organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1574-o1575

Di­hydro­cyclam dimaleate [H2(cyclam)(maleate)2]

aLCMSN, Département de Chimie, Faculté des Sciences, Université Moulay Ismail, BP 11201, 50000 Meknès, Morocco, bLIMOM (CNRST, URAC 19), Department of Chemistry, Faculty of Sciences, University Sidi Mohamed Ben Abdellah, BP 1796, 30000 Fès, Morocco, cLaboratorio de Radicales Libres y Quimica Computacional, Instituto de Quimica Organica General, Consejo Superior de Investigaciones Cientificas, C/ Juan de la Cierva, 3, 28006-Madrid, Spain, dLaboratorio de Difracción de Rayos X de Monocristal, Servicio Interdepartamental de Investigación, Universidad Autónoma de Madrid, and eLCSMA, Department of Chemistry, Faculty of Sciences, University Mohamed I, Po. Box 717, 60000 Oujda, Morocco
*Correspondence e-mail: limomusmba@gmail.com

(Received 6 September 2013; accepted 14 September 2013; online 21 September 2013)

The asymmetric unit of the title mol­ecular salt [systematic name: 1,4,8,11-tetraazacyclotetradecane-1,8-diium bis(3-carboxy­prop-2-enoate)], C10H26N42+·2C4H3O4, contains two half-cations (both completed by crystallographic inversion symmetry) and two maleate anions. The cyclam macrocycles adopt trans-III conformations, supported by two intra­molecular N—H⋯O hydrogen bonds. The O-bonded H atom of each maleate ion is disordered over two positions with an occupancy ratio of 0.61 (5):0.39 (5): each one generates an intra­molecular O—H⋯O hydrogen bond. In the crystal, the cations are linked to the anions by N—H⋯O hydrogen bonds, generating [001] chains.

Related literature

For related cyclam crystal structures, see: Robinson et al. (1989)[Robinson, G. H., Sangokoya, S. A., Pennington, W. T., Self, M. F. & Rogers, R. D. (1989). J. Coord. Chem. 19, 287-294.]; Frémond et al. (2000[Frémond, L., Espinosa, E., Meyer, M., Denat, F., Guilard, R., Huch, V. & Veit, M. (2000). New J. Chem. 24, 959-966.]); Meyer et al. (1998[Meyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. (1998). Coord. Chem. Rev. 178-180, 1313-1405.]). For macrocycle conformations, see: Bosnich et al. (1965[Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102-1108.]); Dale (1973[Dale, J. (1973). Acta Chem. Scand. 27, 1115-1129.], 1976[Dale, J. (1976). Top. Stereochem. 9, 199-270.]); Melson (1979[Melson, G. A. (1979). Coordination chemistry of macrocyclic compounds. New York: Plenum.]); Bandoli et al. (1993[Bandoli, G., Dolmella, A. & Gatto, S. (1993). J. Crystallogr. Spectrosc. Res. 23, 755-758.]); Hancock et al. (1996[Hancock, R. D., Motekaitis, R. J., Mashishi, J., Cukrowski, I., Reibenspies, J. H. & Martell, A. E. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1925-1929.]).

[Scheme 1]

Experimental

Crystal data
  • C10H26N42+·2C4H3O4

  • Mr = 432.48

  • Monoclinic, P 21 /n

  • a = 8.2925 (1) Å

  • b = 13.5841 (2) Å

  • c = 19.2995 (3) Å

  • β = 98.797 (1)°

  • V = 2148.44 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.89 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.81, Tmax = 0.84

  • 18854 measured reflections

  • 4018 independent reflections

  • 3821 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.04

  • 4018 reflections

  • 403 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.920 (17) 1.800 (17) 2.7074 (13) 168.1 (14)
N1—H1B⋯N2 0.925 (16) 2.015 (15) 2.8000 (13) 141.7 (13)
N2—H2A⋯O7ii 0.926 (16) 2.356 (16) 3.2134 (13) 153.9 (13)
N2—H2A⋯O8ii 0.926 (16) 2.379 (16) 3.2178 (14) 150.6 (13)
N3—H3A⋯N4iii 0.899 (16) 2.089 (16) 2.8046 (14) 135.8 (13)
N3—H3B⋯O5iv 0.901 (16) 2.397 (16) 3.0713 (13) 131.7 (12)
N3—H3B⋯O6iv 0.901 (16) 2.037 (16) 2.8982 (13) 159.5 (14)
N4—H4⋯O4v 0.868 (16) 2.348 (16) 3.1596 (12) 155.8 (13)
O3—H3O⋯O1 0.90 (3) 1.55 (3) 2.4444 (12) 178 (2)
O7—H7O⋯O5 0.92 (4) 1.50 (4) 2.4157 (13) 176 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y, -z; (iv) x, y-1, z; (v) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cyclam is doubly protonated in [H2(cyclam)(maleate)2], resulting in a maleate monoanion. The di-protonated cyclam [C10H26N4]2+ exhibits bond distances and angles in the range usually found in the literature (Melson, 1979). The two additional protons on N1 and N1A are trans to each other and interact through hydrogen bonds with the nonprotonated N2 and N2A nitrogen atoms [N1···N2= 2.800 (1) Å, N3···N4= 2.805 (1) Å]. The diprotonated macrocycle adopts an quadrangular (3,4,3,4)-C conformation (Fig. 1) according to Dale's nomenclature [(Dale, 1973 and 1976, (Hancock et al., 1996)], where the exo-cyclic nitrogen atom N2 is located two bonds away from the adjacent corner atoms C9A and C11, while the amine nitrogen atom N1A is located one bond away from the corresponding corner atom C9A and two bonds away from C11A. According to the stereochemical classification of 1,4,8,11 tetraazacyclotetradecane introduced by Bosnich et al. (1965), the cyclam ring adopts a trans-III geometry type, which, according to molecular mechanics MM-calculations, is the most stable among the five possible configurations (Bandoli et al., 1993). In the crystal structure, intramolecular hydrogen bonds occur, linking carboxylate O atoms in each maleate ion. The H3C and H7A atoms are involved in these bonds and maintain the charge balance by bridging two carboxylate groups within the structure. The complex features intra and intermolecular hydrogen bonds involving N—H···O, N—H···N and O—H···O. The main types of such bonds are those between protonated NH groups of the marcocycle and O atoms of the ionized maleic hydroxyls, between protonated and nonprotonated NH groups of the macrocycle and between O-atoms of the same ionized maleic hydroxyls as shown on Fig. 2 and 3. The values of the main H-bonds are reported in table 3.

Related literature top

For related cyclam crystal structures, see: Robinson et al. (1989); Frémond et al. (2000); Meyer et al. (1998). For macrocycle conformations, see: Bosnich et al. (1965); Dale (1973, 1976); Melson (1979); Bandoli et al. (1993); Hancock et al. (1996).

Experimental top

0.2 g (1 mmol) of cyclam C10H24N4 was dissolved 25 ml of water-ethanol mixture 1:1 (v/v) and 0.233 g (2 mmol) of maleic acid C4H4O4, in 25 ml of the same solvent. The solutions were combined, and the mixture was refluxed for 3 h, before to be deposited to set at room conditions. Prismatic coloreless crystals were obtained which were washed with a water (80%) /ethanol (20%) (v:v) solution.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound, with hydrogen bonds shown as dashed lines. Anisotropic displacement parameters drawn at the 50% probability level.
[Figure 2] Fig. 2. : Inter-molecular H-bonds between cyclam and maleate ion.
[Figure 3] Fig. 3. : Projection of the structure in bc-plane, hydrogen bonds as dashed lines.
1,4,8,11-Tetraazacyclotetradecane-1,8-diium bis(3-carboxyprop-2-enoate) top
Crystal data top
C10H26N42+·2C4H3O4Z = 4
Mr = 432.48F(000) = 928
Monoclinic, P21/nDx = 1.337 Mg m3
a = 8.2925 (1) ÅCu Kα radiation, λ = 1.54178 Å
b = 13.5841 (2) ŵ = 0.89 mm1
c = 19.2995 (3) ÅT = 100 K
β = 98.797 (1)°Prism, colourless
V = 2148.44 (5) Å30.25 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
3821 reflections with I > 2σ(I)
ω scansRint = 0.024
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
θmax = 70.1°, θmin = 4.6°
Tmin = 0.81, Tmax = 0.84h = 109
18854 measured reflectionsk = 1616
4018 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.6721P]
where P = (Fo2 + 2Fc2)/3
4018 reflections(Δ/σ)max < 0.001
403 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H26N42+·2C4H3O4V = 2148.44 (5) Å3
Mr = 432.48Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.2925 (1) ŵ = 0.89 mm1
b = 13.5841 (2) ÅT = 100 K
c = 19.2995 (3) Å0.25 × 0.20 × 0.20 mm
β = 98.797 (1)°
Data collection top
Bruker SMART CCD
diffractometer
4018 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3821 reflections with I > 2σ(I)
Tmin = 0.81, Tmax = 0.84Rint = 0.024
18854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.36 e Å3
4018 reflectionsΔρmin = 0.18 e Å3
403 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.29130 (13)0.94686 (8)0.28537 (6)0.0241 (2)
C20.42219 (13)0.89074 (8)0.25661 (6)0.0240 (2)
C30.44193 (13)0.87391 (8)0.19031 (6)0.0229 (2)
C40.34069 (12)0.90322 (8)0.12233 (6)0.0227 (2)
C50.98341 (14)0.76765 (8)0.18188 (6)0.0260 (2)
C61.05748 (14)0.70568 (9)0.24264 (6)0.0259 (2)
C71.02908 (14)0.70577 (9)0.30874 (6)0.0274 (2)
C80.92026 (14)0.76946 (9)0.34489 (6)0.0284 (2)
C90.25226 (15)0.61005 (9)0.03030 (6)0.0301 (3)
C100.47726 (15)0.63339 (9)0.13169 (7)0.0303 (3)
C110.62753 (15)0.58461 (10)0.17098 (6)0.0319 (3)
C120.75542 (14)0.55991 (10)0.12458 (7)0.0309 (3)
C130.81528 (14)0.46284 (9)0.02577 (6)0.0289 (3)
C140.75571 (15)0.17204 (9)0.00831 (7)0.0313 (3)
C150.74127 (14)0.02422 (9)0.06666 (6)0.0283 (2)
C160.84068 (14)0.05815 (9)0.10416 (6)0.0281 (2)
C171.02932 (15)0.19107 (9)0.08931 (6)0.0306 (3)
C181.12976 (16)0.24033 (9)0.03941 (7)0.0335 (3)
N10.38474 (12)0.56356 (7)0.08060 (5)0.0245 (2)
N20.69367 (11)0.48659 (7)0.07078 (5)0.0258 (2)
N30.84805 (11)0.09675 (7)0.03828 (5)0.0243 (2)
N40.92438 (12)0.11249 (7)0.05474 (5)0.0248 (2)
O10.18816 (10)0.99727 (6)0.24442 (4)0.03003 (19)
H1O0.20610.99060.2030.045*0.39 (5)
O20.29456 (10)0.94215 (6)0.35007 (4)0.0326 (2)
O30.22552 (10)0.96878 (6)0.12282 (4)0.02853 (19)
O40.37276 (9)0.86677 (6)0.06808 (4)0.02820 (19)
O50.85713 (11)0.82014 (7)0.18682 (5)0.0352 (2)
H5O0.84020.82060.22860.053*0.41 (5)
O61.04578 (11)0.76384 (7)0.12791 (4)0.0332 (2)
O70.81387 (10)0.82564 (7)0.30773 (5)0.0340 (2)
O80.93463 (12)0.76651 (8)0.40874 (5)0.0430 (2)
H1A0.3368 (19)0.5175 (12)0.1059 (8)0.036 (4)*
H1B0.4603 (19)0.5331 (11)0.0571 (8)0.034 (4)*
H20.4994 (17)0.8649 (10)0.2919 (7)0.026 (3)*
H2A0.6715 (18)0.4294 (12)0.0937 (8)0.035 (4)*
H30.5346 (17)0.8353 (10)0.1825 (7)0.026 (3)*
H3A0.9173 (18)0.0670 (11)0.0134 (8)0.032 (4)*
H3B0.9109 (19)0.1278 (11)0.0739 (8)0.034 (4)*
H3O0.211 (3)0.9802 (17)0.1673 (15)0.023 (8)*0.61 (5)
H40.8494 (19)0.1373 (11)0.0233 (8)0.033 (4)*
H61.1379 (17)0.6605 (11)0.2304 (8)0.031 (3)*
H71.0899 (18)0.6622 (12)0.3405 (8)0.035 (4)*
H7O0.829 (3)0.826 (2)0.2615 (19)0.033 (10)*0.59 (5)
H9A0.3008 (18)0.6660 (12)0.0107 (8)0.036 (4)*
H9B0.1683 (17)0.6323 (11)0.0580 (8)0.031 (3)*
H10A0.5089 (18)0.6906 (11)0.1055 (8)0.033 (4)*
H10B0.4040 (17)0.6548 (11)0.1624 (8)0.031 (3)*
H11A0.6791 (19)0.6312 (12)0.2085 (8)0.039 (4)*
H11B0.5941 (17)0.5260 (11)0.1945 (8)0.031 (3)*
H12A0.7842 (17)0.6192 (11)0.0991 (7)0.030 (3)*
H12B0.855 (2)0.5371 (11)0.1536 (8)0.038 (4)*
H13A0.8453 (17)0.5260 (11)0.0028 (7)0.028 (3)*
H13B0.9123 (19)0.4366 (11)0.0525 (8)0.033 (4)*
H14A0.6835 (18)0.1343 (11)0.0437 (8)0.034 (4)*
H14B0.6853 (19)0.2065 (12)0.0195 (8)0.039 (4)*
H15A0.6656 (17)0.0007 (10)0.0272 (7)0.025 (3)*
H15B0.6817 (18)0.0594 (11)0.0973 (8)0.034 (4)*
H16A0.9219 (17)0.0315 (10)0.1411 (7)0.028 (3)*
H16B0.7675 (18)0.1014 (11)0.1274 (8)0.033 (4)*
H17A1.1036 (17)0.1611 (10)0.1290 (7)0.028 (3)*
H17B0.9618 (18)0.2419 (12)0.1109 (8)0.036 (4)*
H18A1.0582 (19)0.2722 (11)0.0018 (8)0.036 (4)*
H18B1.1958 (19)0.2909 (12)0.0640 (8)0.039 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0230 (5)0.0242 (5)0.0252 (5)0.0015 (4)0.0038 (4)0.0028 (4)
C20.0228 (5)0.0247 (5)0.0235 (5)0.0025 (4)0.0007 (4)0.0005 (4)
C30.0196 (5)0.0231 (5)0.0261 (5)0.0023 (4)0.0034 (4)0.0001 (4)
C40.0201 (5)0.0239 (5)0.0243 (5)0.0021 (4)0.0040 (4)0.0022 (4)
C50.0261 (5)0.0270 (5)0.0238 (5)0.0043 (4)0.0005 (4)0.0003 (4)
C60.0235 (5)0.0275 (6)0.0261 (6)0.0040 (4)0.0025 (4)0.0013 (4)
C70.0267 (6)0.0300 (6)0.0245 (5)0.0073 (5)0.0006 (4)0.0031 (5)
C80.0265 (6)0.0319 (6)0.0270 (6)0.0035 (5)0.0046 (4)0.0003 (5)
C90.0322 (6)0.0314 (6)0.0286 (6)0.0088 (5)0.0108 (5)0.0045 (5)
C100.0332 (6)0.0265 (6)0.0337 (6)0.0034 (5)0.0133 (5)0.0063 (5)
C110.0350 (6)0.0339 (6)0.0273 (6)0.0077 (5)0.0066 (5)0.0046 (5)
C120.0243 (6)0.0366 (6)0.0312 (6)0.0054 (5)0.0029 (5)0.0024 (5)
C130.0234 (5)0.0362 (6)0.0283 (6)0.0052 (5)0.0072 (5)0.0056 (5)
C140.0302 (6)0.0323 (6)0.0291 (6)0.0103 (5)0.0024 (5)0.0020 (5)
C150.0209 (5)0.0360 (6)0.0283 (6)0.0020 (5)0.0051 (4)0.0075 (5)
C160.0259 (6)0.0359 (6)0.0230 (5)0.0077 (5)0.0056 (4)0.0002 (5)
C170.0331 (6)0.0273 (6)0.0290 (6)0.0034 (5)0.0030 (5)0.0068 (5)
C180.0398 (7)0.0236 (6)0.0328 (6)0.0046 (5)0.0083 (5)0.0007 (5)
N10.0243 (5)0.0245 (5)0.0265 (5)0.0006 (4)0.0098 (4)0.0007 (4)
N20.0234 (5)0.0284 (5)0.0268 (5)0.0021 (4)0.0082 (4)0.0003 (4)
N30.0224 (5)0.0269 (5)0.0229 (5)0.0033 (4)0.0007 (4)0.0039 (4)
N40.0246 (5)0.0258 (5)0.0227 (5)0.0031 (4)0.0009 (4)0.0007 (4)
O10.0262 (4)0.0355 (4)0.0282 (4)0.0088 (3)0.0038 (3)0.0013 (4)
O20.0365 (5)0.0374 (5)0.0247 (4)0.0074 (4)0.0076 (3)0.0025 (3)
O30.0278 (4)0.0313 (4)0.0257 (4)0.0082 (3)0.0017 (3)0.0031 (3)
O40.0275 (4)0.0357 (4)0.0216 (4)0.0025 (3)0.0045 (3)0.0008 (3)
O50.0337 (5)0.0425 (5)0.0286 (5)0.0118 (4)0.0026 (3)0.0092 (4)
O60.0375 (5)0.0395 (5)0.0232 (4)0.0024 (4)0.0064 (3)0.0016 (3)
O70.0311 (4)0.0404 (5)0.0306 (5)0.0142 (4)0.0053 (3)0.0018 (4)
O80.0473 (5)0.0572 (6)0.0254 (4)0.0175 (5)0.0083 (4)0.0004 (4)
Geometric parameters (Å, º) top
C1—O21.2463 (14)C13—N21.4641 (14)
C1—O11.2722 (14)C13—C9i1.5099 (18)
C1—C21.5007 (15)C13—H13A1.014 (15)
C2—C31.3343 (16)C13—H13B0.956 (16)
C2—H20.930 (14)C14—N31.4933 (15)
C3—C41.4991 (15)C14—C18ii1.5156 (19)
C3—H30.961 (14)C14—H14A0.981 (16)
C4—O41.2236 (14)C14—H14B0.972 (16)
C4—O31.3070 (14)C15—N31.4843 (15)
C5—O61.2328 (14)C15—C161.5076 (17)
C5—O51.2824 (15)C15—H15A0.971 (14)
C5—C61.4969 (16)C15—H15B0.954 (16)
C6—C71.3321 (17)C16—N41.4625 (15)
C6—H60.962 (15)C16—H16A0.973 (14)
C7—C81.4975 (16)C16—H16B0.998 (15)
C7—H70.941 (16)C17—N41.4712 (15)
C8—O81.2204 (15)C17—C181.5213 (19)
C8—O71.2967 (15)C17—H17A0.994 (14)
C9—N11.4906 (15)C17—H17B1.017 (16)
C9—C13i1.5099 (18)C18—C14ii1.5155 (19)
C9—H9A0.963 (16)C18—H18A0.967 (16)
C9—H9B0.988 (15)C18—H18B0.958 (17)
C10—N11.4929 (15)N1—H1A0.920 (17)
C10—C111.5093 (18)N1—H1B0.925 (16)
C10—H10A0.984 (16)N2—H2A0.926 (16)
C10—H10B0.956 (15)N3—H3A0.899 (16)
C11—C121.5262 (17)N3—H3B0.901 (16)
C11—H11A1.007 (16)N4—H40.868 (16)
C11—H11B0.978 (15)O1—H1O0.84
C12—N21.4729 (16)O3—H3O0.90 (3)
C12—H12A0.992 (15)O5—H5O0.84
C12—H12B0.977 (16)O7—H7O0.92 (4)
O2—C1—O1124.03 (10)H13A—C13—H13B108.0 (12)
O2—C1—C2116.00 (10)N3—C14—C18ii111.28 (10)
O1—C1—C2119.95 (10)N3—C14—H14A105.3 (9)
C3—C2—C1130.06 (10)C18ii—C14—H14A113.4 (9)
C3—C2—H2117.8 (8)N3—C14—H14B107.1 (9)
C1—C2—H2112.1 (8)C18ii—C14—H14B112.9 (9)
C2—C3—C4131.25 (10)H14A—C14—H14B106.4 (12)
C2—C3—H3117.6 (8)N3—C15—C16110.89 (9)
C4—C3—H3111.2 (8)N3—C15—H15A107.0 (8)
O4—C4—O3122.45 (10)C16—C15—H15A111.0 (8)
O4—C4—C3118.39 (10)N3—C15—H15B106.9 (9)
O3—C4—C3119.12 (9)C16—C15—H15B111.8 (9)
O6—C5—O5122.62 (11)H15A—C15—H15B109.1 (12)
O6—C5—C6117.60 (10)N4—C16—C15109.92 (9)
O5—C5—C6119.75 (10)N4—C16—H16A108.8 (8)
C7—C6—C5129.66 (11)C15—C16—H16A110.0 (8)
C7—C6—H6117.9 (9)N4—C16—H16B112.1 (8)
C5—C6—H6112.5 (9)C15—C16—H16B109.1 (8)
C6—C7—C8130.85 (11)H16A—C16—H16B106.9 (12)
C6—C7—H7117.9 (9)N4—C17—C18112.03 (10)
C8—C7—H7111.1 (9)N4—C17—H17A107.8 (8)
O8—C8—O7122.06 (11)C18—C17—H17A109.5 (8)
O8—C8—C7118.61 (11)N4—C17—H17B110.8 (8)
O7—C8—C7119.33 (10)C18—C17—H17B110.4 (9)
N1—C9—C13i110.16 (9)H17A—C17—H17B106.1 (12)
N1—C9—H9A106.2 (9)C14ii—C18—C17114.74 (10)
C13i—C9—H9A111.6 (9)C14ii—C18—H18A109.1 (9)
N1—C9—H9B106.7 (8)C17—C18—H18A109.9 (9)
C13i—C9—H9B111.9 (8)C14ii—C18—H18B106.9 (9)
H9A—C9—H9B110.0 (12)C17—C18—H18B109.1 (9)
N1—C10—C11110.75 (10)H18A—C18—H18B106.8 (13)
N1—C10—H10A108.3 (9)C9—N1—C10114.46 (9)
C11—C10—H10A109.9 (9)C9—N1—H1A107.3 (10)
N1—C10—H10B106.9 (9)C10—N1—H1A107.6 (10)
C11—C10—H10B112.1 (9)C9—N1—H1B110.9 (9)
H10A—C10—H10B108.7 (12)C10—N1—H1B106.8 (9)
C10—C11—C12113.34 (10)H1A—N1—H1B109.6 (13)
C10—C11—H11A108.2 (9)C13—N2—C12111.75 (9)
C12—C11—H11A107.7 (9)C13—N2—H2A107.7 (9)
C10—C11—H11B108.7 (8)C12—N2—H2A107.7 (9)
C12—C11—H11B111.5 (8)C15—N3—C14113.39 (9)
H11A—C11—H11B107.3 (12)C15—N3—H3A111.3 (9)
N2—C12—C11111.37 (10)C14—N3—H3A107.3 (9)
N2—C12—H12A106.5 (8)C15—N3—H3B109.7 (10)
C11—C12—H12A110.7 (8)C14—N3—H3B108.8 (10)
N2—C12—H12B111.2 (9)H3A—N3—H3B106.0 (13)
C11—C12—H12B109.8 (9)C16—N4—C17112.16 (9)
H12A—C12—H12B107.1 (12)C16—N4—H4106.9 (10)
N2—C13—C9i110.86 (10)C17—N4—H4110.3 (10)
N2—C13—H13A108.1 (8)C1—O1—H1O109.5
C9i—C13—H13A109.3 (8)C4—O3—H3O109.3 (14)
N2—C13—H13B111.2 (9)C5—O5—H5O109.5
C9i—C13—H13B109.4 (9)C8—O7—H7O111.2 (16)
O2—C1—C2—C3172.92 (12)C10—C11—C12—N264.14 (14)
O1—C1—C2—C38.76 (18)N3—C15—C16—N463.16 (12)
C1—C2—C3—C41.1 (2)N4—C17—C18—C14ii60.25 (13)
C2—C3—C4—O4169.79 (12)C13i—C9—N1—C10171.04 (9)
C2—C3—C4—O312.43 (18)C11—C10—N1—C9169.21 (10)
O6—C5—C6—C7169.97 (12)C9i—C13—N2—C12178.28 (10)
O5—C5—C6—C711.73 (19)C11—C12—N2—C13179.69 (10)
C5—C6—C7—C82.7 (2)C16—C15—N3—C14171.53 (10)
C6—C7—C8—O8167.94 (13)C18ii—C14—N3—C15176.49 (10)
C6—C7—C8—O712.2 (2)C15—C16—N4—C17177.39 (9)
N1—C10—C11—C1267.08 (13)C18—C17—N4—C16173.98 (10)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2iii0.920 (17)1.800 (17)2.7074 (13)168.1 (14)
N1—H1B···N20.925 (16)2.015 (15)2.8000 (13)141.7 (13)
N2—H2A···O7iv0.926 (16)2.356 (16)3.2134 (13)153.9 (13)
N2—H2A···O8iv0.926 (16)2.379 (16)3.2178 (14)150.6 (13)
N3—H3A···N4ii0.899 (16)2.089 (16)2.8046 (14)135.8 (13)
N3—H3B···O5v0.901 (16)2.397 (16)3.0713 (13)131.7 (12)
N3—H3B···O6v0.901 (16)2.037 (16)2.8982 (13)159.5 (14)
N4—H4···O4i0.868 (16)2.348 (16)3.1596 (12)155.8 (13)
O3—H3O···O10.90 (3)1.55 (3)2.4444 (12)178 (2)
O7—H7O···O50.92 (4)1.50 (4)2.4157 (13)176 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.920 (17)1.800 (17)2.7074 (13)168.1 (14)
N1—H1B···N20.925 (16)2.015 (15)2.8000 (13)141.7 (13)
N2—H2A···O7ii0.926 (16)2.356 (16)3.2134 (13)153.9 (13)
N2—H2A···O8ii0.926 (16)2.379 (16)3.2178 (14)150.6 (13)
N3—H3A···N4iii0.899 (16)2.089 (16)2.8046 (14)135.8 (13)
N3—H3B···O5iv0.901 (16)2.397 (16)3.0713 (13)131.7 (12)
N3—H3B···O6iv0.901 (16)2.037 (16)2.8982 (13)159.5 (14)
N4—H4···O4v0.868 (16)2.348 (16)3.1596 (12)155.8 (13)
O3—H3O···O10.90 (3)1.55 (3)2.4444 (12)178.(2)
O7—H7O···O50.92 (4)1.50 (4)2.4157 (13)176.(3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+2, y, z; (iv) x, y1, z; (v) x+1, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge the Centre National de la Recherche Scientifique et Technique (CNRST-Rabat) for the financial support of this work and Moulay Ismail (Meknès) and Sidi Mohamed Ben Abdellah (Fez) Universities.

References

First citationBandoli, G., Dolmella, A. & Gatto, S. (1993). J. Crystallogr. Spectrosc. Res. 23, 755–758.  CSD CrossRef CAS Web of Science Google Scholar
First citationBosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDale, J. (1973). Acta Chem. Scand. 27, 1115–1129.  CrossRef CAS Web of Science Google Scholar
First citationDale, J. (1976). Top. Stereochem. 9, 199–270.  CrossRef CAS Google Scholar
First citationFrémond, L., Espinosa, E., Meyer, M., Denat, F., Guilard, R., Huch, V. & Veit, M. (2000). New J. Chem. 24, 959–966.  Google Scholar
First citationHancock, R. D., Motekaitis, R. J., Mashishi, J., Cukrowski, I., Reibenspies, J. H. & Martell, A. E. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1925–1929.  CrossRef Google Scholar
First citationMelson, G. A. (1979). Coordination chemistry of macrocyclic compounds. New York: Plenum.  Google Scholar
First citationMeyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. (1998). Coord. Chem. Rev. 178–180, 1313–1405.  Web of Science CrossRef CAS Google Scholar
First citationRobinson, G. H., Sangokoya, S. A., Pennington, W. T., Self, M. F. & Rogers, R. D. (1989). J. Coord. Chem. 19, 287–294.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1574-o1575
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds