organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-(1,3-Benzodioxol-5-yl)-1-(4-{[1-(prop-2-en-1-yl)-1H-1,2,3-triazol-4-yl]meth­­oxy}phen­yl)methanimine

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 16 September 2013; accepted 17 September 2013; online 21 September 2013)

In the title compound, C20H18N4O3, the dihedral angles between the central benzene ring and the 1H-1,2,3-triazole ring and the fused benzene ring are 65.34 (19) and 3.64 (18)°, respectively. The dioxole ring adopts a shallow envelope conformation, with the methyl­ene C atom displaced by 0.156 (5) Å from the other four atoms (r.m.s. deviation = 0.007Å). In the crystal, the mol­ecules are linked by C—H⋯O and C—H⋯N hydrogen bonds, generating a three-dimensional network.

Related literature

For background to Schiff base compounds, see: Arora et al. (2002[Arora, K., Gupta, A. & Agarwal, D. D. (2002). Asian J. Chem. 14, 1611-1615.]); Calligaris & Randaccio (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, p 715. Oxford: Pergamon.]); Macho et al. (2004[Macho, V., Kralik, M., Hudec, J. & Cingelova, J. (2004). J. Mol. Catal. A Chem. 209, 69-73.]); Singh et al. (2012[Singh, P., Raj, R., Kumar, V., Mahajan, M. P., Bedi, P. M. S., Kaur, T. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 594-600.]); Tanaka & Shiraishi (2000[Tanaka, K. & Shiraishi, R. (2000). Green Chem. 2, 272-273.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N4O3

  • Mr = 362.38

  • Orthorhombic, P 21 21 21

  • a = 5.1506 (6) Å

  • b = 15.334 (2) Å

  • c = 22.965 (5) Å

  • V = 1813.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.69 × 0.39 × 0.20 mm

Data collection
  • STOE IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.956, Tmax = 0.985

  • 13771 measured reflections

  • 3770 independent reflections

  • 2125 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.103

  • S = 0.90

  • 3770 reflections

  • 245 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3i 0.93 2.59 3.471 (4) 157
C7—H7B⋯N2ii 0.97 2.59 3.380 (5) 138
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are one of the most important mixed donor systems in coordination chemistry. They result from the condensation of primary amines with carbonyl compounds to give imines containing a C=N bond (Calligaris & Randaccio, 1987). Schiff bases are widely in use for synthetic purposes both by organic and inorganic chemists (Arora et al., 2002). They are used as biological, analytical, polymer and liquid crystalline materials (Tanaka & Shiraishi, 2000). Also, they are used as substrate in the preparation of a large of bioactive and industrial compounds via ring closure, cycloaddition, replacement reaction, cyclization and enantioselective oxidation (Macho et al., 2004). Triazoles are also important class of heterocycles because of their varied biological activities (Singh et al., 2012). Due to their broad range of biological activities and their value as synthetic precursors for pharmaceutical compounds, 1,2,3-triazole derivatives have received increasing attention. Therefore, compound (I), which has the two mentioned features, was synthesized and its X-ray studies is reported here.

As shown in Fig. 1, the 1H-1,2,3-triazole ring (N2–N4/C16/C17) and the 1,3-benzodioxole ring system (O1/O2/C1–C7) of the title compound (I) are almostly planar with maximum deviations of 0.002 (3) Å for N4 and 0.078 (5) Å for C7, respectively. The dihedral angle between the above-mentioned rings 62.91 (15)°. The benzene ring (C9–C14) in the middle of the molecule (I) forms dihedral angles of 65.34 (19) and 3.73 (16)° with the 1H-1,2,3-triazole ring and the 1,3-benzodioxole ring system, respectively. The C1–N1–C8–C9, C12–O3–C15–C16 and N4–C18–C19–C20 torsion angles are 179.5 (3), -176.5 (3) and 126.6 (5)°, respectively.

In the crystal, C—H···O and C—H···N hydrogen bonding interactions (Table 1; Figs. 2 & 3) connect the adjacent molecules, forming three dimensional network. However, C—H···π interactions and π-π stacking interactions are not observed.

Related literature top

For background to Schiff base compounds, see: Arora et al. (2002); Calligaris & Randaccio (1987); Macho et al. (2004); Singh et al. (2012); Tanaka & Shiraishi (2000).

Experimental top

Reaction of 4-((1-allyl-1H-1,2,3-triazol-4-yl)methoxy)benzaldehyde (1.00 mmol) with benzo[d][1,3]dioxol-5-amine (1.00 mmol) in refluxing ethanol gave the title compound. Recrystallization from ethanol gave light brown prisms in 72% yield. Mp: 373–375 K. IR (KBr, cm-1):1612 (C=N). 1H-NMR (250 MHz, CDCl3) δ (p.p.m.): 4.92 (d, 2H, J=7.5 Hz), 5.21 (s, 2H), 5.30 (m, 2H), 5.91 (O—CH2—O, s, 2H), 5.97 (m, 1H), 6.75 (aromatic H, d, 2H, J=10 Hz), 6.99 (aromatic H, d, 2H, J=10 Hz), 7.19 (aromatic H, s, 1H), 7.81 (aromatic H, d, 2H, J=10 Hz), 7.57 (H triazole, s, 1H), 8.30 (HCN, s, 1H). 13CNMR (62.9 MHz, CDCl3), δ (p.p.m): 62.8 (CH2—N), 62.1 (CH2—O), 101.3 (O—CH2—O), 101.7–148.2 (aromatic carbons and C=C triazole), 158.0 (C=N).

Refinement top

All H atoms were plocated geometrically with C—H = 0.93 - 0.97 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C). The absolute structure was indeterminate in the present refinement. The (120), (130) and (041) reflections were omitted owing to bad agreement.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of compound (I) viewed down the a axis. Hydrogen bonds are indicated by broken lines. H atoms not participating in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. A packing diagram for compound (I), viewed down the c axis, showing the hydrogen-bonding network. H atoms not participating in hydrogen bonding have been omitted for clarity.
(E)-N-(1,3-Benzodioxol-5-yl)-1-(4-{[1-(prop-2-en-1-yl)-1H-1,2,3-triazol-4-yl]methoxy}phenyl)methanimine top
Crystal data top
C20H18N4O3F(000) = 760
Mr = 362.38Dx = 1.327 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 11139 reflections
a = 5.1506 (6) Åθ = 1.3–27.2°
b = 15.334 (2) ŵ = 0.09 mm1
c = 22.965 (5) ÅT = 296 K
V = 1813.8 (5) Å3Prism, light brown
Z = 40.69 × 0.39 × 0.20 mm
Data collection top
STOE IPDS 2
diffractometer
3770 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2125 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.059
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.6°
ω–scansh = 66
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1919
Tmin = 0.956, Tmax = 0.985l = 2826
13771 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.103 W = 1/[Σ2(FO2) + (0.0508P)2] WHERE P = (FO2 + 2FC2)/3
S = 0.90(Δ/σ)max < 0.001
3770 reflectionsΔρmax = 0.16 e Å3
245 parametersΔρmin = 0.12 e Å3
Crystal data top
C20H18N4O3V = 1813.8 (5) Å3
Mr = 362.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1506 (6) ŵ = 0.09 mm1
b = 15.334 (2) ÅT = 296 K
c = 22.965 (5) Å0.69 × 0.39 × 0.20 mm
Data collection top
STOE IPDS 2
diffractometer
3770 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2125 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.985Rint = 0.059
13771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.103H-atom parameters constrained
S = 0.90Δρmax = 0.16 e Å3
3770 reflectionsΔρmin = 0.12 e Å3
245 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2051 (5)0.1543 (2)0.27007 (10)0.1086 (10)
O20.5181 (6)0.07091 (18)0.22561 (9)0.1006 (11)
O30.4365 (5)0.13425 (16)0.73893 (8)0.0846 (9)
N10.5539 (7)0.08711 (18)0.46490 (11)0.0776 (11)
N20.5549 (5)0.2095 (2)0.85838 (11)0.0836 (10)
N30.5512 (5)0.19340 (19)0.91438 (11)0.0805 (10)
N40.3268 (5)0.15416 (17)0.92593 (10)0.0667 (9)
C10.5363 (7)0.08489 (19)0.40356 (13)0.0675 (11)
C20.3460 (6)0.1275 (2)0.36999 (13)0.0735 (11)
C30.3620 (7)0.1170 (2)0.31150 (14)0.0737 (12)
C40.5479 (8)0.0678 (2)0.28498 (14)0.0738 (11)
C50.7368 (7)0.0265 (2)0.31609 (15)0.0857 (16)
C60.7253 (7)0.0361 (2)0.37593 (14)0.0787 (12)
C70.2850 (9)0.1171 (3)0.21640 (16)0.1060 (16)
C80.3987 (8)0.1305 (2)0.49551 (14)0.0783 (12)
C90.4109 (6)0.1334 (2)0.55880 (13)0.0733 (12)
C100.5886 (9)0.0871 (3)0.59019 (15)0.1013 (16)
C110.5948 (8)0.0893 (3)0.64980 (16)0.1047 (16)
C120.4170 (7)0.1383 (2)0.67992 (13)0.0721 (11)
C130.2412 (9)0.1849 (3)0.65028 (15)0.1113 (18)
C140.2367 (8)0.1829 (3)0.59057 (15)0.1157 (18)
C150.2705 (7)0.1901 (2)0.77187 (13)0.0803 (11)
C160.3326 (6)0.1800 (2)0.83444 (13)0.0653 (11)
C170.1889 (6)0.1448 (2)0.87751 (14)0.0758 (11)
C180.2532 (8)0.1336 (3)0.98629 (13)0.0887 (14)
C190.4671 (9)0.0978 (3)1.02037 (16)0.0963 (18)
C200.5422 (9)0.1288 (3)1.06988 (17)0.1170 (18)
H20.216300.161000.387100.0880*
H50.866000.006300.298100.1030*
H60.850300.008500.398600.0940*
H7A0.152000.077800.201900.1270*
H7B0.311900.162600.187700.1270*
H80.269400.162300.476800.0940*
H100.709400.053000.570500.1220*
H110.719800.057500.669900.1260*
H130.121300.218800.670300.1330*
H140.113000.215800.570900.1390*
H15A0.090400.174800.764900.0970*
H15B0.296100.250200.760100.0970*
H170.026000.119200.874000.0910*
H18A0.190900.186301.005000.1060*
H18B0.111600.091900.985800.1060*
H190.554800.049701.005500.1160*
H20A0.458400.176801.085900.1410*
H20B0.680200.103001.089500.1410*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1206 (19)0.141 (2)0.0642 (14)0.042 (2)0.0067 (14)0.0042 (15)
O20.124 (2)0.120 (2)0.0578 (15)0.017 (2)0.0055 (14)0.0026 (12)
O30.1008 (16)0.0939 (16)0.0591 (13)0.0306 (15)0.0030 (12)0.0015 (11)
N10.092 (2)0.080 (2)0.0608 (17)0.0018 (17)0.0005 (16)0.0038 (14)
N20.0768 (17)0.112 (2)0.0619 (16)0.0184 (17)0.0002 (13)0.0072 (15)
N30.0732 (17)0.107 (2)0.0612 (17)0.0200 (17)0.0011 (14)0.0006 (14)
N40.0618 (14)0.0779 (16)0.0605 (15)0.0056 (14)0.0087 (13)0.0084 (14)
C10.080 (2)0.0608 (19)0.0618 (19)0.0081 (18)0.0036 (17)0.0032 (14)
C20.0775 (19)0.077 (2)0.066 (2)0.0063 (19)0.0018 (16)0.0023 (16)
C30.084 (2)0.075 (2)0.062 (2)0.004 (2)0.0049 (17)0.0055 (17)
C40.093 (2)0.069 (2)0.0595 (19)0.004 (2)0.007 (2)0.0025 (16)
C50.097 (3)0.087 (3)0.073 (2)0.010 (2)0.0141 (19)0.0074 (19)
C60.085 (2)0.081 (2)0.070 (2)0.006 (2)0.0023 (19)0.0122 (18)
C70.124 (3)0.129 (3)0.065 (2)0.015 (3)0.010 (2)0.005 (2)
C80.098 (2)0.073 (2)0.064 (2)0.005 (2)0.0065 (18)0.0066 (17)
C90.094 (2)0.067 (2)0.059 (2)0.003 (2)0.0048 (17)0.0070 (16)
C100.120 (3)0.120 (3)0.064 (2)0.050 (3)0.007 (2)0.005 (2)
C110.121 (3)0.125 (3)0.068 (2)0.057 (3)0.001 (2)0.007 (2)
C120.085 (2)0.075 (2)0.0562 (19)0.014 (2)0.0066 (16)0.0015 (16)
C130.132 (3)0.139 (4)0.063 (2)0.068 (3)0.013 (2)0.011 (2)
C140.143 (4)0.133 (3)0.071 (2)0.068 (3)0.021 (2)0.003 (2)
C150.078 (2)0.095 (2)0.0678 (19)0.023 (2)0.0062 (16)0.0114 (17)
C160.0604 (18)0.074 (2)0.0616 (18)0.0075 (17)0.0012 (15)0.0087 (15)
C170.0595 (16)0.094 (2)0.074 (2)0.0092 (17)0.0001 (18)0.0173 (19)
C180.088 (2)0.108 (3)0.070 (2)0.008 (2)0.0180 (19)0.002 (2)
C190.129 (4)0.093 (3)0.067 (2)0.012 (3)0.016 (3)0.0023 (19)
C200.160 (4)0.125 (3)0.066 (2)0.018 (3)0.005 (3)0.003 (2)
Geometric parameters (Å, º) top
O1—C31.373 (4)C12—C131.339 (5)
O1—C71.419 (5)C13—C141.372 (5)
O2—C41.373 (4)C15—C161.480 (4)
O2—C71.410 (6)C16—C171.348 (4)
O3—C121.360 (4)C18—C191.459 (6)
O3—C151.427 (4)C19—C201.292 (6)
N1—C11.412 (4)C2—H20.9300
N1—C81.255 (5)C5—H50.9300
N2—N31.310 (4)C6—H60.9300
N2—C161.348 (4)C7—H7A0.9700
N3—N41.330 (4)C7—H7B0.9700
N4—C171.327 (4)C8—H80.9300
N4—C181.471 (4)C10—H100.9300
C1—C21.408 (4)C11—H110.9300
C1—C61.382 (5)C13—H130.9300
C2—C31.355 (4)C14—H140.9300
C3—C41.363 (5)C15—H15A0.9700
C4—C51.363 (5)C15—H15B0.9700
C5—C61.383 (5)C17—H170.9300
C8—C91.456 (4)C18—H18A0.9700
C9—C101.364 (5)C18—H18B0.9700
C9—C141.383 (5)C19—H190.9300
C10—C111.370 (5)C20—H20A0.9300
C11—C121.372 (5)C20—H20B0.9300
C3—O1—C7105.3 (3)C18—C19—C20124.1 (4)
C4—O2—C7105.2 (3)C1—C2—H2122.00
C12—O3—C15117.2 (3)C3—C2—H2122.00
C1—N1—C8122.0 (3)C4—C5—H5122.00
N3—N2—C16109.0 (3)C6—C5—H5122.00
N2—N3—N4107.1 (2)C1—C6—H6118.00
N3—N4—C17110.3 (2)C5—C6—H6119.00
N3—N4—C18120.6 (3)O1—C7—H7A110.00
C17—N4—C18128.9 (3)O1—C7—H7B110.00
N1—C1—C2125.4 (3)O2—C7—H7A110.00
N1—C1—C6115.2 (3)O2—C7—H7B110.00
C2—C1—C6119.4 (3)H7A—C7—H7B108.00
C1—C2—C3116.4 (3)N1—C8—H8118.00
O1—C3—C2127.0 (3)C9—C8—H8118.00
O1—C3—C4109.5 (3)C9—C10—H10119.00
C2—C3—C4123.5 (3)C11—C10—H10119.00
O2—C4—C3110.3 (3)C10—C11—H11120.00
O2—C4—C5128.1 (3)C12—C11—H11120.00
C3—C4—C5121.6 (3)C12—C13—H13120.00
C4—C5—C6116.2 (3)C14—C13—H13120.00
C1—C6—C5123.0 (3)C9—C14—H14119.00
O1—C7—O2108.6 (3)C13—C14—H14119.00
N1—C8—C9123.2 (3)O3—C15—H15A110.00
C8—C9—C10122.7 (3)O3—C15—H15B110.00
C8—C9—C14121.0 (3)C16—C15—H15A110.00
C10—C9—C14116.2 (3)C16—C15—H15B110.00
C9—C10—C11122.1 (4)H15A—C15—H15B108.00
C10—C11—C12120.1 (4)N4—C17—H17127.00
O3—C12—C11115.3 (3)C16—C17—H17127.00
O3—C12—C13125.5 (3)N4—C18—H18A109.00
C11—C12—C13119.2 (3)N4—C18—H18B109.00
C12—C13—C14120.5 (4)C19—C18—H18A109.00
C9—C14—C13121.9 (4)C19—C18—H18B109.00
O3—C15—C16108.8 (3)H18A—C18—H18B108.00
N2—C16—C15123.0 (3)C18—C19—H19118.00
N2—C16—C17107.5 (3)C20—C19—H19118.00
C15—C16—C17129.5 (3)C19—C20—H20A120.00
N4—C17—C16106.1 (3)C19—C20—H20B120.00
N4—C18—C19113.1 (3)H20A—C20—H20B120.00
C3—O1—C7—O210.7 (4)C1—C2—C3—O1177.6 (3)
C7—O1—C3—C2174.9 (4)O1—C3—C4—C5177.1 (3)
C7—O1—C3—C46.8 (4)O1—C3—C4—O20.3 (4)
C7—O2—C4—C5176.5 (4)C2—C3—C4—C51.4 (5)
C4—O2—C7—O110.5 (4)C2—C3—C4—O2178.7 (3)
C7—O2—C4—C36.4 (4)O2—C4—C5—C6178.1 (3)
C12—O3—C15—C16176.5 (3)C3—C4—C5—C61.2 (5)
C15—O3—C12—C135.8 (5)C4—C5—C6—C10.5 (5)
C15—O3—C12—C11174.6 (3)N1—C8—C9—C14179.4 (4)
C1—N1—C8—C9179.5 (3)N1—C8—C9—C101.8 (6)
C8—N1—C1—C21.7 (5)C8—C9—C14—C13178.5 (4)
C8—N1—C1—C6178.3 (3)C8—C9—C10—C11178.8 (4)
C16—N2—N3—N40.3 (4)C10—C9—C14—C130.4 (6)
N3—N2—C16—C170.1 (4)C14—C9—C10—C110.0 (6)
N3—N2—C16—C15178.2 (3)C9—C10—C11—C120.8 (7)
N2—N3—N4—C170.4 (3)C10—C11—C12—C131.2 (6)
N2—N3—N4—C18175.1 (3)C10—C11—C12—O3178.5 (4)
C17—N4—C18—C19142.4 (4)C11—C12—C13—C140.8 (6)
C18—N4—C17—C16174.6 (3)O3—C12—C13—C14178.8 (4)
N3—N4—C17—C160.4 (4)C12—C13—C14—C90.0 (7)
N3—N4—C18—C1943.1 (5)O3—C15—C16—N270.4 (4)
C6—C1—C2—C30.2 (5)O3—C15—C16—C17111.9 (4)
N1—C1—C6—C5179.7 (3)N2—C16—C17—N40.2 (4)
C2—C1—C6—C50.3 (5)C15—C16—C17—N4177.8 (3)
N1—C1—C2—C3179.8 (3)N4—C18—C19—C20126.6 (5)
C1—C2—C3—C40.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.593.471 (4)157
C7—H7B···N2ii0.972.593.380 (5)138
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.593.471 (4)157
C7—H7B···N2ii0.972.593.380 (5)138
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationArora, K., Gupta, A. & Agarwal, D. D. (2002). Asian J. Chem. 14, 1611–1615.  CAS Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, p 715. Oxford: Pergamon.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacho, V., Kralik, M., Hudec, J. & Cingelova, J. (2004). J. Mol. Catal. A Chem. 209, 69–73.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, P., Raj, R., Kumar, V., Mahajan, M. P., Bedi, P. M. S., Kaur, T. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 594–600.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTanaka, K. & Shiraishi, R. (2000). Green Chem. 2, 272–273.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds