metal-organic compounds
Bis[μ-1-(3,5-dichloropyridin-2-yl)-2-(pyridin-3-ylmethylidene)hydrazine]bis[(nitrato-κO)silver(I)] acetonitrile disolvate
aCollege of Science, Civil Aviation University of China, Tianjin 300300, People's Republic of China
*Correspondence e-mail: caihua-1109@163.com
In the centrosymmetric binuclear title complex, [Ag2(NO3)2(C11H8Cl2N4)2]·2CH3CN, the AgI atom is four-coordinated and exhibits a highly distorted tetrahedral coordination sphere defined by three N atoms from two 1-(3,5-dichloropyridin-2-yl)-2-(pyridin-3-ylmethylidene)hydrazine ligands and one O atom from a nitrate anion. Intermolecular N—H⋯O hydrogen bonds link the complex molecules, resulting in a two-dimensional supramolecular structure parallel to (001).
Related literature
For background to compounds with metal–organic framework structures, see: Barnett & Champness (2003); Roesky & Andruh (2003); Zaworotko (2000).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536813024021/hy2636sup1.cif
contains datablocks lxl, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813024021/hy2636Isup2.hkl
AgNO3 (17.0 mg, 0.1 mmol) and 1-(3,5-dichloropyridin-2-yl)-2-(pyridin-3-ylmethyl)diazene (22.2 mg, 0.1 mmol) were mixed in a CH3CN/H2O (20 ml, 1:1 v/v) solution with vigorous stirring for ca 30 min. The resulting solution was filtered and left to stand at room temperature. Colorless block crystals of the title compound suitable for X-ray analysis were obtained in 85% yield by slow evaporation of the solvent over a period of 1 week. Analysis, calculated for C26H22Ag2Cl4N12O6: C 50.42, H 5.14, N 8.40%; found: C 50.45, H 5.03, N 8.32%.
Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions and refined as riding atoms, with C—H = 0.93 (aromatic), 0.96 (methyl) and N—H = 0.86 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ag2(NO3)2(C11H8Cl2N4)2]·2C2H3N | F(000) = 1888 |
Mr = 956.10 | Dx = 1.842 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 6506 reflections |
a = 15.3862 (19) Å | θ = 2.7–29.1° |
b = 8.2397 (10) Å | µ = 1.51 mm−1 |
c = 27.198 (4) Å | T = 296 K |
V = 3448.1 (8) Å3 | Block, colorless |
Z = 4 | 0.32 × 0.28 × 0.22 mm |
Bruker APEXII CCD diffractometer | 3041 independent reflections |
Radiation source: fine-focus sealed tube | 2498 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −15→18 |
Tmin = 0.645, Tmax = 0.733 | k = −6→9 |
16325 measured reflections | l = −32→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.038P)2 + 14.4907P] where P = (Fo2 + 2Fc2)/3 |
3041 reflections | (Δ/σ)max = 0.001 |
227 parameters | Δρmax = 0.66 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
[Ag2(NO3)2(C11H8Cl2N4)2]·2C2H3N | V = 3448.1 (8) Å3 |
Mr = 956.10 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 15.3862 (19) Å | µ = 1.51 mm−1 |
b = 8.2397 (10) Å | T = 296 K |
c = 27.198 (4) Å | 0.32 × 0.28 × 0.22 mm |
Bruker APEXII CCD diffractometer | 3041 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2498 reflections with I > 2σ(I) |
Tmin = 0.645, Tmax = 0.733 | Rint = 0.029 |
16325 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.038P)2 + 14.4907P] where P = (Fo2 + 2Fc2)/3 |
3041 reflections | Δρmax = 0.66 e Å−3 |
227 parameters | Δρmin = −0.50 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.56792 (2) | 0.75776 (5) | 0.548365 (16) | 0.04728 (16) | |
Cl1 | 0.91981 (8) | 0.6283 (2) | 0.62236 (6) | 0.0593 (4) | |
Cl2 | 0.65242 (12) | 0.4004 (2) | 0.73037 (5) | 0.0635 (4) | |
O1 | 0.5766 (3) | 0.6995 (6) | 0.45874 (17) | 0.0733 (14) | |
O2 | 0.5395 (3) | 0.5169 (6) | 0.40845 (17) | 0.0692 (12) | |
O3 | 0.4486 (2) | 0.5938 (6) | 0.46331 (16) | 0.0665 (13) | |
N1 | 0.6643 (3) | 0.6706 (5) | 0.60951 (15) | 0.0399 (10) | |
N2 | 0.7784 (2) | 0.7820 (5) | 0.56417 (15) | 0.0362 (9) | |
H2 | 0.8333 | 0.7953 | 0.5598 | 0.043* | |
N3 | 0.7204 (2) | 0.8532 (5) | 0.53260 (14) | 0.0342 (9) | |
N4 | 0.5645 (2) | 1.1349 (5) | 0.43586 (15) | 0.0384 (9) | |
N5 | 0.5217 (3) | 0.6047 (5) | 0.44344 (16) | 0.0419 (10) | |
N6 | 0.1005 (11) | 0.4204 (14) | 0.2093 (4) | 0.186 (6) | |
C1 | 0.6359 (3) | 0.5835 (6) | 0.6484 (2) | 0.0445 (12) | |
H1 | 0.5764 | 0.5707 | 0.6530 | 0.053* | |
C2 | 0.6916 (4) | 0.5135 (7) | 0.68122 (19) | 0.0444 (12) | |
C3 | 0.7808 (4) | 0.5264 (6) | 0.67384 (19) | 0.0445 (12) | |
H3 | 0.8198 | 0.4768 | 0.6952 | 0.053* | |
C4 | 0.8098 (3) | 0.6139 (6) | 0.63428 (19) | 0.0394 (11) | |
C5 | 0.7495 (3) | 0.6900 (6) | 0.60256 (17) | 0.0341 (10) | |
C6 | 0.7533 (3) | 0.9297 (6) | 0.49620 (17) | 0.0352 (10) | |
H6 | 0.8134 | 0.9331 | 0.4929 | 0.042* | |
C7 | 0.6992 (3) | 1.0122 (6) | 0.45957 (17) | 0.0332 (10) | |
C8 | 0.7328 (3) | 1.0400 (7) | 0.41291 (19) | 0.0455 (13) | |
H8 | 0.7896 | 1.0107 | 0.4053 | 0.055* | |
C9 | 0.6801 (4) | 1.1120 (8) | 0.3781 (2) | 0.0531 (14) | |
H9 | 0.7006 | 1.1303 | 0.3464 | 0.064* | |
C10 | 0.5973 (3) | 1.1562 (7) | 0.3907 (2) | 0.0478 (13) | |
H10 | 0.5622 | 1.2032 | 0.3668 | 0.057* | |
C11 | 0.6150 (3) | 1.0632 (6) | 0.46957 (18) | 0.0344 (10) | |
H11 | 0.5928 | 1.0468 | 0.5010 | 0.041* | |
C12 | 0.1048 (8) | 0.5540 (14) | 0.2028 (3) | 0.107 (3) | |
C13 | 0.1061 (8) | 0.7257 (12) | 0.1945 (5) | 0.134 (4) | |
H13A | 0.1004 | 0.7470 | 0.1599 | 0.201* | |
H13B | 0.1600 | 0.7698 | 0.2061 | 0.201* | |
H13C | 0.0586 | 0.7755 | 0.2117 | 0.201* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0295 (2) | 0.0536 (3) | 0.0587 (3) | 0.00328 (18) | −0.00426 (17) | 0.0089 (2) |
Cl1 | 0.0305 (6) | 0.0752 (10) | 0.0723 (10) | 0.0088 (7) | −0.0074 (6) | 0.0185 (8) |
Cl2 | 0.0796 (11) | 0.0639 (10) | 0.0469 (8) | −0.0064 (8) | 0.0057 (7) | 0.0126 (7) |
O1 | 0.072 (3) | 0.073 (3) | 0.075 (3) | −0.039 (3) | 0.007 (2) | −0.017 (2) |
O2 | 0.057 (3) | 0.073 (3) | 0.078 (3) | −0.001 (2) | 0.003 (2) | −0.024 (3) |
O3 | 0.034 (2) | 0.095 (4) | 0.070 (3) | 0.008 (2) | 0.0116 (19) | 0.024 (3) |
N1 | 0.032 (2) | 0.042 (2) | 0.045 (2) | −0.0037 (18) | −0.0038 (18) | 0.006 (2) |
N2 | 0.0230 (19) | 0.038 (2) | 0.047 (2) | 0.0018 (16) | −0.0047 (17) | 0.0053 (18) |
N3 | 0.029 (2) | 0.033 (2) | 0.040 (2) | 0.0026 (17) | −0.0061 (17) | 0.0009 (18) |
N4 | 0.030 (2) | 0.042 (2) | 0.042 (2) | 0.0005 (18) | −0.0047 (17) | 0.0069 (19) |
N5 | 0.035 (2) | 0.042 (2) | 0.049 (3) | 0.001 (2) | −0.0004 (19) | 0.006 (2) |
N6 | 0.354 (18) | 0.105 (7) | 0.099 (7) | 0.039 (10) | −0.090 (9) | −0.002 (6) |
C1 | 0.035 (3) | 0.045 (3) | 0.054 (3) | −0.004 (2) | 0.003 (2) | 0.005 (3) |
C2 | 0.055 (3) | 0.041 (3) | 0.037 (3) | −0.003 (3) | 0.002 (2) | 0.003 (2) |
C3 | 0.050 (3) | 0.041 (3) | 0.042 (3) | 0.006 (2) | −0.011 (2) | 0.004 (2) |
C4 | 0.029 (2) | 0.041 (3) | 0.048 (3) | 0.002 (2) | −0.006 (2) | −0.002 (2) |
C5 | 0.035 (2) | 0.029 (2) | 0.038 (2) | 0.002 (2) | −0.007 (2) | −0.002 (2) |
C6 | 0.023 (2) | 0.037 (3) | 0.045 (3) | 0.0032 (19) | −0.003 (2) | 0.000 (2) |
C7 | 0.028 (2) | 0.029 (2) | 0.042 (3) | −0.0029 (19) | −0.0025 (19) | 0.003 (2) |
C8 | 0.026 (3) | 0.056 (3) | 0.054 (3) | 0.005 (2) | 0.005 (2) | 0.006 (3) |
C9 | 0.051 (3) | 0.070 (4) | 0.039 (3) | 0.008 (3) | 0.007 (2) | 0.012 (3) |
C10 | 0.041 (3) | 0.056 (3) | 0.046 (3) | 0.003 (3) | −0.009 (2) | 0.010 (3) |
C11 | 0.026 (2) | 0.035 (3) | 0.041 (3) | 0.0004 (19) | 0.000 (2) | 0.002 (2) |
C12 | 0.134 (9) | 0.095 (7) | 0.091 (6) | 0.016 (7) | −0.054 (6) | −0.013 (6) |
C13 | 0.123 (9) | 0.090 (8) | 0.189 (12) | 0.015 (6) | −0.057 (8) | −0.022 (7) |
Ag1—N4i | 2.262 (4) | C1—H1 | 0.9300 |
Ag1—N1 | 2.341 (4) | C2—C3 | 1.391 (8) |
Ag1—O1 | 2.488 (5) | C3—C4 | 1.370 (7) |
Ag1—N3 | 2.511 (4) | C3—H3 | 0.9300 |
Cl1—C4 | 1.727 (5) | C4—C5 | 1.415 (7) |
Cl2—C2 | 1.738 (5) | C6—C7 | 1.465 (6) |
O1—N5 | 1.224 (6) | C6—H6 | 0.9300 |
O2—N5 | 1.227 (6) | C7—C8 | 1.389 (7) |
O3—N5 | 1.251 (6) | C7—C11 | 1.389 (6) |
N1—C5 | 1.334 (6) | C8—C9 | 1.381 (7) |
N1—C1 | 1.352 (6) | C8—H8 | 0.9300 |
N2—C5 | 1.365 (6) | C9—C10 | 1.368 (8) |
N2—N3 | 1.370 (5) | C9—H9 | 0.9300 |
N2—H2 | 0.8600 | C10—H10 | 0.9300 |
N3—C6 | 1.278 (6) | C11—H11 | 0.9300 |
N4—C10 | 1.339 (7) | C12—C13 | 1.433 (14) |
N4—C11 | 1.339 (6) | C13—H13A | 0.9600 |
N4—Ag1i | 2.262 (4) | C13—H13B | 0.9600 |
N6—C12 | 1.117 (13) | C13—H13C | 0.9600 |
C1—C2 | 1.365 (7) | ||
N4i—Ag1—N1 | 123.76 (15) | C3—C4—C5 | 119.9 (5) |
N4i—Ag1—O1 | 108.04 (16) | C3—C4—Cl1 | 120.2 (4) |
N1—Ag1—O1 | 127.07 (17) | C5—C4—Cl1 | 119.9 (4) |
N4i—Ag1—N3 | 138.70 (14) | N1—C5—N2 | 119.7 (4) |
N1—Ag1—N3 | 68.01 (13) | N1—C5—C4 | 120.4 (4) |
O1—Ag1—N3 | 80.96 (13) | N2—C5—C4 | 119.9 (4) |
N5—O1—Ag1 | 114.8 (3) | N3—C6—C7 | 122.1 (4) |
C5—N1—C1 | 119.5 (4) | N3—C6—H6 | 118.9 |
C5—N1—Ag1 | 119.0 (3) | C7—C6—H6 | 118.9 |
C1—N1—Ag1 | 120.9 (3) | C8—C7—C11 | 118.4 (4) |
C5—N2—N3 | 120.3 (4) | C8—C7—C6 | 119.1 (4) |
C5—N2—H2 | 119.8 | C11—C7—C6 | 122.4 (4) |
N3—N2—H2 | 119.8 | C9—C8—C7 | 118.6 (5) |
C6—N3—N2 | 116.1 (4) | C9—C8—H8 | 120.7 |
C6—N3—Ag1 | 131.0 (3) | C7—C8—H8 | 120.7 |
N2—N3—Ag1 | 111.5 (3) | C10—C9—C8 | 119.3 (5) |
C10—N4—C11 | 117.8 (4) | C10—C9—H9 | 120.4 |
C10—N4—Ag1i | 117.5 (3) | C8—C9—H9 | 120.4 |
C11—N4—Ag1i | 124.4 (3) | N4—C10—C9 | 123.1 (5) |
O1—N5—O2 | 119.1 (5) | N4—C10—H10 | 118.4 |
O1—N5—O3 | 121.3 (5) | C9—C10—H10 | 118.4 |
O2—N5—O3 | 119.6 (5) | N4—C11—C7 | 122.7 (5) |
N1—C1—C2 | 122.2 (5) | N4—C11—H11 | 118.6 |
N1—C1—H1 | 118.9 | C7—C11—H11 | 118.6 |
C2—C1—H1 | 118.9 | N6—C12—C13 | 177.4 (16) |
C1—C2—C3 | 119.6 (5) | C12—C13—H13A | 109.5 |
C1—C2—Cl2 | 120.7 (4) | C12—C13—H13B | 109.5 |
C3—C2—Cl2 | 119.6 (4) | H13A—C13—H13B | 109.5 |
C4—C3—C2 | 118.4 (5) | C12—C13—H13C | 109.5 |
C4—C3—H3 | 120.8 | H13A—C13—H13C | 109.5 |
C2—C3—H3 | 120.8 | H13B—C13—H13C | 109.5 |
N4i—Ag1—O1—N5 | −59.5 (5) | C2—C3—C4—Cl1 | −178.0 (4) |
N1—Ag1—O1—N5 | 108.6 (4) | C1—N1—C5—N2 | −178.0 (4) |
N3—Ag1—O1—N5 | 162.0 (4) | Ag1—N1—C5—N2 | 10.3 (6) |
N4i—Ag1—N1—C5 | −145.0 (3) | C1—N1—C5—C4 | 2.9 (7) |
O1—Ag1—N1—C5 | 48.7 (4) | Ag1—N1—C5—C4 | −168.8 (3) |
N3—Ag1—N1—C5 | −10.2 (3) | N3—N2—C5—N1 | −0.5 (7) |
N4i—Ag1—N1—C1 | 43.4 (4) | N3—N2—C5—C4 | 178.5 (4) |
O1—Ag1—N1—C1 | −122.9 (4) | C3—C4—C5—N1 | −3.3 (7) |
N3—Ag1—N1—C1 | 178.2 (4) | Cl1—C4—C5—N1 | 175.5 (4) |
C5—N2—N3—C6 | −176.3 (4) | C3—C4—C5—N2 | 177.6 (5) |
C5—N2—N3—Ag1 | −8.3 (5) | Cl1—C4—C5—N2 | −3.6 (7) |
N4i—Ag1—N3—C6 | −68.5 (5) | N2—N3—C6—C7 | −179.8 (4) |
N1—Ag1—N3—C6 | 174.9 (5) | Ag1—N3—C6—C7 | 15.0 (7) |
O1—Ag1—N3—C6 | 38.6 (4) | N3—C6—C7—C8 | −156.3 (5) |
N4i—Ag1—N3—N2 | 125.8 (3) | N3—C6—C7—C11 | 23.3 (7) |
N1—Ag1—N3—N2 | 9.2 (3) | C11—C7—C8—C9 | −2.1 (8) |
O1—Ag1—N3—N2 | −127.1 (3) | C6—C7—C8—C9 | 177.4 (5) |
Ag1—O1—N5—O2 | −149.3 (4) | C7—C8—C9—C10 | 1.1 (9) |
Ag1—O1—N5—O3 | 29.4 (7) | C11—N4—C10—C9 | −1.7 (8) |
C5—N1—C1—C2 | −0.1 (8) | Ag1i—N4—C10—C9 | 173.1 (5) |
Ag1—N1—C1—C2 | 171.5 (4) | C8—C9—C10—N4 | 0.9 (10) |
N1—C1—C2—C3 | −2.4 (8) | C10—N4—C11—C7 | 0.6 (7) |
N1—C1—C2—Cl2 | −179.2 (4) | Ag1i—N4—C11—C7 | −173.8 (3) |
C1—C2—C3—C4 | 2.0 (8) | C8—C7—C11—N4 | 1.3 (7) |
Cl2—C2—C3—C4 | 178.8 (4) | C6—C7—C11—N4 | −178.2 (4) |
C2—C3—C4—C5 | 0.8 (8) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O3ii | 0.86 | 2.09 | 2.909 (5) | 158 |
Symmetry code: (ii) x+1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O3i | 0.86 | 2.09 | 2.909 (5) | 158 |
Symmetry code: (i) x+1/2, −y+3/2, −z+1. |
References
Barnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145–168. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zaworotko, M. J. (2000). Chem. Commun. pp. 1–9. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Neutral organic ligands containing rigid or flexible spacers, such as 4,4'-bipyridine, 1,2-bis(4-pyridyl)ethane, 1,2-bis(4-pyridyl)propane and many others, have been used to generate a rich variety of metal-organic architectures with different metal ions by various reaction procedure (Barnett & Champness, 2003; Roesky & Andruh, 2003; Zaworotko, 2000). In our recent research, we have initiated a synthetic approach employing 1-(3,5-dichloropyridin-2-yl)-2-(pyridin-3-ylmethylidene)hydrazine (L) upon reaction with differnent metal ions to construct new functional frameworks. To explore this series, we synthesized the title compound, a new Ag(I) complex based on the L ligand.
In the title complex (Fig. 1), the AgI atom is four-coordinated and exhibits a highly distorted tetrahedral geometry defined by three N atoms from two L ligands and one O from a nitrate anion. The L ligands bridge two AgI atoms, resulting in a centrosymmetric binuclear unit. The 2-pyridyl and 3-pyridyl rings in the ligand are not coplanar, with a dihedral angle of 25.74 (16)°. Intermolecular N—H···O hydrogen bonds (Table 1) extend the binuclear units into a two-dimensional supramolecular structure parallel to (001), as shown in Fig. 2.