metal-organic compounds
Azido(η5-pentamethylcyclopentadienyl)[2-(pyridin-2-yl)phenyl]iridium(III)
aDepartment of Chemistry, Faculty of Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
*Correspondence e-mail: suzuki@okayama-u.ac.jp
In the title compound, [Ir(C10H15)(C11H8N)(N3)], the IrIII ion is coordinated by three anionic ligands, namely, pentamethylcyclopentadienyl (Cp*−), 2-(pyridin-2-yl)phenyl (ppy−) and azide (N3−), and adopts a three-legged piano-stool geometry The coordination mode of N3− is typical for Cp*IrIII–N3 complexes, with an Ir—N(N3) bond length of 2.125 (2) Å and an Ir—N=N bond angle of 116.5 (2)°. The N3− ligand is almost linear [N=N=N = 176.0 (3)°], and the N=N bond length between the central and coordinating N atom and that between the central and non-coordinating terminal N atom are 1.194 (3) and 1.157 (3) Å, respectively. For the ppy− ligand, the Ir—C and Ir—N bond lengths are 2.066 (3) and 2.079 (3) Å, respectively, which are rather close to each other, compared to the related IrIII– or RhIII–ppy complexes. The Ir—C(Cp*) bond lengths vary in the range 2.163 (2)–2.232 (2) Å, indicating a strong trans influence of the cyclometallated C-donor atom of the ppy− ligand.
CCDC reference: 962598
Related literature
For crystallographic analyses of [Cp*IrIII(N3)(L–L′)] (L–L′ = bidentate chelate ligands; e.g., bpy, 2-Spy, etc.) complexes, see: Suzuki et al. (2009); Suzuki (2005). For crystallographic analyses of mononuclear [Cp*Ir(ppy)X] complexes (X = Cl, I, MeCN4, etc.), see: Boutadla et al. (2009); Park-Gehrke et al. (2009); Takayama et al. (2013). For of [Cp*IrIII(N3)(L–L′)] complexes, see: Sekioka et al. (2005); Kotera et al. (2008).
Experimental
Crystal data
|
Data collection: RAPID-AUTO (Rigaku, 2006); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: DIRDIF99-PATTY (Beurskens et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013.
Supporting information
CCDC reference: 962598
10.1107/S1600536813026159/is5306sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813026159/is5306Isup2.hkl
A methanol solution (20 cm3) of NaN3 (377 mg, 5.18 mmol) was added with stirring to an orange solution of [Cp*IrCl(ppy)] (260 mg, 0.503 mmol) in a 1:1 mixture of methanol and dichloromethane (15 cm3). The color of mixture turned to yellow immediately, and yellow precipitate was formed. After stirring at room temperature for 5 h, the reaction mixture was evaporated to dryness under reduced pressure. The residue was extracted with dichloromethane (50 cm3), and the filtered extract was concentrated under reduced pressure. Diethyl ether vapor was diffused into the concentrate in a closed vessel, affording orange needle crystals. Yield: 208 mg (79%). Anal. Found: C 48.01, H 4.16, N 10.56%. Calcd for C23H23IrN4: C 48.16, H 4.43, N 10.70%. 1H NMR (400 MHz, 21 °C, CD3CN): δ 1.68 (s, Cp*, 15H), 7.09 (t, J = 7.3 Hz, ppy, 1H), 7.18–7.26 (m, ppy, 2H), 7.77–7.87 (m, ppy, 3H), 7.98 (d, J = 8.1 Hz, ppy, 1H) and 8.71 (d, J = 5.4 Hz, ppy, 1H). IR (KBr disc): ν(N3) = 2027 cm-1.
All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 (for aromatic) or 0.98 Å (for methyl) and with Uiso(H) = 1.2 (for aromatic) or 1.5 (for methyl) Ueq(C).
Data collection: RAPID-AUTO (Rigaku, 2006); cell
RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: DIRDIF99-PATTY (Beurskens et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with atom-numbering scheme. Displacement ellipsoids are drawn at 50% probability level. |
[Ir(C10H15)(C11H8N)(N3)] | F(000) = 1016 |
Mr = 523.63 | Dx = 1.934 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71075 Å |
a = 15.4821 (18) Å | Cell parameters from 17777 reflections |
b = 7.3938 (9) Å | θ = 3.0–27.5° |
c = 15.7137 (18) Å | µ = 7.44 mm−1 |
β = 91.477 (4)° | T = 193 K |
V = 1798.2 (4) Å3 | Needle, orange |
Z = 4 | 0.30 × 0.30 × 0.20 mm |
Rigaku R-AXIS RAPIDII diffractometer | 4022 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.045 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: numerical (NUMABS; Rigaku, 1999) | h = −20→20 |
Tmin = 0.103, Tmax = 0.225 | k = −9→9 |
27640 measured reflections | l = −20→20 |
4115 independent reflections |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.017 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.042 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0078P)2 + 2.039P] where P = (Fo2 + 2Fc2)/3 |
4115 reflections | (Δ/σ)max = 0.002 |
240 parameters | Δρmax = 1.61 e Å−3 |
0 restraints | Δρmin = −0.65 e Å−3 |
[Ir(C10H15)(C11H8N)(N3)] | V = 1798.2 (4) Å3 |
Mr = 523.63 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 15.4821 (18) Å | µ = 7.44 mm−1 |
b = 7.3938 (9) Å | T = 193 K |
c = 15.7137 (18) Å | 0.30 × 0.30 × 0.20 mm |
β = 91.477 (4)° |
Rigaku R-AXIS RAPIDII diffractometer | 4115 independent reflections |
Absorption correction: numerical (NUMABS; Rigaku, 1999) | 4022 reflections with I > 2σ(I) |
Tmin = 0.103, Tmax = 0.225 | Rint = 0.045 |
27640 measured reflections |
R[F2 > 2σ(F2)] = 0.017 | 0 restraints |
wR(F2) = 0.042 | H-atom parameters constrained |
S = 1.13 | Δρmax = 1.61 e Å−3 |
4115 reflections | Δρmin = −0.65 e Å−3 |
240 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ir1 | 0.50470 (2) | 0.26864 (2) | 0.74054 (2) | 0.01605 (4) | |
N22 | 0.42229 (13) | 0.3666 (3) | 0.64468 (14) | 0.0241 (4) | |
N1 | 0.55974 (13) | 0.5315 (3) | 0.73529 (14) | 0.0252 (4) | |
N2 | 0.58798 (13) | 0.5919 (3) | 0.80076 (14) | 0.0247 (4) | |
N3 | 0.61722 (17) | 0.6587 (3) | 0.86156 (16) | 0.0384 (6) | |
C1 | 0.51540 (15) | −0.0120 (3) | 0.70066 (15) | 0.0194 (5) | |
C2 | 0.50048 (15) | −0.0035 (3) | 0.79079 (15) | 0.0189 (5) | |
C3 | 0.57313 (15) | 0.0883 (3) | 0.83098 (15) | 0.0217 (5) | |
C4 | 0.63164 (15) | 0.1339 (3) | 0.76593 (16) | 0.0229 (5) | |
C5 | 0.59759 (15) | 0.0731 (3) | 0.68515 (16) | 0.0218 (5) | |
C6 | 0.46049 (17) | −0.1057 (3) | 0.63532 (16) | 0.0261 (5) | |
H6A | 0.4003 | −0.1058 | 0.6532 | 0.039* | |
H6B | 0.4805 | −0.2306 | 0.6289 | 0.039* | |
H6C | 0.4645 | −0.0424 | 0.5808 | 0.039* | |
C7 | 0.42773 (16) | −0.0905 (3) | 0.83631 (17) | 0.0262 (5) | |
H7A | 0.4470 | −0.2067 | 0.8600 | 0.039* | |
H7B | 0.3791 | −0.1104 | 0.7963 | 0.039* | |
H7C | 0.4094 | −0.0113 | 0.8825 | 0.039* | |
C8 | 0.59008 (19) | 0.1038 (4) | 0.92487 (17) | 0.0331 (6) | |
H8A | 0.6274 | 0.2084 | 0.9366 | 0.050* | |
H8B | 0.6187 | −0.0064 | 0.9458 | 0.050* | |
H8C | 0.5352 | 0.1195 | 0.9537 | 0.050* | |
C9 | 0.71557 (18) | 0.2319 (4) | 0.7806 (2) | 0.0329 (7) | |
H9A | 0.7603 | 0.1457 | 0.7992 | 0.049* | |
H9B | 0.7085 | 0.3242 | 0.8246 | 0.049* | |
H9C | 0.7327 | 0.2899 | 0.7275 | 0.049* | |
C10 | 0.64306 (17) | 0.0740 (4) | 0.60188 (17) | 0.0314 (6) | |
H10A | 0.6575 | −0.0504 | 0.5859 | 0.047* | |
H10B | 0.6962 | 0.1454 | 0.6076 | 0.047* | |
H10C | 0.6052 | 0.1274 | 0.5577 | 0.047* | |
C11 | 0.40789 (14) | 0.3875 (3) | 0.80932 (14) | 0.0169 (4) | |
C12 | 0.40386 (17) | 0.3927 (3) | 0.89675 (16) | 0.0266 (5) | |
H12 | 0.4490 | 0.3388 | 0.9300 | 0.032* | |
C13 | 0.33557 (18) | 0.4749 (4) | 0.93770 (17) | 0.0294 (6) | |
H13 | 0.3340 | 0.4748 | 0.9981 | 0.035* | |
C14 | 0.27000 (17) | 0.5567 (3) | 0.89033 (18) | 0.0296 (6) | |
H14 | 0.2231 | 0.6130 | 0.9179 | 0.036* | |
C15 | 0.27330 (16) | 0.5559 (3) | 0.80278 (18) | 0.0267 (5) | |
H15 | 0.2288 | 0.6129 | 0.7698 | 0.032* | |
C16 | 0.34190 (15) | 0.4715 (3) | 0.76237 (16) | 0.0208 (5) | |
C17 | 0.35097 (15) | 0.4629 (3) | 0.67030 (16) | 0.0210 (5) | |
C18 | 0.29488 (16) | 0.5441 (3) | 0.61069 (17) | 0.0265 (5) | |
H18 | 0.2469 | 0.6122 | 0.6293 | 0.032* | |
C19 | 0.30904 (16) | 0.5255 (4) | 0.52521 (18) | 0.0298 (6) | |
H19 | 0.2706 | 0.5792 | 0.4845 | 0.036* | |
C20 | 0.38019 (17) | 0.4273 (4) | 0.49885 (17) | 0.0295 (6) | |
H20 | 0.3907 | 0.4128 | 0.4399 | 0.035* | |
C21 | 0.43519 (16) | 0.3516 (3) | 0.55904 (16) | 0.0251 (5) | |
H21 | 0.4841 | 0.2862 | 0.5405 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1 | 0.01507 (6) | 0.01433 (6) | 0.01873 (6) | 0.00073 (3) | −0.00018 (4) | 0.00032 (3) |
N22 | 0.0226 (10) | 0.0210 (10) | 0.0287 (11) | −0.0024 (8) | −0.0007 (8) | 0.0020 (8) |
N1 | 0.0248 (10) | 0.0208 (11) | 0.0298 (12) | −0.0029 (8) | −0.0020 (9) | 0.0012 (8) |
N2 | 0.0207 (10) | 0.0181 (10) | 0.0353 (12) | 0.0013 (8) | 0.0010 (9) | 0.0027 (9) |
N3 | 0.0418 (14) | 0.0316 (13) | 0.0412 (14) | 0.0002 (11) | −0.0107 (11) | −0.0059 (11) |
C1 | 0.0219 (11) | 0.0142 (11) | 0.0220 (12) | 0.0027 (9) | 0.0001 (9) | 0.0005 (8) |
C2 | 0.0198 (11) | 0.0151 (11) | 0.0218 (12) | 0.0022 (9) | −0.0003 (9) | 0.0014 (8) |
C3 | 0.0207 (11) | 0.0203 (12) | 0.0239 (12) | 0.0051 (9) | −0.0037 (9) | −0.0010 (9) |
C4 | 0.0175 (11) | 0.0162 (11) | 0.0348 (14) | 0.0037 (9) | −0.0022 (10) | 0.0007 (9) |
C5 | 0.0201 (11) | 0.0186 (11) | 0.0267 (12) | 0.0041 (9) | 0.0011 (9) | 0.0027 (9) |
C6 | 0.0292 (13) | 0.0216 (12) | 0.0273 (13) | −0.0001 (10) | −0.0050 (10) | −0.0043 (9) |
C7 | 0.0234 (12) | 0.0239 (13) | 0.0317 (14) | −0.0005 (10) | 0.0049 (10) | 0.0051 (10) |
C8 | 0.0354 (15) | 0.0388 (16) | 0.0247 (13) | 0.0093 (12) | −0.0077 (11) | −0.0064 (11) |
C9 | 0.0187 (13) | 0.0269 (14) | 0.053 (2) | −0.0019 (10) | −0.0026 (13) | −0.0053 (11) |
C10 | 0.0271 (13) | 0.0379 (15) | 0.0295 (14) | 0.0073 (11) | 0.0077 (11) | 0.0069 (11) |
C11 | 0.0166 (10) | 0.0131 (10) | 0.0210 (11) | −0.0014 (8) | 0.0018 (9) | −0.0014 (8) |
C12 | 0.0279 (13) | 0.0241 (13) | 0.0278 (13) | 0.0031 (10) | 0.0006 (10) | −0.0011 (10) |
C13 | 0.0338 (14) | 0.0270 (13) | 0.0279 (13) | −0.0006 (11) | 0.0070 (11) | −0.0043 (10) |
C14 | 0.0253 (12) | 0.0240 (13) | 0.0400 (15) | 0.0005 (10) | 0.0103 (11) | −0.0068 (11) |
C15 | 0.0192 (11) | 0.0205 (12) | 0.0403 (15) | 0.0014 (10) | 0.0011 (10) | −0.0028 (10) |
C16 | 0.0184 (11) | 0.0144 (11) | 0.0296 (13) | −0.0015 (8) | 0.0006 (9) | 0.0003 (9) |
C17 | 0.0172 (10) | 0.0148 (11) | 0.0309 (13) | −0.0041 (9) | −0.0014 (9) | 0.0014 (9) |
C18 | 0.0178 (11) | 0.0219 (12) | 0.0395 (15) | −0.0014 (9) | −0.0021 (10) | 0.0074 (10) |
C19 | 0.0233 (12) | 0.0302 (14) | 0.0354 (15) | −0.0058 (10) | −0.0096 (11) | 0.0134 (11) |
C20 | 0.0307 (13) | 0.0323 (14) | 0.0253 (13) | −0.0062 (11) | −0.0036 (11) | 0.0071 (10) |
C21 | 0.0241 (12) | 0.0248 (13) | 0.0266 (13) | −0.0013 (10) | 0.0022 (10) | 0.0034 (10) |
Ir1—N1 | 2.125 (2) | C8—H8A | 0.9800 |
Ir1—C11 | 2.066 (2) | C8—H8B | 0.9800 |
Ir1—N22 | 2.079 (2) | C8—H8C | 0.9800 |
Ir1—C1 | 2.175 (2) | C9—H9A | 0.9800 |
Ir1—C2 | 2.163 (2) | C9—H9B | 0.9800 |
Ir1—C3 | 2.201 (2) | C9—H9C | 0.9800 |
Ir1—C4 | 2.230 (2) | C10—H10A | 0.9800 |
Ir1—C5 | 2.232 (2) | C10—H10B | 0.9800 |
N1—N2 | 1.194 (3) | C10—H10C | 0.9800 |
N2—N3 | 1.157 (3) | C11—C12 | 1.377 (3) |
N22—C17 | 1.383 (3) | C11—C16 | 1.391 (3) |
N22—C21 | 1.370 (3) | C12—C13 | 1.391 (4) |
C1—C2 | 1.442 (3) | C12—H12 | 0.9500 |
C1—C5 | 1.446 (3) | C13—C14 | 1.383 (4) |
C1—C6 | 1.487 (3) | C13—H13 | 0.9500 |
C2—C3 | 1.445 (3) | C14—C15 | 1.378 (4) |
C2—C7 | 1.495 (3) | C14—H14 | 0.9500 |
C3—C4 | 1.424 (3) | C15—C16 | 1.398 (3) |
C3—C8 | 1.496 (3) | C15—H15 | 0.9500 |
C4—C5 | 1.434 (3) | C16—C17 | 1.459 (3) |
C4—C9 | 1.500 (3) | C17—C18 | 1.396 (3) |
C5—C10 | 1.502 (3) | C18—C19 | 1.373 (4) |
C6—H6A | 0.9800 | C18—H18 | 0.9500 |
C6—H6B | 0.9800 | C19—C20 | 1.391 (4) |
C6—H6C | 0.9800 | C19—H19 | 0.9500 |
C7—H7A | 0.9800 | C20—C21 | 1.376 (4) |
C7—H7B | 0.9800 | C20—H20 | 0.9500 |
C7—H7C | 0.9800 | C21—H21 | 0.9500 |
C11—Ir1—N22 | 77.94 (9) | C1—C6—H6A | 109.5 |
C11—Ir1—N1 | 85.90 (8) | C1—C6—H6B | 109.5 |
N22—Ir1—N1 | 83.83 (8) | H6A—C6—H6B | 109.5 |
C11—Ir1—C1 | 128.17 (9) | C1—C6—H6C | 109.5 |
N22—Ir1—C1 | 99.98 (9) | H6A—C6—H6C | 109.5 |
N1—Ir1—C1 | 145.88 (9) | H6B—C6—H6C | 109.5 |
C11—Ir1—C2 | 100.10 (9) | C2—C7—H7A | 109.5 |
N22—Ir1—C2 | 124.38 (8) | C2—C7—H7B | 109.5 |
N1—Ir1—C2 | 151.76 (9) | H7A—C7—H7B | 109.5 |
C11—Ir1—C3 | 105.28 (9) | C2—C7—H7C | 109.5 |
N22—Ir1—C3 | 162.78 (8) | H7A—C7—H7C | 109.5 |
N1—Ir1—C3 | 113.11 (9) | H7B—C7—H7C | 109.5 |
C11—Ir1—C4 | 138.08 (9) | C3—C8—H8A | 109.5 |
N22—Ir1—C4 | 143.78 (9) | C3—C8—H8B | 109.5 |
N1—Ir1—C4 | 93.62 (8) | H8A—C8—H8B | 109.5 |
C11—Ir1—C5 | 164.32 (8) | C3—C8—H8C | 109.5 |
N22—Ir1—C5 | 109.43 (9) | H8A—C8—H8C | 109.5 |
N1—Ir1—C5 | 108.32 (9) | H8B—C8—H8C | 109.5 |
C1—Ir1—C2 | 38.84 (9) | C4—C9—H9A | 109.5 |
C1—Ir1—C3 | 64.47 (9) | C4—C9—H9B | 109.5 |
C1—Ir1—C4 | 63.39 (9) | H9A—C9—H9B | 109.5 |
C1—Ir1—C5 | 38.27 (9) | C4—C9—H9C | 109.5 |
C2—Ir1—C3 | 38.66 (9) | H9A—C9—H9C | 109.5 |
C2—Ir1—C4 | 63.51 (9) | H9B—C9—H9C | 109.5 |
C2—Ir1—C5 | 64.25 (9) | C5—C10—H10A | 109.5 |
C3—Ir1—C4 | 37.47 (9) | C5—C10—H10B | 109.5 |
C3—Ir1—C5 | 63.57 (9) | H10A—C10—H10B | 109.5 |
C4—Ir1—C5 | 37.50 (9) | C5—C10—H10C | 109.5 |
N2—N1—Ir1 | 116.55 (17) | H10A—C10—H10C | 109.5 |
N1—N2—N3 | 176.0 (3) | H10B—C10—H10C | 109.5 |
C21—N22—Ir1 | 125.55 (17) | C12—C11—C16 | 117.7 (2) |
C17—N22—Ir1 | 116.63 (16) | C12—C11—Ir1 | 125.87 (18) |
C21—N22—C17 | 117.7 (2) | C16—C11—Ir1 | 116.43 (17) |
C2—C1—C5 | 108.1 (2) | C11—C12—C13 | 121.9 (2) |
C2—C1—C6 | 126.5 (2) | C11—C12—H12 | 119.1 |
C5—C1—C6 | 125.2 (2) | C13—C12—H12 | 119.1 |
C2—C1—Ir1 | 70.14 (12) | C14—C13—C12 | 119.9 (2) |
C5—C1—Ir1 | 73.00 (13) | C14—C13—H13 | 120.1 |
C6—C1—Ir1 | 126.65 (17) | C12—C13—H13 | 120.1 |
C1—C2—C3 | 107.9 (2) | C15—C14—C13 | 119.3 (2) |
C1—C2—C7 | 126.4 (2) | C15—C14—H14 | 120.3 |
C3—C2—C7 | 125.5 (2) | C13—C14—H14 | 120.3 |
C1—C2—Ir1 | 71.03 (12) | C14—C15—C16 | 120.2 (2) |
C3—C2—Ir1 | 72.09 (13) | C14—C15—H15 | 119.9 |
C7—C2—Ir1 | 127.23 (16) | C16—C15—H15 | 119.9 |
C4—C3—C2 | 107.5 (2) | C11—C16—C15 | 121.0 (2) |
C4—C3—C8 | 126.2 (2) | C11—C16—C17 | 114.7 (2) |
C2—C3—C8 | 125.6 (2) | C15—C16—C17 | 124.3 (2) |
C4—C3—Ir1 | 72.38 (14) | N22—C17—C18 | 120.9 (2) |
C2—C3—Ir1 | 69.26 (13) | N22—C17—C16 | 114.1 (2) |
C8—C3—Ir1 | 131.27 (18) | C18—C17—C16 | 125.0 (2) |
C3—C4—C5 | 109.6 (2) | C19—C18—C17 | 120.1 (2) |
C3—C4—C9 | 124.7 (2) | C19—C18—H18 | 120.0 |
C5—C4—C9 | 125.8 (2) | C17—C18—H18 | 120.0 |
C3—C4—Ir1 | 70.14 (13) | C18—C19—C20 | 119.4 (2) |
C5—C4—Ir1 | 71.31 (13) | C18—C19—H19 | 120.3 |
C9—C4—Ir1 | 124.56 (17) | C20—C19—H19 | 120.3 |
C4—C5—C1 | 107.0 (2) | C21—C20—C19 | 119.2 (3) |
C4—C5—C10 | 126.9 (2) | C21—C20—H20 | 120.4 |
C1—C5—C10 | 125.7 (2) | C19—C20—H20 | 120.4 |
C4—C5—Ir1 | 71.19 (13) | N22—C21—C20 | 122.6 (2) |
C1—C5—Ir1 | 68.73 (13) | N22—C21—H21 | 118.7 |
C10—C5—Ir1 | 131.16 (17) | C20—C21—H21 | 118.7 |
C5—C1—C2—C3 | 0.5 (2) | C6—C1—C5—C4 | −175.5 (2) |
C6—C1—C2—C3 | 175.4 (2) | Ir1—C1—C5—C4 | 61.27 (16) |
Ir1—C1—C2—C3 | −63.08 (16) | C2—C1—C5—C10 | 172.1 (2) |
C5—C1—C2—C7 | −173.7 (2) | C6—C1—C5—C10 | −2.9 (4) |
C6—C1—C2—C7 | 1.3 (4) | Ir1—C1—C5—C10 | −126.2 (2) |
Ir1—C1—C2—C7 | 122.8 (2) | C2—C1—C5—Ir1 | −61.72 (15) |
C5—C1—C2—Ir1 | 63.57 (15) | C6—C1—C5—Ir1 | 123.2 (2) |
C6—C1—C2—Ir1 | −121.5 (2) | C16—C11—C12—C13 | 1.5 (4) |
C1—C2—C3—C4 | −0.3 (3) | Ir1—C11—C12—C13 | −179.50 (19) |
C7—C2—C3—C4 | 173.9 (2) | C11—C12—C13—C14 | −1.0 (4) |
Ir1—C2—C3—C4 | −62.72 (16) | C12—C13—C14—C15 | −0.1 (4) |
C1—C2—C3—C8 | −171.0 (2) | C13—C14—C15—C16 | 0.6 (4) |
C7—C2—C3—C8 | 3.2 (4) | C12—C11—C16—C15 | −0.9 (3) |
Ir1—C2—C3—C8 | 126.6 (2) | Ir1—C11—C16—C15 | 179.99 (18) |
C1—C2—C3—Ir1 | 62.40 (15) | C12—C11—C16—C17 | 179.1 (2) |
C7—C2—C3—Ir1 | −123.4 (2) | Ir1—C11—C16—C17 | 0.0 (3) |
C2—C3—C4—C5 | 0.0 (3) | C14—C15—C16—C11 | −0.1 (4) |
C8—C3—C4—C5 | 170.6 (2) | C14—C15—C16—C17 | 179.8 (2) |
Ir1—C3—C4—C5 | −60.66 (16) | C21—N22—C17—C18 | −0.9 (3) |
C2—C3—C4—C9 | 179.6 (2) | Ir1—N22—C17—C18 | 175.84 (17) |
C8—C3—C4—C9 | −9.8 (4) | C21—N22—C17—C16 | 179.7 (2) |
Ir1—C3—C4—C9 | 118.9 (2) | Ir1—N22—C17—C16 | −3.6 (3) |
C2—C3—C4—Ir1 | 60.70 (16) | C11—C16—C17—N22 | 2.3 (3) |
C8—C3—C4—Ir1 | −128.7 (3) | C15—C16—C17—N22 | −177.7 (2) |
C3—C4—C5—C1 | 0.3 (3) | C11—C16—C17—C18 | −177.1 (2) |
C9—C4—C5—C1 | −179.3 (2) | C15—C16—C17—C18 | 3.0 (4) |
Ir1—C4—C5—C1 | −59.68 (15) | N22—C17—C18—C19 | 1.4 (4) |
C3—C4—C5—C10 | −172.2 (2) | C16—C17—C18—C19 | −179.2 (2) |
C9—C4—C5—C10 | 8.2 (4) | C17—C18—C19—C20 | −0.8 (4) |
Ir1—C4—C5—C10 | 127.9 (2) | C18—C19—C20—C21 | −0.3 (4) |
C3—C4—C5—Ir1 | 59.94 (16) | C17—N22—C21—C20 | −0.3 (4) |
C9—C4—C5—Ir1 | −119.6 (2) | Ir1—N22—C21—C20 | −176.68 (19) |
C2—C1—C5—C4 | −0.5 (2) | C19—C20—C21—N22 | 0.9 (4) |
Experimental details
Crystal data | |
Chemical formula | [Ir(C10H15)(C11H8N)(N3)] |
Mr | 523.63 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 193 |
a, b, c (Å) | 15.4821 (18), 7.3938 (9), 15.7137 (18) |
β (°) | 91.477 (4) |
V (Å3) | 1798.2 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.44 |
Crystal size (mm) | 0.30 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPIDII diffractometer |
Absorption correction | Numerical (NUMABS; Rigaku, 1999) |
Tmin, Tmax | 0.103, 0.225 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27640, 4115, 4022 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.017, 0.042, 1.13 |
No. of reflections | 4115 |
No. of parameters | 240 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.61, −0.65 |
Computer programs: RAPID-AUTO (Rigaku, 2006), DIRDIF99-PATTY (Beurskens et al., 1999), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).
Ir1—N1 | 2.125 (2) | Ir1—C2 | 2.163 (2) |
Ir1—C11 | 2.066 (2) | Ir1—C3 | 2.201 (2) |
Ir1—N22 | 2.079 (2) | Ir1—C4 | 2.230 (2) |
Ir1—C1 | 2.175 (2) | Ir1—C5 | 2.232 (2) |
Acknowledgements
This work was partly supported by JSPS KAKENHI grant No. 25410070.
References
Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands. Google Scholar
Boutadla, Y., Al-Duaij, O., Davies, D. L., Griffith, G. A. & Singh, K. (2009). Organometallics, 28, 433–440. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kotera, M., Sekioka, Y. & Suzuki, T. (2008). Inorg. Chem. 47, 3498–3508. Web of Science CrossRef PubMed CAS Google Scholar
Park-Gehrke, L. S., Freudenthal, J., Kaminsky, W., DiPasquale, A. G. & Mayer, J. M. (2009). Dalton Trans. pp. 1972–1983. Google Scholar
Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sekioka, Y., Kaizaki, S., Mayer, J. M. & Suzuki, T. (2005). Inorg. Chem. 44, 8173–8175. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suzuki, T. (2005). Acta Cryst. E61, m488–m490. Web of Science CSD CrossRef IUCr Journals Google Scholar
Suzuki, T., Kotera, M., Takayama, A. & Kojima, M. (2009). Polyhedron, 28, 2287–2293. Web of Science CSD CrossRef CAS Google Scholar
Takayama, A., Suzuki, T., Ikeda, M., Sunatsuki, Y. & Kojima, M. (2013). Dalton Trans. 42, 14556–14567. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In previous studies we have prepared a number of iridium(III) azido complexes, [Cp*IrIII(N3)(L–L')] (Cp* = pentamethylcyclopentadienyl, L–L' = various kinds of bidentate chelate ligands), and investigated their structures and photochemical reactivities. Among them, complexes of [Cp*Ir(N3)(Me2dtc)] (Me2dtc- = N,N-dimethyldithiocarbamate) and [Cp*Ir(N3)(2-Spy)] (2-Spy- = 2-pyridinethiolate) afforded interesting photolysis products with two-legged piano-stool structures, [Cp*Ir{SC(NMe2)SN}] and [Cp*Ir(1-N-2Spy)], respectively, by insertion of a N-atom originating from the coordinated azido ligand, into the Ir–S and Ir–N(py) bonds, respectively (Sekioka et al., 2005). In contrast, photolysis of the related complexes with an N—N, N—P or P—P type four-membered chelate ligand (i.e., 1,8-naphthyridine, 2-diphenylphosphinopyridine or bis(dimethylphosphino)methane) gave a complicated mixture of uncharacterized products, due probably to reductive elimination of the coordinated azide (Suzuki et al., 2009). In the case of [Cp*Ir(N3)(bpy)]PF6 (bpy = 2,2'-bipyridine), photolysis in acetonitrile produced a 5-methyltetrazolato complex, [Cp*Ir(N3)(MeCN4)]+, which was confirmed by 1H NMR spectroscopy (Kotera et al., 2008). In addition, the X-ray structural analysis of the bpy complex, [Cp*IrIII(N3)(bpy)]PF6, revealed some structural characteristics different from those of the other [Cp*Ir(N3)(L–L')] complexes (Suzuki, 2005; Suzuki et al., 2009). For instance, the Ir—N(N3) bond in the bpy complex [2.230 (6) Å] was longer by ca 0.1 Å than the typical Ir—N(N3) bond lengths in the other [Cp*Ir(N3)(L–L')] complexes. Triatomic unit of N3- was almost linear as usual, but the N—N bond length between the central and coordinated N atoms was unusually longer by ca 0.25 Å than that between the central and non-coordinated terminal N atoms. In this study, we have prepared and characterized the analogous Cp*IrIII(N3) complex with a structurally similar but an anionic 2-(pyridin-2-yl)phenyl (ppy-) ligand, [Cp*Ir(N3)(ppy)].
The title compound crystallized in a monoclinic space group P21/n with Z = 4. The IrIII ion was coordinated by three anionic ligands, Cp*-, ppy- and N3-, and it took a three-legged piano-stool structure. The ppy- ligand formed a planar chelate, having the Ir1—C11 bond of 2.066 (2) Å and the Ir1—N22 bond of 2.079 (2) Å. It is noted that the difference between the Ir—C and Ir—N bond lengths is not so large (0.013 Å), compared to the typical IrIII or RhIII (MIII)–ppy complexes, where the M—C bond is significantly shorter than the M—N bond (Takayama et al., 2013). In some cases of IrIII–ppy complexes with a simple halide, similarly small differences in the Ir—C and Ir—N bonds were also reported; for example, 0.016 Å in [Cp*IrCl(ppy)] (Boutadla et al., 2009) and 0.029 Å in [Cp*IrI(ppy)] (Park-Gehrke et al., 2009). These small differences may be due to a partial configurational disorder of the ppy coordination.
The Ir1—N1 coordination bond length is 2.125 (2) Å and the Ir1—N1—N2 bond angle is 116.5 (2)°, while the triatomic azide moiety is almost linear: N1—N2—N3 176.0 (3)°. The N1—N2 and N2—N3 bond lengths are 1.194 (3) and 1.157 (3) Å, respectively. These structural parameters are typical for [Cp*IrIII(N3)(L–L')] complexes (Suzuki et al., 2009), except for [Cp*Ir(N3)(bpy)]PF6 (Suzuki, 2005).
The five Ir1—Cn(Cp*) bond lengths are 2.175 (2), 2.163 (2), 2.201 (2), 2.230 (2) and 2.232 (2) Å for n = 1–5, respectively (Table 1). Two relatively long (to C4 and C5) bonds are approximately trans to the C-donor atom of ppy- ligand. A similar elongation of the Ir—C bonds are also observed in the other mononuclear [Cp*IrIII(ppy)X] complexes (Park-Gehrke et al., 2009; Takayama et al., 2013), indicating a strong trans influence of the cyclometalated C-donor. The Ir1—C3 bond, which is trans to the N-donor of ppy-, is a little longer than the other two; this may indicate a partial configurational disorder of the N– and C-donor of ppy- ligand in the Cp*IrIII(ppy) complexes.
In the crystal structure there are no solvent molecules of crystallization. Further, any characteristic intermolecular interaction is not observed in this crystal.
When UV light was irradiated to an acetonitrile solution of this complex, a tetrazolato complex, [Cp*Ir(ppy)(MeCN4)] (Takayama et al., 2013) was formed, which was confirmed by 1H NMR spectroscopy.