129.7 (3) | C10—C9—H9A | 108.7 |
N2—C3—C3A | 105.9 (2) | N2—C9—H9B | 108.7 |
C4—C3A—C7A | 122.4 (2) | C10—C9—H9B | 108.7 |
C4—C3A—C3 | 129.6 (2) | H9A—C9—H9B | 107.6 |
C7A—C3A—C3 | 108.0 (2) | C15—C10—C11 | 118.6 (3) |
C3A—C4—C5 | 117.2 (2) | C15—C10—C9 | 122.5 (2) |
C3A—C4—H4 | 121.4 | C11—C10—C9 | 118.8 (2) |
C5—C4—H4 | 121.4 | C12—C11—C10 | 121.3 (3) |
O5—C5—C6 | 124.3 (2) | C12—C11—H11 | 119.3 |
O5—C5—C4 | 114.7 (2) | C10—C11—H11 | 119.3 |
C6—C5—C4 | 121.0 (3) | C11—C12—C13 | 119.8 (3) |
C5—O5—C8 | 118.5 (2) | C11—C12—H12 | 120.1 |
C5—C6—C7 | 120.7 (2) | C13—C12—H12 | 120.1 |
C5—C6—H6 | 119.6 | C12—C13—C14 | 119.6 (3) |
C7—C6—H6 | 119.6 | C12—C13—H13 | 120.2 |
C7A—C7—C6 | 118.4 (3) | C14—C13—H13 | 120.2 |
C7A—C7—H7 | 120.8 | C13—C14—C15 | 120.6 (3) |
C6—C7—H7 | 120.8 | C13—C14—H14 | 119.7 |
C7—C7A—C3A | 120.3 (3) | C15—C14—H14 | 119.7 |
C7—C7A—C1 | 131.5 (2) | C10—C15—C14 | 120.0 (3) |
C3A—C7A—C1 | 108.3 (2) | C10—C15—H15 | 120.0 |
O5—C8—H8A | 109.5 | C14—C15—H15 | 120.0 |
O1—C1—N2—C3 | −178.9 (3) | C6—C7—C7A—C1 | 179.5 (3) |
C7A—C1—N2—C3 | 0.3 (3) | C4—C3A—C7A—C7 | 0.5 (4) |
O1—C1—N2—C9 | 0.3 (4) | C3—C3A—C7A—C7 | −179.5 (2) |
C7A—C1—N2—C9 | 179.5 (2) | C4—C3A—C7A—C1 | −179.7 (2) |
C1—N2—C3—O3 | −179.9 (3) | C3—C3A—C7A—C1 | 0.3 (3) |
C9—N2—C3—O3 | 0.9 (4) | O1—C1—C7A—C7 | −1.4 (5) |
C1—N2—C3—C3A | −0.1 (3) | N2—C1—C7A—C7 | 179.4 (3) |
C9—N2—C3—C3A | −179.3 (2) | O1—C1—C7A—C3A | 178.7 (3) |
O3—C3—C3A—C4 | −0.3 (5) | N2—C1—C7A—C3A | −0.4 (3) |
N2—C3—C3A—C4 | 179.9 (3) | C3—N2—C9—C10 | 93.1 (3) |
O3—C3—C3A—C7A | 179.6 (3) | C1—N2—C9—C10 | −86.0 (3) |
N2—C3—C3A—C7A | −0.1 (3) | N2—C9—C10—C15 | −16.9 (3) |
C7A—C3A—C4—C5 | −0.7 (4) | N2—C9—C10—C11 | 166.0 (2) |
C3—C3A—C4—C5 | 179.3 (3) | C15—C10—C11—C12 | −1.0 (4) |
C3A—C4—C5—O5 | −178.1 (2) | C9—C10—C11—C12 | 176.2 (2) |
C3A—C4—C5—C6 | 1.1 (4) | C10—C11—C12—C13 | 0.9 (4) |
C6—C5—O5—C8 | 9.2 (4) | C11—C12—C13—C14 | −0.2 (4) |
C4—C5—O5—C8 | −171.5 (2) | C12—C13—C14—C15 | −0.3 (4) |
O5—C5—C6—C7 | 177.8 (2) | C11—C10—C15—C14 | 0.5 (4) |
C4—C5—C6—C7 | −1.4 (4) | C9—C10—C15—C14 | −176.6 (2) |
C5—C6—C7—C7A | 1.1 (4) | C13—C14—C15—C10 | 0.1 (4) |
C6—C7—C7A—C3A | −0.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O5i | 0.95 | 2.57 | 3.505 (3) | 168 |
C7—H7···O1ii | 0.95 | 2.40 | 3.247 (3) | 149 |
C8—H8B···O3i | 0.98 | 2.59 | 3.432 (4) | 144 |
C15—H15···N2 | 0.95 | 2.56 | 2.884 (4) | 100 |
Symmetry codes: (i) −x, −y+3, −z+2; (ii) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O5i | 0.95 | 2.57 | 3.505 (3) | 168 |
C7—H7···O1ii | 0.95 | 2.40 | 3.247 (3) | 149 |
C8—H8B···O3i | 0.98 | 2.59 | 3.432 (4) | 144 |
Symmetry codes: (i) −x, −y+3, −z+2; (ii) −x+1, −y+1, −z+2. |
Acknowledgements
This work was supported financially by the Xunta de Galicia (CN 2012/184). The authors gratefully acknowledge Dr Berta Covelo, X-ray service of the University of Vigo, for her valuable assistance. NV thanks the University of Vigo for a PhD fellowship.
References
Barooah, N. & Baruah, J. B. (2007). Mini-Rev. Org. Chem. 4, 292–309. Web of Science CrossRef CAS Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madinson, Wisconsin, USA. Google Scholar
Cao, H. & Alper, H. (2010). Org. Lett. 12, 4126–4129. Web of Science CrossRef CAS PubMed Google Scholar
Favor, D., Powers, J. J., Repine, J. T. & White, A. D. (2008). PCT Int. Appl. WO 020306. Google Scholar
Haj-Yehia, A. I. & Khan, M. A. (2004). PCT Int. Appl. WO 047837. Google Scholar
Jiang, Z., Wang, J.-D., Chen, N.-S. & Huang, J.-L. (2008). Acta Cryst. E64, o324. Web of Science CSD CrossRef IUCr Journals Google Scholar
Luzzio, F. A. (2005). Science of Synthesis, Vol. 21, edited by S. Veinreb, pp. 259–324. Stuttgart: Thieme Chemistry. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sharma, U., Kumar, P., Kumar, N. & Singh, B. (2010). Mini Rev. Med. Chem. 10, 678–704. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vidal, T., Petit, A., Loupy, A. & Gedye, R. N. (2000). Tetrahedron, 56, 5473–5478. Web of Science CrossRef CAS Google Scholar
Warzecha, K.-D., Görner, H. & Griesbeck, A. G. (2006). J. Phys. Chem. A, 110, 3356–3363. Web of Science CrossRef PubMed CAS Google Scholar
Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006a). Acta Cryst. E62, o2367–o2368. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006b). Acta Cryst. E62, o5271–o5273. Web of Science CSD CrossRef IUCr Journals Google Scholar
Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006c). Acta Cryst. E62, o5450–o5452. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phthalimide derivatives represent a significant family of organic compounds because of their numerous applications in different fields of chemistry. They are not only useful intermediates for synthesis (Luzzio, 2005), but are also important scaffolds for new materials (Barooah & Baruah, 2007) and drug design (Sharma et al., 2010). Among the phthalimide analogues, there are very well known N-benzyl substituted derivatives, some of them prepared for mechanistic studies on photoreactions (Warzecha, Görner et al., 2006). Reaction of phthalic acid derivatives with benzylamines at high temperature or in the presence of a Lewis acid are the classical methods for obtaining N-benzylphthalimides (Favor et al., 2008; Haj-Yehia & Khan, 2004; Luzzio, 2005). In addition, unconventional approaches were also developed, such as carbonylative cyclizations of arenes with amines catalyzed by transition metals (Cao & Alper, 2010) or microwave-assisted synthesis (Vidal et al., 2000).
The title compound (I) is a N-benzylphthalimide substituted at C5 with a methoxy group. It was obtained by the reaction of dimethyl phthalimide with benzyl hydrazine under microwave irradiation.
The molecular structure of (I) is illustrated in Figure 1. There are some similar structures reported before (Warzecha et al., 2006a; Warzecha et al., 2006b; Warzecha et al., 2006c; Jiang et al., 2008). The molecule consists of two planar moieties, the phthalimide system and the phenyl ring, linked by the methylene group C9 (N2—C9—C10 bond angle of 114.4°), resulting in a non-planar structure. The two planar subunits make a dihedral angle of 84.7 (6)°, which is similar to the value reported for the same angle in the crystal structure of the monoclinic form of the parent N-benzylphthalimide (Jiang et al., 2008). Furthermore, the methoxy group at C5 is almost coplanar with the phathalimide ring [torsion angle C4—C5—O5—C8 of -171.5 (2)°].
In addition, the C1—N2—C9—C10 and C3—N2—C9—C10 torsion angles of 93.1 (3)° and -86.0 (3)°, respectively, are also very similar to those of N-benzylphthalimide (Jiang et al., 2008) and they corroborate that the phenyl group is virtually orthogonal to the phthalimide benzene ring. In the crystal structure, the molecules are self-assembled via non-classical C—H···O hydrogen bonds, involving CH and CH3 groups as donors and oxygen atoms as acceptors, to form a one-dimensional supramolecular organization (Table 1, Figure 2).