organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1589-o1590

N-(1-Allyl-1H-indazol-5-yl)-4-meth­­oxy­benzene­sulfonamide hemihydrate

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, bDepartment of Pharmaceutical Chemistry, Institute of Pharmacy, University of Hamburg, Hamburg, Germany, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP. 1014, Rabat, Morocco
*Correspondence e-mail: hakima_chicha@yahoo.fr

(Received 29 July 2013; accepted 14 September 2013; online 28 September 2013)

In the title compound, C17H17N3O3.0.5H2O, the indazole system makes a dihedral angle of 46.19 (8)° with the plane through the benzene ring and is nearly perpendicular to the allyl group, as indicated by the dihedral angle of 81.2 (3)°. In the crystal, the water mol­ecule, disordered over two sites related by an inversion center, forms O—H⋯N bridges between indazole N atoms of two sulfonamide mol­ecules. It is also connected via N—H⋯O inter­action to the third sulfonamide mol­ecule; however, due to the water mol­ecule disorder, only every second mol­ecule of sulfonamide participates in this inter­action. This missing inter­action results in a slight disorder of the sulfonamide S,O and N atoms which are split over two sites with half occupancy. With the help of C–H⋯O hydrogen bonds, the mol­ecules are further connected into a three-dimensional network.

Related literature

For the pharmacological activity of sulfonamides, see: Bouissane et al. (2006[Bouissane, L., El Kazzouli, S., Leonce, S., Pffeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]); Supuran & Scozzafava (2003[Supuran, C. T. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535-558.]); Smith & Jones (2008[Smith, D. A. & Jones, R. M. (2008). Curr. Opin. Drug Discov. Devel. 11, 72-79.]); Scozzafava et al. (2003[Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925-953.]). For their anti­proliferative activity, see: Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2013[Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190-o191.]).

[Scheme 1]

Experimental

Crystal data
  • 2C17H17N3O3S·H2O

  • Mr = 704.81

  • Monoclinic, P 21 /n

  • a = 8.2099 (7) Å

  • b = 13.8928 (12) Å

  • c = 15.0495 (14) Å

  • β = 92.327 (3)°

  • V = 1715.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.38 × 0.36 × 0.25 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.693, Tmax = 0.747

  • 19356 measured reflections

  • 4088 independent reflections

  • 2737 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.01

  • 4088 reflections

  • 266 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.89 1.93 2.802 (6) 165
C3—H3⋯O1′i 0.93 2.50 3.237 (9) 136
C8—H8A⋯O1′i 0.97 2.25 3.202 (4) 168
C7—H7⋯O2ii 0.93 2.63 3.447 (7) 147
O4—H4⋯N2iii 0.86 2.02 2.748 (3) 142
O4—H4′⋯N2iv 0.86 2.29 3.082 (3) 152
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamides are an important class of compounds which are widely used in the design of diverse classes of drug candidates (Supuran & Scozzafava, 2003; Smith & Jones 2008; Scozzafava et al., 2003). Recently, some N-[7(6)-indazolyl]arylsulfonamides prepared by our research group showed important antiproliferative activity against some human and murine cell lines. The present structure is a continuation of the investigation of the sulfonamide derivatives published recently by our team (Abbassi et al., 2012; Bouissane et al., 2006; Abbassi et al., 2013).

In this structure, the sulfonamide N1, S1, O1 and O2 atoms are splitted over two sites. They were refined with the occupancy factor of 0.5 as their disorder is related to the disorder of the water molecule: the water molecule is disordered over two sites related by an inversion center.

The molecule of the N-(1-Allyl-1H-indazol-5-yl)-4-methoxybenzenesulfonamide is built up from the fused five- and six-membered rings (N2 N3 C1—C7) linked to the benzenesulfonamide group as shown in Fig.1. Moreover, the dihedral angle between the indazole system and the plan through the atoms forming the benzene ring (C9—C14) is of 46.19 (8)°. The allyl group is nearly perpendicular to the indazole rings as indicated by the dihedral angle of 81.2 (3)°.

In the crystal, the water molecule acts as a bridge between two molecules through O–H···N hydrogen bonds and every second sulfonamide molecule is involved in N-H···O interaction with the water O atom. The molecules are also interconnected by C–H···O hydrogen bonds forming a three-dimensional network (Fig.2 and Table 1).

Related literature top

For the pharmacological activity of sulfonamides, see: Bouissane et al. (2006); Supuran & Scozzafava (2003); Smith & Jones (2008); Scozzafava et al. (2003). For their antiproliferative activity, see: Abbassi et al. (2012, 2013).

Experimental top

A mixture of 1-allyl-5-nitroindazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 ml of absolute ethanol was heated at 333 K for 6 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxybenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with ethyl acetate: hexane 1:9). The title compound was recrystallized from ethanol (m.p. 370 K, yield: 78%).

Refinement top

H atoms were located in a difference map and were refined as riding with the distance constraints: C–H = 0.93-0.97 Å, O–H = 0.86 Å and N–H = 0.89 Å and with Uiso(H) = 1.2 Ueq (aromatic, OH, NH) and Uiso(H) = 1.5 Ueq for methyl group. The N1, S1, O1 and O2 atoms are splitted over two sites with the occupancy factor of 0.5. Restraints were imposed on S1—O1 and S1'—O1' distances 1.446 (1) Å. The occupancy factor of the disordered around inversion center water molecule is 0.5.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Partial crystal packing for the title compound showing hydrogen bonds as dashed lines.
N-(1-Allyl-1H-indazol-5-yl)-4-methoxybenzenesulfonamide hemihydrate top
Crystal data top
2C17H17N3O3S·H2OF(000) = 740
Mr = 704.81Dx = 1.365 Mg m3
Monoclinic, P21/nMelting point: 370 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.2099 (7) ÅCell parameters from 4088 reflections
b = 13.8928 (12) Åθ = 2.7–27.9°
c = 15.0495 (14) ŵ = 0.21 mm1
β = 92.327 (3)°T = 296 K
V = 1715.1 (3) Å3Block, colourless
Z = 20.38 × 0.36 × 0.25 mm
Data collection top
Bruker X8 APEX
diffractometer
4088 independent reflections
Radiation source: fine-focus sealed tube2737 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.9°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.693, Tmax = 0.747k = 1718
19356 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.3501P]
where P = (Fo2 + 2Fc2)/3
4088 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.15 e Å3
2 restraintsΔρmin = 0.17 e Å3
Crystal data top
2C17H17N3O3S·H2OV = 1715.1 (3) Å3
Mr = 704.81Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.2099 (7) ŵ = 0.21 mm1
b = 13.8928 (12) ÅT = 296 K
c = 15.0495 (14) Å0.38 × 0.36 × 0.25 mm
β = 92.327 (3)°
Data collection top
Bruker X8 APEX
diffractometer
4088 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2737 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.747Rint = 0.031
19356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
4088 reflectionsΔρmin = 0.17 e Å3
266 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4495 (2)0.11076 (14)0.23403 (11)0.0607 (5)
C20.3084 (2)0.06191 (13)0.20204 (12)0.0602 (4)
H20.29890.00380.21260.072*
C30.18511 (19)0.10864 (12)0.15581 (12)0.0560 (4)
H30.09180.07640.13510.067*
C40.20595 (18)0.20712 (11)0.14118 (10)0.0469 (4)
C50.34564 (19)0.25681 (12)0.17146 (11)0.0514 (4)
C60.4694 (2)0.20697 (14)0.21927 (11)0.0618 (5)
H60.56280.23880.24040.074*
C70.3185 (2)0.35243 (13)0.14334 (14)0.0680 (5)
H70.39160.40260.15420.082*
C80.0440 (2)0.25522 (14)0.04742 (13)0.0656 (5)
H8A0.10880.20840.07810.079*
H8B0.10620.31450.04250.079*
C90.0116 (3)0.21878 (16)0.04337 (13)0.0753 (6)
H90.05610.25540.07810.090*
C100.0701 (3)0.14065 (18)0.07713 (17)0.0909 (7)
H10A0.13820.10210.04430.109*
H10B0.04430.12250.13440.109*
C110.64190 (18)0.08820 (13)0.17142 (11)0.0528 (4)
C120.6036 (2)0.07706 (13)0.08101 (11)0.0572 (4)
H120.62670.01940.05280.069*
C130.5320 (2)0.15075 (13)0.03369 (11)0.0574 (4)
H130.50560.14260.02650.069*
C140.49834 (19)0.23733 (12)0.07447 (12)0.0536 (4)
C150.5389 (2)0.24981 (15)0.16372 (13)0.0670 (5)
H150.51870.30820.19140.080*
C160.6095 (2)0.17525 (16)0.21134 (12)0.0676 (5)
H160.63580.18360.27150.081*
C170.3917 (3)0.39644 (15)0.0586 (2)0.1045 (9)
H17A0.34080.43710.01400.157*
H17B0.49150.42550.08050.157*
H17C0.31970.38840.10680.157*
N10.5992 (6)0.0729 (4)0.2783 (4)0.0542 (11)0.50
H10.56610.04470.32750.065*0.50
S10.7087 (4)0.0029 (3)0.2443 (3)0.0586 (6)0.50
O10.7780 (11)0.0690 (6)0.1876 (6)0.0787 (17)0.50
O20.8022 (7)0.0461 (5)0.3174 (4)0.0836 (15)0.50
N1'0.5494 (6)0.0450 (4)0.2905 (4)0.0524 (11)0.50
H1'0.51630.01680.33970.063*0.50
S1'0.7382 (4)0.0190 (3)0.2239 (2)0.0574 (7)0.50
O1'0.7928 (11)0.0869 (6)0.1587 (5)0.0736 (12)0.50
O2'0.8508 (7)0.0180 (5)0.2899 (4)0.0801 (15)0.50
N20.1771 (2)0.36215 (11)0.09978 (11)0.0683 (4)
N30.10705 (17)0.27305 (10)0.09919 (9)0.0558 (4)
O30.42555 (16)0.30521 (9)0.02113 (9)0.0731 (4)
O40.5283 (4)0.0107 (2)0.44955 (19)0.0927 (10)0.50
H40.47280.04030.45980.111*0.50
H4'0.57350.02610.50010.111*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0617 (10)0.0779 (12)0.0414 (9)0.0260 (9)0.0095 (7)0.0098 (8)
C20.0597 (10)0.0590 (10)0.0623 (11)0.0108 (8)0.0071 (8)0.0109 (9)
C30.0428 (8)0.0562 (10)0.0689 (11)0.0012 (7)0.0005 (7)0.0025 (8)
C40.0431 (8)0.0524 (9)0.0447 (8)0.0025 (6)0.0032 (6)0.0017 (7)
C50.0479 (8)0.0552 (10)0.0507 (9)0.0003 (7)0.0046 (7)0.0098 (7)
C60.0507 (9)0.0754 (12)0.0581 (10)0.0083 (8)0.0146 (8)0.0235 (9)
C70.0651 (11)0.0545 (11)0.0831 (13)0.0084 (9)0.0107 (10)0.0057 (9)
C80.0545 (10)0.0683 (12)0.0723 (12)0.0088 (8)0.0198 (9)0.0031 (9)
C90.0764 (13)0.0858 (14)0.0621 (12)0.0144 (11)0.0179 (10)0.0080 (11)
C100.0900 (16)0.0918 (17)0.0903 (16)0.0097 (13)0.0014 (13)0.0144 (13)
C110.0391 (8)0.0661 (10)0.0526 (9)0.0119 (7)0.0045 (7)0.0006 (8)
C120.0607 (10)0.0550 (10)0.0557 (10)0.0045 (8)0.0002 (8)0.0104 (8)
C130.0674 (10)0.0614 (11)0.0430 (9)0.0061 (8)0.0028 (8)0.0060 (8)
C140.0465 (8)0.0547 (10)0.0595 (10)0.0072 (7)0.0009 (7)0.0052 (8)
C150.0658 (11)0.0704 (12)0.0643 (12)0.0015 (9)0.0020 (9)0.0259 (10)
C160.0607 (11)0.0954 (15)0.0461 (10)0.0057 (10)0.0061 (8)0.0158 (10)
C170.1018 (18)0.0579 (13)0.151 (2)0.0092 (12)0.0287 (17)0.0145 (14)
N10.051 (3)0.064 (3)0.048 (2)0.0047 (19)0.009 (2)0.0044 (19)
S10.0382 (11)0.0669 (15)0.0694 (16)0.0012 (8)0.0146 (9)0.0034 (9)
O10.059 (2)0.056 (3)0.122 (6)0.028 (2)0.020 (3)0.019 (3)
O20.069 (3)0.091 (4)0.087 (4)0.013 (2)0.045 (3)0.003 (2)
N1'0.050 (3)0.065 (3)0.042 (2)0.0058 (19)0.0044 (18)0.0026 (19)
S1'0.0353 (12)0.0652 (18)0.0704 (18)0.0059 (9)0.0121 (9)0.0045 (11)
O1'0.046 (2)0.064 (3)0.112 (5)0.016 (2)0.014 (3)0.017 (2)
O2'0.056 (3)0.082 (3)0.099 (4)0.014 (2)0.036 (2)0.007 (2)
N20.0745 (10)0.0528 (9)0.0764 (11)0.0032 (7)0.0109 (8)0.0062 (8)
N30.0533 (8)0.0537 (8)0.0590 (8)0.0026 (6)0.0133 (6)0.0004 (7)
O30.0735 (9)0.0590 (8)0.0856 (9)0.0007 (6)0.0104 (7)0.0020 (7)
O40.133 (3)0.0734 (18)0.0708 (17)0.0370 (18)0.0081 (18)0.0020 (15)
Geometric parameters (Å, º) top
C1—C61.366 (3)C11—S1'1.848 (4)
C1—C21.411 (3)C12—C131.366 (2)
C1—N11.471 (6)C12—H120.9300
C1—N1'1.474 (6)C13—C141.383 (2)
C2—C31.369 (2)C13—H130.9300
C2—H20.9300C14—O31.361 (2)
C3—C41.397 (2)C14—C151.382 (3)
C3—H30.9300C15—C161.374 (3)
C4—N31.3623 (19)C15—H150.9300
C4—C51.399 (2)C16—H160.9300
C5—C61.403 (2)C17—O31.419 (3)
C5—C71.409 (2)C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
C7—N21.317 (2)C17—H17C0.9600
C7—H70.9300N1—S11.489 (8)
C8—N31.459 (2)N1—H10.8898
C8—C91.491 (3)S1—O21.445 (7)
C8—H8A0.9700S1—O11.4463 (10)
C8—H8B0.9700N1'—S1'1.914 (7)
C9—C101.283 (3)N1'—H1'0.8898
C9—H90.9300S1'—O2'1.425 (7)
C10—H10A0.9300S1'—O1'1.4460 (10)
C10—H10B0.9300N2—N31.365 (2)
C11—C161.381 (3)O4—O4i1.633 (6)
C11—C121.393 (2)O4—H40.8600
C11—S11.691 (5)O4—H4'0.8600
C6—C1—C2121.13 (15)C12—C13—H13119.7
C6—C1—N1108.7 (2)C14—C13—H13119.7
C2—C1—N1129.9 (3)O3—C14—C15124.71 (16)
C6—C1—N1'129.3 (2)O3—C14—C13115.57 (15)
C2—C1—N1'109.2 (2)C15—C14—C13119.73 (17)
C3—C2—C1121.71 (17)C16—C15—C14119.50 (17)
C3—C2—H2119.1C16—C15—H15120.3
C1—C2—H2119.1C14—C15—H15120.3
C2—C3—C4116.86 (16)C15—C16—C11121.18 (16)
C2—C3—H3121.6C15—C16—H16119.4
C4—C3—H3121.6C11—C16—H16119.4
N3—C4—C3131.06 (14)O3—C17—H17A109.5
N3—C4—C5106.54 (14)O3—C17—H17B109.5
C3—C4—C5122.40 (14)H17A—C17—H17B109.5
C4—C5—C6119.36 (16)O3—C17—H17C109.5
C4—C5—C7104.47 (14)H17A—C17—H17C109.5
C6—C5—C7136.17 (16)H17B—C17—H17C109.5
C1—C6—C5118.54 (16)C1—N1—S1127.0 (5)
C1—C6—H6120.7C1—N1—H1104.9
C5—C6—H6120.7S1—N1—H1100.6
N2—C7—C5111.81 (15)O2—S1—O1121.8 (5)
N2—C7—H7124.1O2—S1—N1110.0 (5)
C5—C7—H7124.1O1—S1—N188.4 (5)
N3—C8—C9111.58 (16)O2—S1—C11110.6 (4)
N3—C8—H8A109.3O1—S1—C11103.1 (5)
C9—C8—H8A109.3N1—S1—C11122.3 (3)
N3—C8—H8B109.3C1—N1'—S1'104.9 (3)
C9—C8—H8B109.3C1—N1'—H1132.6
H8A—C8—H8B108.0S1'—N1'—H1110.1
C10—C9—C8124.9 (2)C1—N1'—H1'124.8
C10—C9—H9117.6S1'—N1'—H1'129.3
C8—C9—H9117.6O2'—S1'—O1'119.8 (4)
C9—C10—H10A120.0O2'—S1'—C11105.2 (3)
C9—C10—H10B120.0O1'—S1'—C11112.0 (5)
H10A—C10—H10B120.0O2'—S1'—N1'102.7 (4)
C16—C11—C12118.85 (17)O1'—S1'—N1'120.8 (4)
C16—C11—S1113.23 (17)C11—S1'—N1'92.0 (2)
C12—C11—S1127.62 (18)C7—N2—N3105.84 (14)
C16—C11—S1'127.33 (16)C4—N3—N2111.33 (13)
C12—C11—S1'113.81 (17)C4—N3—C8127.69 (14)
C13—C12—C11120.08 (16)N2—N3—C8120.42 (14)
C13—C12—H12120.0C14—O3—C17118.21 (17)
C11—C12—H12120.0H4—O4—H4'104.9
C12—C13—C14120.64 (16)
C6—C1—C2—C30.6 (3)C16—C11—S1—O232.4 (4)
N1—C1—C2—C3174.6 (3)C12—C11—S1—O2154.1 (3)
N1'—C1—C2—C3172.7 (3)S1'—C11—S1—O2124.8 (11)
C1—C2—C3—C40.4 (3)C16—C11—S1—O1164.0 (4)
C2—C3—C4—N3179.20 (17)C12—C11—S1—O122.4 (5)
C2—C3—C4—C50.3 (3)S1'—C11—S1—O16.8 (9)
N3—C4—C5—C6178.82 (15)C16—C11—S1—N199.6 (3)
C3—C4—C5—C60.8 (3)C12—C11—S1—N174.0 (3)
N3—C4—C5—C70.46 (18)S1'—C11—S1—N1103.2 (11)
C3—C4—C5—C7179.94 (17)C6—C1—N1'—S1'77.0 (4)
C2—C1—C6—C50.1 (3)C2—C1—N1'—S1'110.3 (2)
N1—C1—C6—C5175.3 (3)N1—C1—N1'—S1'44.8 (10)
N1'—C1—C6—C5171.8 (3)C16—C11—S1'—O2'32.7 (4)
C4—C5—C6—C10.6 (3)C12—C11—S1'—O2'145.7 (3)
C7—C5—C6—C1179.5 (2)S1—C11—S1'—O2'59.3 (9)
C4—C5—C7—N20.1 (2)C16—C11—S1'—O1'164.4 (4)
C6—C5—C7—N2179.2 (2)C12—C11—S1'—O1'14.0 (5)
N3—C8—C9—C10125.3 (2)S1—C11—S1'—O1'169.0 (11)
C16—C11—C12—C131.4 (3)C16—C11—S1'—N1'71.0 (3)
S1—C11—C12—C13171.9 (2)C12—C11—S1'—N1'110.6 (2)
S1'—C11—C12—C13179.90 (18)S1—C11—S1'—N1'44.4 (9)
C11—C12—C13—C140.7 (3)C1—N1'—S1'—O2'162.4 (4)
C12—C13—C14—O3179.39 (15)C1—N1'—S1'—O1'25.8 (6)
C12—C13—C14—C150.6 (3)C1—N1'—S1'—C1191.5 (3)
O3—C14—C15—C16178.76 (17)C5—C7—N2—N30.7 (2)
C13—C14—C15—C161.3 (3)C3—C4—N3—N2179.53 (18)
C14—C15—C16—C110.6 (3)C5—C4—N3—N20.92 (18)
C12—C11—C16—C150.7 (3)C3—C4—N3—C88.2 (3)
S1—C11—C16—C15173.5 (2)C5—C4—N3—C8172.26 (17)
S1'—C11—C16—C15179.0 (2)C7—N2—N3—C41.0 (2)
C6—C1—N1—S1118.9 (3)C7—N2—N3—C8173.05 (17)
C2—C1—N1—S155.7 (5)C9—C8—N3—C478.0 (2)
N1'—C1—N1—S186.9 (12)C9—C8—N3—N292.6 (2)
C1—N1—S1—O2157.9 (4)C15—C14—O3—C171.5 (3)
C1—N1—S1—O178.7 (5)C13—C14—O3—C17178.45 (18)
C1—N1—S1—C1125.7 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.891.932.802 (6)165
C3—H3···O1ii0.932.503.237 (9)136
C8—H8A···O1ii0.972.253.202 (4)168
C7—H7···O2iii0.932.633.447 (7)147
O4—H4···N2iv0.862.022.748 (3)142
O4—H4···N2v0.862.293.082 (3)152
Symmetry codes: (ii) x1, y, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.891.932.802 (6)165
C3—H3···O1'i0.932.503.237 (9)136
C8—H8A···O1'i0.972.253.202 (4)168
C7—H7···O2ii0.932.633.447 (7)147
O4—H4···N2iii0.862.022.748 (3)142
O4—H4'···N2iv0.862.293.082 (3)152
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouissane, L., El Kazzouli, S., Leonce, S., Pffeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationScozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925–953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, D. A. & Jones, R. M. (2008). Curr. Opin. Drug Discov. Devel. 11, 72–79.  Web of Science PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535–558.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1589-o1590
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds