organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Acetyl-3-methyl-1-phenyl-1H-pyrazol-5-yl)-N-methyl-2-(2-methyl-4-oxo-3,4-di­hydroquinazolin-3-yl)benzamide

aDepartment of Pharmaceutical Sciences, University of Milano, via L. Mangiagalli, 25, 20133-Milano, Italy, and bDipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, via Archirafi, 32, 90123-Palermo, Italy
*Correspondence e-mail: fiorella.meneghetti@unimi.it

(Received 11 June 2013; accepted 17 September 2013; online 25 September 2013)

In the title compound, C29H25N5O3, the dihedral angle between the benzene ring and the pendant quinazoline ring system (r.m.s. deviation = 0.036Å) is 87.60 (17)°. The equivalent angle between the pyrazole ring and the phenyl group is 70.0 (2)°. The dihedral angle between the benzene and pyrazole rings is 30.7 (2)° and overall, the mol­ecular conformation approximates to a Z shape. A short intra­molecular C—H⋯O contact occurs. In the crystal, the mol­ecules are linked by Cπ—H⋯O-type hydrogen bonds and aromatic ππ stacking inter­actions [centroid–centroid distance = 3.860 (3) Å], generating a three-dimensional network.

Related literature

For background to the bioactivity of methaqua­lone and its derivatives, see: Ionescu-Pioggia et al. (1988)[Ionescu-Pioggia, M., Bird, M., Orzaci, M. H., Benes, F., Beake, B. & Cole, J. O. (1988). Int. Clin. Psyco. Pharmacol. 3, 97-109.]; Wolfe et al. (1990[Wolfe, J. F., Rathman, T. L., Sleevi, M. C., Campbell, J. A. & Greenwood, T. D. (1990). J. Med. Chem. 33, 161-166.]). For structural and mol­ecular modeling studies of quinazolinone derivatives, see: Duke & Codding (1993[Duke, N. E. C. & Codding, P. W. (1993). Acta Cryst. B49, 719-726.]). For further synthetic details, see: Plescia et al. (1978[Plescia, S., Daidone, G., Sprio, V., Aiello, E., Dattolo, G. & Cirrincione, G. (1978). J. Heterocycl. Chem. 15, 1339-1342.]).

[Scheme 1]

Experimental

Crystal data
  • C29H25N5O3

  • Mr = 491.54

  • Monoclinic, P 21 /c

  • a = 8.617 (4) Å

  • b = 20.438 (5) Å

  • c = 15.038 (5) Å

  • β = 106.27 (2)°

  • V = 2542.3 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.6 × 0.5 × 0.4 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • 5236 measured reflections

  • 4401 independent reflections

  • 1358 reflections with I > 2σ(I)

  • Rint = 0.062

  • 3 standard reflections every 120 min intensity decay: −3%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.120

  • S = 0.92

  • 4401 reflections

  • 338 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21C⋯O1 0.96 2.57 3.214 (5) 124
C3—H3⋯O2i 0.93 2.54 3.351 (6) 146
C5—H5⋯O1ii 0.93 2.40 3.276 (5) 157
C16—H16⋯O3iii 0.93 2.52 3.305 (6) 143
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The product obtained from 2-acetamido-N-methyl-N-(3-methyl-5-phenyl-1H-pyrazol-5-yl)benzamide by the Bischler–Napieralski reaction (Plescia et al., 1978) was hydrolized by 6 N aqueous hydrochloric acid to give the metaqualone derivative 1, whose definitive structure is now reported (Fig. 1 and 2). The compound C29 H25 N5 O3 crystallizes in the monoclinic P21/c space group. The overall molecular conformation has about a Z shape (Fig. 2). The presence of an intramolecular hydrogen bond between C2—H2···O1 at a distance of 2.65 (1) Å, angle 129 (1)° contributes to stabilize the folded conformation of the molecule. The 2-methyl-4-oxoquinazolin-3(4H)-yl)benzamide moiety is characterized by an almost planar conformation, with the maximum deviation out of its best mean plane for O2 and C21 atoms by 0.103 (4) Å and -0.198 (5) Å, respectively. The bicyclic system is nearly perpendicularly oriented with respect to the N4-attached phenyl ring (dihedral angle 87.60 (17)°), while it forms with the distal ones a dihedral angle of 41.0 (1)°. The pyrazole is inclined of 70.0 (2)° with respect to both the bicyclic moiety and the C1—C6 benzene, while it presents a dihedral angle of 30.7 (2)° with the C12—C17 phenyl ring. The two benzene are oriented each other at 51.6 (2)°. The molecular packing is stabilized by intermolecular interactions type Cπ—H···O between: C3—H3···O2i of 2.51 (3) Å and 146 (1)° [symmetry code: (i) x + 1, y, z], C5—H5···O1ii contact of 2.40 (3) Å and 157 (1)° [symmetry code: (ii) x, 1/2 - y, z - 1/2], and C16—H16···O3iii at distance of 2.51 (4) Å, angle 143 (1)° [symmetry code: (iii) 2 - x, y + 1/2, 1/2 - z] (Fig. 3). Stacking interactions between the benzene o f the oxoquinazoline systems [centroid-centroid distance = 3.860 (3) Å] further consolidate the packing.

Related literature top

For background to the bioactivity of methaqualone and its derivatives, see: Ionescu-Pioggia et al. (1988); Wolfe et al. (1990). For structural and molecular modeling studies of quinazolinone derivatives, see: Duke & Codding (1993). For further synthetic details, see: Plescia et al. (1978).

Experimental top

A solution of the product obtained from 2-acetamido-N-methyl-N-(3-methyl-5-phenyl-1H-pyrazol-5-yl)benzamide by the Bischler-Napieralski reaction (Plescia et al., 1978) (6 g.) in 60 ml of aqueous 6 N hydrochloric acid was refluxed for 25 minutes. The precipitated solid (3.2 g) was crystallized from ethanol-diethyl ether to give a product which was dissolved in chloroform (100 ml) and treated with triethylamine (5 ml). The solution was stirred for 1 h at room temperature, washed with water (3 × 100 ml) and dried (sodium sulfate). Removal of the solvent and the crystallization from ethanol of the residue afforded to the title compound.

Refinement top

Hydrogen atoms were located by difference Fourier synthesis, except methyl and phenyl hydrogen atoms, that were introduced at calculated positions, in their described geometries and allowed to ride on the attached carbon atom with fixed isotropic thermal parameters 1.2Ueq and 1.5Ueq of the parent carbon atom for aromatic H-atoms and methyl-bound H-atoms, respectively. The crystal contains small solvent accessible voids, however, no electron density peaks were found in chemically sensible positions for solvent molecules.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids for non-H atoms at the 40% probability level.
[Figure 2] Fig. 2. Intermolecular interactions of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
N-(4-Acetyl-3-methyl-1-phenyl-1H-pyrazol-5-yl)-N-methyl-2-(2-methyl-4-oxo-3,4-dihydroquinazolin-3-yl)benzamide top
Crystal data top
C29H25N5O3F(000) = 1032
Mr = 491.54Dx = 1.284 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.617 (4) Åθ = 9–10°
b = 20.438 (5) ŵ = 0.09 mm1
c = 15.038 (5) ÅT = 293 K
β = 106.27 (2)°Prism, colorless
V = 2542.3 (16) Å30.6 × 0.5 × 0.4 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.062
Radiation source: fine-focus sealed tubeθmax = 24.9°, θmin = 2.4°
Graphite monochromatorh = 109
non–profiled ω/2θ scansk = 124
5236 measured reflectionsl = 117
4401 independent reflections3 standard reflections every 120 min
1358 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0352P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max = 0.003
S = 0.92Δρmax = 0.16 e Å3
4401 reflectionsΔρmin = 0.16 e Å3
338 parameters
Crystal data top
C29H25N5O3V = 2542.3 (16) Å3
Mr = 491.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.617 (4) ŵ = 0.09 mm1
b = 20.438 (5) ÅT = 293 K
c = 15.038 (5) Å0.6 × 0.5 × 0.4 mm
β = 106.27 (2)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.062
5236 measured reflections3 standard reflections every 120 min
4401 independent reflections intensity decay: 3%
1358 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.92Δρmax = 0.16 e Å3
4401 reflectionsΔρmin = 0.16 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C280.0045 (5)0.4366 (2)0.2801 (3)0.0519 (12)
O10.3884 (3)0.35430 (13)0.2742 (2)0.0663 (9)
O30.0937 (4)0.15749 (16)0.3520 (2)0.0943 (11)
N40.1492 (4)0.45942 (15)0.2812 (2)0.0441 (9)
N30.2159 (4)0.29993 (16)0.1566 (2)0.0481 (9)
N20.4505 (4)0.15359 (16)0.2105 (2)0.0594 (10)
N10.4060 (4)0.21360 (16)0.1706 (2)0.0509 (9)
N50.2572 (4)0.45536 (16)0.4443 (2)0.0538 (9)
C90.2816 (5)0.23970 (19)0.1957 (3)0.0466 (11)
C160.1457 (5)0.5305 (2)0.1520 (3)0.0548 (12)
H160.10380.56390.18050.066*
C10.4832 (5)0.2402 (2)0.1058 (3)0.0460 (11)
C230.0249 (6)0.42417 (19)0.3709 (3)0.0523 (12)
C170.1780 (5)0.4706 (2)0.1939 (3)0.0484 (11)
C200.2709 (5)0.46966 (18)0.3641 (3)0.0477 (11)
C80.2412 (5)0.19578 (19)0.2549 (3)0.0479 (11)
O20.1073 (3)0.42729 (14)0.2066 (2)0.0772 (10)
C100.0791 (5)0.29730 (19)0.0725 (3)0.0685 (13)
H10A0.0140.33590.06890.103*
H10B0.01480.25930.07450.103*
H10C0.11910.2950.0190.103*
C400.3648 (5)0.08126 (19)0.3164 (3)0.0791 (15)
H40A0.44630.05370.30360.119*
H40B0.2630.05870.29970.119*
H40C0.39420.09170.38120.119*
C120.2366 (5)0.42010 (18)0.1508 (3)0.0450 (11)
C110.2842 (5)0.3564 (2)0.1997 (3)0.0510 (12)
C40.6172 (5)0.2944 (2)0.0221 (3)0.0662 (13)
H40.66130.31290.0660.079*
C70.3506 (5)0.1433 (2)0.2608 (3)0.0515 (11)
C50.5239 (6)0.2388 (2)0.0431 (3)0.0622 (13)
H50.50630.21960.10110.075*
C30.6448 (5)0.3221 (2)0.0637 (4)0.0682 (13)
H30.70820.35960.07810.082*
C210.4242 (5)0.50044 (19)0.3564 (3)0.0629 (13)
H21A0.49860.50480.4170.094*
H21B0.4010.54290.32850.094*
H21C0.47140.47340.31870.094*
C130.2639 (5)0.4318 (2)0.0658 (3)0.0611 (12)
H130.30290.39830.0360.073*
C220.1086 (6)0.4322 (2)0.4488 (3)0.0531 (11)
C20.5792 (5)0.2949 (2)0.1288 (3)0.0600 (12)
H20.59960.31320.18760.072*
C240.1740 (6)0.4032 (2)0.3805 (4)0.0768 (15)
H240.26240.39810.32880.092*
C260.0550 (8)0.3968 (2)0.5449 (4)0.0877 (17)
H260.06520.38710.60340.105*
C150.1749 (5)0.5416 (2)0.0680 (3)0.0697 (14)
H150.15440.58260.04050.084*
C60.4571 (5)0.2117 (2)0.0202 (3)0.0591 (12)
H60.39420.17410.00560.071*
C140.2338 (5)0.4928 (2)0.0249 (3)0.0660 (13)
H140.25360.50060.03190.079*
C180.1174 (5)0.2017 (2)0.3040 (3)0.0612 (13)
C250.1877 (7)0.3903 (2)0.4688 (5)0.0877 (18)
H250.28640.37720.47650.105*
C190.0256 (6)0.2638 (2)0.3005 (4)0.113 (2)
H19A0.04720.25970.33820.17*
H19B0.03490.27280.23770.17*
H19C0.09970.29910.32340.17*
C270.0913 (6)0.4173 (2)0.5363 (4)0.0730 (15)
H270.17910.42130.58860.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C280.045 (3)0.040 (3)0.064 (3)0.001 (2)0.003 (3)0.015 (3)
O10.085 (2)0.0449 (19)0.056 (2)0.0109 (16)0.0015 (18)0.0038 (16)
O30.121 (3)0.063 (2)0.118 (3)0.003 (2)0.065 (2)0.020 (2)
N40.034 (2)0.042 (2)0.049 (2)0.0039 (17)0.001 (2)0.0022 (18)
N30.049 (2)0.041 (2)0.048 (2)0.0066 (19)0.0030 (18)0.007 (2)
N20.072 (3)0.037 (2)0.068 (3)0.011 (2)0.017 (2)0.009 (2)
N10.061 (2)0.036 (2)0.057 (2)0.005 (2)0.018 (2)0.0066 (19)
N50.050 (2)0.058 (2)0.053 (2)0.000 (2)0.013 (2)0.004 (2)
C90.054 (3)0.036 (3)0.048 (3)0.009 (2)0.011 (2)0.003 (2)
C160.059 (3)0.030 (3)0.068 (3)0.003 (2)0.005 (3)0.001 (3)
C10.050 (3)0.038 (3)0.046 (3)0.004 (2)0.008 (2)0.003 (2)
C230.050 (3)0.040 (3)0.070 (4)0.001 (2)0.021 (3)0.010 (2)
C170.044 (3)0.044 (3)0.050 (3)0.000 (2)0.001 (2)0.010 (2)
C200.039 (3)0.037 (3)0.063 (3)0.004 (2)0.007 (3)0.007 (3)
C80.058 (3)0.035 (3)0.051 (3)0.006 (2)0.015 (2)0.004 (2)
O20.055 (2)0.084 (2)0.079 (2)0.0142 (17)0.0042 (19)0.0180 (19)
C100.067 (3)0.061 (3)0.062 (3)0.007 (3)0.007 (3)0.011 (3)
C400.105 (4)0.038 (3)0.093 (4)0.012 (3)0.026 (3)0.012 (3)
C120.051 (3)0.032 (3)0.046 (3)0.007 (2)0.004 (2)0.006 (2)
C110.056 (3)0.050 (3)0.042 (3)0.007 (3)0.006 (2)0.002 (3)
C40.067 (3)0.060 (3)0.070 (4)0.006 (3)0.018 (3)0.001 (3)
C70.068 (3)0.036 (3)0.046 (3)0.002 (3)0.008 (2)0.005 (2)
C50.073 (3)0.060 (3)0.051 (3)0.001 (3)0.012 (3)0.006 (3)
C30.064 (3)0.059 (3)0.084 (4)0.019 (2)0.023 (3)0.011 (3)
C210.051 (3)0.071 (3)0.061 (3)0.012 (3)0.006 (2)0.011 (3)
C130.072 (3)0.056 (3)0.052 (3)0.008 (3)0.011 (3)0.006 (3)
C220.060 (3)0.043 (3)0.060 (3)0.006 (2)0.022 (3)0.002 (2)
C20.064 (3)0.061 (3)0.050 (3)0.011 (3)0.006 (2)0.010 (3)
C240.066 (4)0.054 (3)0.116 (5)0.008 (3)0.036 (3)0.027 (3)
C260.109 (5)0.061 (4)0.110 (5)0.013 (4)0.058 (5)0.005 (3)
C150.073 (3)0.051 (3)0.071 (4)0.008 (3)0.003 (3)0.018 (3)
C60.059 (3)0.046 (3)0.070 (3)0.012 (2)0.015 (3)0.009 (3)
C140.081 (4)0.059 (3)0.053 (3)0.001 (3)0.010 (3)0.015 (3)
C180.074 (3)0.035 (3)0.074 (4)0.003 (3)0.020 (3)0.002 (3)
C250.083 (5)0.064 (3)0.135 (6)0.015 (3)0.063 (5)0.016 (4)
C190.138 (5)0.084 (4)0.148 (5)0.043 (4)0.089 (4)0.040 (4)
C270.078 (4)0.060 (3)0.084 (4)0.011 (3)0.027 (3)0.005 (3)
Geometric parameters (Å, º) top
C28—O21.223 (4)C40—H40B0.96
C28—N41.400 (4)C40—H40C0.96
C28—C231.446 (5)C12—C131.383 (5)
O1—C111.225 (4)C12—C111.495 (5)
O3—C181.210 (4)C4—C31.368 (5)
N4—C201.402 (4)C4—C51.375 (5)
N4—C171.421 (4)C4—H40.93
N3—C111.373 (5)C5—C61.361 (5)
N3—C91.412 (4)C5—H50.93
N3—C101.469 (4)C3—C21.379 (5)
N2—C71.312 (4)C3—H30.93
N2—N11.372 (4)C21—H21A0.96
N1—C91.343 (4)C21—H21B0.96
N1—C11.431 (5)C21—H21C0.96
N5—C201.278 (4)C13—C141.384 (5)
N5—C221.385 (5)C13—H130.93
C9—C81.376 (5)C22—C271.399 (5)
C16—C171.370 (5)C2—H20.93
C16—C151.374 (5)C24—C251.390 (6)
C16—H160.93C24—H240.93
C1—C61.372 (5)C26—C271.368 (6)
C1—C21.377 (5)C26—C251.379 (6)
C23—C241.399 (5)C26—H260.93
C23—C221.403 (5)C15—C141.363 (5)
C17—C121.387 (5)C15—H150.93
C20—C211.497 (5)C6—H60.93
C8—C71.414 (5)C14—H140.93
C8—C181.462 (5)C18—C191.489 (5)
C10—H10A0.96C25—H250.93
C10—H10B0.96C19—H19A0.96
C10—H10C0.96C19—H19B0.96
C40—C71.505 (5)C19—H19C0.96
C40—H40A0.96C27—H270.93
O2—C28—N4120.4 (4)C5—C4—H4120.2
O2—C28—C23125.2 (4)N2—C7—C8112.1 (4)
N4—C28—C23114.4 (4)N2—C7—C40119.4 (4)
C28—N4—C20122.0 (4)C8—C7—C40128.5 (4)
C28—N4—C17116.9 (3)C6—C5—C4120.7 (4)
C20—N4—C17121.1 (4)C6—C5—H5119.6
C11—N3—C9117.9 (3)C4—C5—H5119.6
C11—N3—C10124.9 (3)C4—C3—C2120.4 (4)
C9—N3—C10117.2 (3)C4—C3—H3119.8
C7—N2—N1104.3 (3)C2—C3—H3119.8
C9—N1—N2112.3 (3)C20—C21—H21A109.5
C9—N1—C1126.9 (3)C20—C21—H21B109.5
N2—N1—C1120.7 (3)H21A—C21—H21B109.5
C20—N5—C22117.1 (4)C20—C21—H21C109.5
N1—C9—C8106.8 (3)H21A—C21—H21C109.5
N1—C9—N3119.2 (4)H21B—C21—H21C109.5
C8—C9—N3133.9 (4)C12—C13—C14120.5 (4)
C17—C16—C15120.3 (4)C12—C13—H13119.7
C17—C16—H16119.8C14—C13—H13119.7
C15—C16—H16119.8N5—C22—C27117.7 (5)
C6—C1—C2120.7 (4)N5—C22—C23123.5 (4)
C6—C1—N1119.5 (4)C27—C22—C23118.8 (5)
C2—C1—N1119.8 (4)C1—C2—C3119.1 (4)
C24—C23—C22120.7 (5)C1—C2—H2120.5
C24—C23—C28120.6 (5)C3—C2—H2120.5
C22—C23—C28118.7 (4)C25—C24—C23118.9 (5)
C16—C17—C12120.2 (4)C25—C24—H24120.6
C16—C17—N4120.2 (4)C23—C24—H24120.6
C12—C17—N4119.6 (4)C27—C26—C25121.5 (6)
N5—C20—N4124.1 (4)C27—C26—H26119.2
N5—C20—C21119.2 (4)C25—C26—H26119.2
N4—C20—C21116.7 (4)C14—C15—C16120.4 (4)
C9—C8—C7104.5 (4)C14—C15—H15119.8
C9—C8—C18128.7 (4)C16—C15—H15119.8
C7—C8—C18126.8 (4)C5—C6—C1119.5 (4)
N3—C10—H10A109.5C5—C6—H6120.2
N3—C10—H10B109.5C1—C6—H6120.2
H10A—C10—H10B109.5C15—C14—C13119.7 (4)
N3—C10—H10C109.5C15—C14—H14120.1
H10A—C10—H10C109.5C13—C14—H14120.1
H10B—C10—H10C109.5O3—C18—C8120.6 (4)
C7—C40—H40A109.5O3—C18—C19118.7 (4)
C7—C40—H40B109.5C8—C18—C19120.6 (4)
H40A—C40—H40B109.5C26—C25—C24120.1 (5)
C7—C40—H40C109.5C26—C25—H25120
H40A—C40—H40C109.5C24—C25—H25120
H40B—C40—H40C109.5C18—C19—H19A109.5
C13—C12—C17118.8 (4)C18—C19—H19B109.5
C13—C12—C11120.7 (4)H19A—C19—H19B109.5
C17—C12—C11120.2 (4)C18—C19—H19C109.5
O1—C11—N3120.6 (4)H19A—C19—H19C109.5
O1—C11—C12120.7 (4)H19B—C19—H19C109.5
N3—C11—C12118.5 (4)C26—C27—C22119.9 (5)
C3—C4—C5119.6 (4)C26—C27—H27120
C3—C4—H4120.2C22—C27—H27120
O2—C28—N4—C20178.9 (4)C10—N3—C11—O1173.4 (4)
C23—C28—N4—C200.7 (5)C9—N3—C11—C12169.3 (4)
O2—C28—N4—C170.1 (5)C10—N3—C11—C1210.6 (6)
C23—C28—N4—C17178.1 (3)C13—C12—C11—O1115.6 (5)
C7—N2—N1—C90.0 (4)C17—C12—C11—O158.4 (6)
C7—N2—N1—C1176.5 (4)C13—C12—C11—N360.4 (5)
N2—N1—C9—C80.2 (4)C17—C12—C11—N3125.5 (4)
C1—N1—C9—C8176.4 (4)N1—N2—C7—C80.2 (4)
N2—N1—C9—N3176.7 (3)N1—N2—C7—C40179.4 (3)
C1—N1—C9—N30.5 (6)C9—C8—C7—N20.3 (5)
C11—N3—C9—N187.6 (4)C18—C8—C7—N2177.8 (4)
C10—N3—C9—N192.3 (4)C9—C8—C7—C40179.4 (4)
C11—N3—C9—C896.5 (5)C18—C8—C7—C401.2 (7)
C10—N3—C9—C883.6 (6)C3—C4—C5—C60.8 (6)
C9—N1—C1—C6106.9 (5)C5—C4—C3—C20.2 (7)
N2—N1—C1—C669.0 (5)C17—C12—C13—C140.2 (6)
C9—N1—C1—C271.4 (5)C11—C12—C13—C14173.9 (4)
N2—N1—C1—C2112.6 (4)C20—N5—C22—C27179.1 (4)
O2—C28—C23—C243.9 (6)C20—N5—C22—C230.3 (6)
N4—C28—C23—C24177.9 (3)C24—C23—C22—N5177.1 (4)
O2—C28—C23—C22174.7 (4)C28—C23—C22—N54.2 (6)
N4—C28—C23—C223.4 (5)C24—C23—C22—C271.6 (6)
C15—C16—C17—C121.6 (6)C28—C23—C22—C27177.1 (4)
C15—C16—C17—N4179.4 (4)C6—C1—C2—C32.2 (6)
C28—N4—C17—C1689.6 (4)N1—C1—C2—C3176.2 (4)
C20—N4—C17—C1691.6 (5)C4—C3—C2—C11.2 (6)
C28—N4—C17—C1289.4 (4)C22—C23—C24—C250.1 (6)
C20—N4—C17—C1289.4 (5)C28—C23—C24—C25178.5 (4)
C22—N5—C20—N44.2 (6)C17—C16—C15—C141.1 (7)
C22—N5—C20—C21174.7 (3)C4—C5—C6—C10.1 (6)
C28—N4—C20—N54.9 (6)C2—C1—C6—C51.6 (6)
C17—N4—C20—N5173.9 (4)N1—C1—C6—C5176.8 (4)
C28—N4—C20—C21174.0 (3)C16—C15—C14—C130.1 (7)
C17—N4—C20—C217.2 (5)C12—C13—C14—C150.8 (6)
N1—C9—C8—C70.3 (4)C9—C8—C18—O3177.9 (4)
N3—C9—C8—C7176.0 (4)C7—C8—C18—O34.3 (7)
N1—C9—C8—C18177.8 (4)C9—C8—C18—C195.9 (7)
N3—C9—C8—C185.9 (8)C7—C8—C18—C19171.8 (4)
C16—C17—C12—C131.0 (6)C27—C26—C25—C241.4 (8)
N4—C17—C12—C13180.0 (4)C23—C24—C25—C261.3 (7)
C16—C17—C12—C11175.1 (4)C25—C26—C27—C220.1 (7)
N4—C17—C12—C115.9 (6)N5—C22—C27—C26177.3 (4)
C9—N3—C11—O16.7 (5)C23—C22—C27—C261.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21C···O10.962.573.214 (5)124
C3—H3···O2i0.932.543.351 (6)146
C5—H5···O1ii0.932.403.276 (5)157
C16—H16···O3iii0.932.523.305 (6)143
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21C···O10.962.573.214 (5)124
C3—H3···O2i0.932.543.351 (6)146
C5—H5···O1ii0.932.403.276 (5)157
C16—H16···O3iii0.932.523.305 (6)143
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Fondo di Finanziamento della Ricerca - ex 60%, University of Palermo, is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDuke, N. E. C. & Codding, P. W. (1993). Acta Cryst. B49, 719–726.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationIonescu-Pioggia, M., Bird, M., Orzaci, M. H., Benes, F., Beake, B. & Cole, J. O. (1988). Int. Clin. Psyco. Pharmacol. 3, 97–109.  CAS Google Scholar
First citationPlescia, S., Daidone, G., Sprio, V., Aiello, E., Dattolo, G. & Cirrincione, G. (1978). J. Heterocycl. Chem. 15, 1339–1342.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolfe, J. F., Rathman, T. L., Sleevi, M. C., Campbell, J. A. & Greenwood, T. D. (1990). J. Med. Chem. 33, 161–166.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds