organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-{[1-(3,11-Di­methyl-4-methyl­ene-10-oxo-1-phenyl-4,5,10,11-tetra­hydro-1H-benzo[b]pyrazolo­[3,4-f][1,5]diazo­cin-5-yl)ethyl­­idene]amino}-N-methyl-N-(3-methyl-1-phenyl-1H-pyrazol-5-yl)benzamide

aDepartment of Pharmaceutical Sciences, University of Milano, via L. Mangiagalli, 25, 20133-Milano, Italy, and bDipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, via Archirafi, 32, 90123-Palermo, Italy
*Correspondence e-mail: fiorella.meneghetti@unimi.it

(Received 11 June 2013; accepted 17 September 2013; online 25 September 2013)

The central eight-membered ring of the title compound, C40H36N8O2, deviates from the ideal boat conformation because the bond between the exo-ethyl­ene group and the adjacent N atom is twisted by 60.0 (4)° due to steric hindrance. Its adjacent benzene and pyrazole rings are oriented almost perpendicular to each other, making a dihedral angle of 85.8 (3)°. In the crystal, the mol­ecules are linked by C(ar)—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For the synthetic method, see: Plescia et al. (1979[Plescia, S., Daidone, G. & Sprio, V. (1979). J. Heterocycl. Chem. 16, 935-937.], 1983[Plescia, S., Daidone, G. & Sprio, V. (1983). Boll. Chim. Farm. 122, 190-195.]). For background to the bioactivity of benzo­diazo­cine derivatives, see: Milkowski et al. (1985[Milkowski, W., Liepmann, H., Zeugner, H., Ruhland, M. & Tulp, M. (1985). Eur. J. Med. Chem. 20, 345-358.]); Heitmann et al. (1988[Heitmann, W., Liepmann, H., Maetzel, U., Zeugner, H., Fuchs, A. M., Kraehling, H., Ruhland, M., Mol, F. & Tulp, M. (1988). Eur. J. Med. Chem. 23, 249-256.]).

[Scheme 1]

Experimental

Crystal data
  • C40H36N8O2

  • Mr = 660.77

  • Monoclinic, C c

  • a = 13.148 (5) Å

  • b = 28.640 (7) Å

  • c = 9.757 (4) Å

  • β = 100.19 (2)°

  • V = 3616 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.6 × 0.5 × 0.4 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • 3952 measured reflections

  • 3787 independent reflections

  • 2014 reflections with I > 2σ(I)

  • Rint = 0.039

  • 3 standard reflections every 120 min intensity decay: −3%

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 0.91

  • 3787 reflections

  • 453 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Absolute structure parameter: 0.00 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O2i 0.93 2.57 3.173 (6) 124 (3)
C36—H36⋯O1ii 0.93 2.55 3.409 (6) 153 (3)
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

We performed the Bischler-Napierlaski reaction (Plescia et al., 1979) on 2-acetamido-N-methyl-N-(3-methyl-1-phenyl-1H-pyrazol-5-yl)benzamide by phosphorus oxychloride under reflux, obtaining an unexpected product related to a benzodiazocine system, whose corrected structure is now reported (Fig. 1). Single-crystal X-ray analysis on the reaction product allows to assign the formation of the title compound. The molecule crystallizes in a non-centrosymmetric space group: the possibility of the centrosymmetric space group C2/c was discounted by lack of a suitable solution and by the wholly satisfactory refinement in the space group Cc. The overall conformation of the molecular structure is determined by the central macrocycle formed by three fused cycles: a pyrazole, an eight-membered ring in the middle and a benzene. The central ring deviates from the ideal boat conformation because the bond between the exo-ethylene group and the adjacent nitrogen atom is twisted by 60 (1)° due to steric hindrances. The C12—C17 benzene and the pyrazole belonging to the tricyclic moiety are rather perpendicularly oriented (dihedral angle of 86 (1)°). The chain linked to N4 is characterized by a curled conformation, as defined by the torsion angles C20—N5—C22—C23 of -125 (1)° C22—C23—C28—N6 of -75 (1)° and C23—C28—N6—C30 of -10 (1)°. The benzene C22—C27 forms with the phenyl of the macrocycle a dihedral angle of 75 (1)°, while it makes a dihedral angle of 59 (1)° with the distal pyrazole unit. The latter moiety bears the C34—C39 ring quite rotated, as shown by the torsion angle N7—N8—C34—C35 of -41 (1)°. The phenyl C1—C6 linked to the fused pyrazole is rotated by 136 (1)°, as indicated by the torsion angle N2—N1—C1—C6. The molecular packing is stabilized by rather weak intermolecular Cπ—H···O type hydrogen bonds between C36—H36···O1i of 2.55 (1) Å and 153 (3)° [symmetry code: (i) x + 1/2, 3/2 - y, z - 1/2], and C15—H15ii···O2 at distance of 2.57 (1) Å, angle 124 (1)° [symmetry code: (ii) x, 2 - y, z + 1/2] (Fig. 2).

Related literature top

For the synthetic method, see: Plescia et al. (1979, 1983). For background to the bioactivity of benzodiazocine derivatives, see: Milkowski et al. (1985); Heitmann et al. (1988).

Experimental top

A mixture of 2-acetamido-N-methyl-N-(3-methyl-1-phenyl-1H-pyrazol-5-yl)benzamide (14.5 mmoles) and phosphorus oxychloride (50 ml) was refluxed for 1 h. Excess phosphorus oxychloride was evaporated under reduced pressure and the reaction mixture was poured into crushed ice mixed with solid sodium bicarbonate and extracted with chloroform (3x150 ml): the organic layers were washed with water, dried (sodium sulfate) and concentrated under reduced pressure to dryness to give a residue, which was crystallized from ethanol affording the title compound (yield 1.75 g).

Refinement top

All non-H-atoms were refined anisotropically. Hydrogen atoms were located by difference Fourier synthesis, except methyl and phenyl hydrogen atoms, that were introduced at calculated positions, in their described geometries and allowed to ride on the attached carbon atom with fixed isotropic thermal parameters 1.2Ueq and 1.5Ueq of the parent carbon atom for aromatic H-atoms and methyls H-atoms, respectively. For the methyls bound to the sp2-carbons, a rotating-group model was used. The crystal contains solvent accessible voids, however, no electron density peaks were found in chemically sensible positions for solvent molecules.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound, showing atom-labeling scheme. Displacement ellipsoids for non-H atoms are at the 50% probability level.
[Figure 2] Fig. 2. : Intermolecular interactions of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
(E)-2-{[1-(3,11-Dimethyl-4-methylene-10-oxo-1-phenyl-4,5,10,11-tetrahydro-1H-benzo[b]pyrazolo[3,4-f][1,5]diazocin-5-yl)ethylidene]amino}-N-methyl-N-(3-methyl-1-phenyl-1H-pyrazol-5-yl)benzamide top
Crystal data top
C40H36N8O2F(000) = 1392
Mr = 660.77Dx = 1.214 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 25 reflections
a = 13.148 (5) Åθ = 9–10°
b = 28.640 (7) ŵ = 0.08 mm1
c = 9.757 (4) ÅT = 293 K
β = 100.19 (2)°Prism, colorless
V = 3616 (2) Å30.6 × 0.5 × 0.4 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.039
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.5°
Graphite monochromatorh = 1515
non–profiled ω/2θ scansk = 134
3952 measured reflectionsl = 111
3787 independent reflections3 standard reflections every 120 min
2014 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0508P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.001
3787 reflectionsΔρmax = 0.15 e Å3
453 parametersΔρmin = 0.15 e Å3
2 restraintsAbsolute structure: Flack, 1983
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Crystal data top
C40H36N8O2V = 3616 (2) Å3
Mr = 660.77Z = 4
Monoclinic, CcMo Kα radiation
a = 13.148 (5) ŵ = 0.08 mm1
b = 28.640 (7) ÅT = 293 K
c = 9.757 (4) Å0.6 × 0.5 × 0.4 mm
β = 100.19 (2)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.039
3952 measured reflections3 standard reflections every 120 min
3787 independent reflections intensity decay: 3%
2014 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.15 e Å3
S = 0.91Δρmin = 0.15 e Å3
3787 reflectionsAbsolute structure: Flack, 1983
453 parametersAbsolute structure parameter: 0.00 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N40.6740 (2)0.06127 (12)0.7409 (4)0.0483 (9)
N30.7784 (3)0.14236 (11)0.6411 (4)0.0540 (9)
N20.9672 (2)0.06694 (12)0.5396 (4)0.0574 (10)
N50.5552 (3)0.10524 (12)0.8245 (4)0.0520 (9)
N80.2402 (2)0.15797 (12)0.7212 (4)0.0476 (9)
N70.2470 (3)0.19540 (13)0.6349 (4)0.0582 (10)
N60.3168 (2)0.08240 (12)0.7802 (4)0.0523 (9)
O10.6326 (2)0.18574 (10)0.5928 (4)0.0804 (11)
O20.3652 (3)0.04921 (11)0.9910 (4)0.0782 (10)
C300.3068 (3)0.12341 (17)0.6990 (5)0.0527 (12)
C220.5223 (3)0.13466 (15)0.9230 (5)0.0543 (12)
C110.6748 (3)0.14808 (16)0.5884 (5)0.0568 (12)
C80.8432 (3)0.05827 (13)0.6716 (5)0.0481 (11)
N10.9086 (2)0.10631 (12)0.5333 (4)0.0536 (10)
C340.1721 (3)0.16005 (14)0.8186 (4)0.0445 (10)
C230.4271 (3)0.12559 (14)0.9653 (4)0.0479 (11)
C120.6189 (3)0.10572 (14)0.5259 (5)0.0437 (11)
C170.6166 (3)0.06490 (14)0.6009 (4)0.0412 (10)
C200.6436 (3)0.08519 (14)0.8495 (5)0.0474 (10)
C10.9254 (3)0.14421 (16)0.4453 (5)0.0555 (12)
C180.7718 (3)0.03634 (15)0.7516 (5)0.0486 (11)
C390.1149 (3)0.12067 (15)0.8392 (5)0.0580 (12)
H390.11880.09380.78690.070*
C380.0518 (4)0.12229 (19)0.9395 (6)0.0759 (15)
H380.01430.09590.95530.091*
C130.5644 (3)0.10817 (16)0.3905 (5)0.0550 (12)
H130.56330.13600.34130.066*
C280.3675 (3)0.08260 (18)0.9138 (5)0.0560 (12)
C240.3933 (3)0.15488 (17)1.0625 (5)0.0621 (13)
H240.33200.14831.09370.074*
C270.5759 (4)0.17442 (15)0.9739 (5)0.0620 (12)
H270.63730.18160.94380.074*
C350.1616 (3)0.20001 (15)0.8923 (5)0.0608 (13)
H350.19820.22670.87640.073*
C70.9281 (3)0.03763 (15)0.6232 (5)0.0526 (12)
C90.8362 (3)0.10225 (14)0.6158 (5)0.0470 (11)
C60.8424 (4)0.16392 (18)0.3587 (5)0.0696 (14)
H60.77690.15090.35290.084*
C40.9533 (4)0.22134 (17)0.2877 (6)0.0733 (15)
H40.96230.24830.23830.088*
C150.5107 (3)0.03006 (17)0.4043 (5)0.0605 (13)
H150.47440.00430.36350.073*
C400.9752 (3)0.00972 (15)0.6485 (6)0.0724 (15)
H40A1.00450.01300.74540.109*
H40B1.02840.01360.59360.109*
H40C0.92290.03310.62290.109*
C160.5615 (3)0.02723 (16)0.5397 (5)0.0526 (12)
H160.55870.00020.59010.063*
C100.8353 (4)0.18250 (14)0.7085 (6)0.0808 (16)
H10A0.90640.17400.73920.121*
H10B0.80560.19200.78710.121*
H10C0.83150.20780.64330.121*
C320.3164 (3)0.18253 (19)0.5574 (5)0.0626 (13)
C250.4510 (5)0.19359 (16)1.1125 (5)0.0699 (14)
H250.42830.21301.17730.084*
C140.5123 (3)0.07009 (18)0.3284 (5)0.0672 (13)
H140.47870.07150.23630.081*
C310.3563 (3)0.13828 (19)0.5951 (5)0.0660 (13)
H310.40630.12220.55730.079*
C260.5413 (4)0.20348 (17)1.0672 (5)0.0677 (14)
H260.57910.22991.09970.081*
C360.0979 (4)0.20095 (17)0.9889 (6)0.0727 (15)
H360.09130.22851.03720.087*
C210.7165 (3)0.08442 (19)0.9866 (5)0.0706 (14)
H21A0.77770.06740.97680.106*
H21B0.68360.06961.05530.106*
H21C0.73480.11581.01520.106*
C31.0363 (4)0.20026 (18)0.3667 (6)0.0766 (15)
H31.10220.21200.36700.092*
C370.0437 (4)0.16234 (19)1.0162 (6)0.0788 (15)
H370.00240.16301.08440.095*
C190.7846 (4)0.00331 (16)0.8214 (5)0.0726 (14)
H19A0.73150.01500.86300.087*
H19B0.84660.01950.82900.087*
C290.2745 (4)0.03905 (16)0.7128 (6)0.0841 (17)
H29A0.25760.01800.78190.126*
H29B0.32500.02480.66600.126*
H29C0.21340.04600.64630.126*
C21.0238 (3)0.16203 (17)0.4457 (6)0.0699 (14)
H21.08100.14790.49960.084*
C330.3431 (4)0.2152 (2)0.4512 (6)0.0978 (19)
H33A0.30160.24290.44880.147*
H33B0.33030.20040.36150.147*
H33C0.41490.22350.47480.147*
C50.8557 (4)0.20265 (19)0.2807 (6)0.0775 (15)
H50.79940.21620.22360.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.0416 (18)0.061 (2)0.040 (2)0.0110 (16)0.0016 (18)0.0012 (19)
N30.048 (2)0.039 (2)0.072 (3)0.0068 (16)0.003 (2)0.010 (2)
N20.0343 (17)0.053 (2)0.082 (3)0.0014 (18)0.004 (2)0.020 (2)
N50.048 (2)0.057 (2)0.051 (2)0.0060 (19)0.0073 (19)0.006 (2)
N80.0431 (19)0.053 (2)0.046 (2)0.0031 (18)0.0067 (18)0.0017 (19)
N70.054 (2)0.064 (2)0.057 (2)0.0069 (19)0.010 (2)0.016 (2)
N60.0445 (19)0.049 (2)0.061 (3)0.0041 (17)0.003 (2)0.001 (2)
O10.069 (2)0.0391 (17)0.134 (3)0.0175 (16)0.019 (2)0.004 (2)
O20.101 (3)0.054 (2)0.075 (2)0.0096 (18)0.004 (2)0.014 (2)
C300.039 (2)0.069 (3)0.047 (3)0.002 (2)0.003 (2)0.003 (3)
C220.062 (3)0.049 (3)0.051 (3)0.012 (2)0.005 (3)0.006 (2)
C110.051 (3)0.054 (3)0.065 (3)0.006 (2)0.009 (3)0.010 (3)
C80.036 (2)0.047 (3)0.056 (3)0.004 (2)0.007 (2)0.013 (2)
N10.039 (2)0.049 (2)0.072 (3)0.0002 (18)0.006 (2)0.003 (2)
C340.040 (2)0.044 (3)0.051 (3)0.005 (2)0.010 (2)0.006 (2)
C230.055 (3)0.040 (2)0.048 (3)0.014 (2)0.006 (2)0.002 (2)
C120.034 (2)0.045 (3)0.050 (3)0.0159 (19)0.003 (2)0.002 (2)
C170.032 (2)0.049 (3)0.042 (3)0.0073 (19)0.004 (2)0.005 (2)
C200.050 (3)0.044 (2)0.047 (3)0.000 (2)0.004 (2)0.008 (2)
C10.050 (3)0.055 (3)0.061 (3)0.001 (2)0.010 (3)0.008 (3)
C180.041 (2)0.047 (2)0.053 (3)0.011 (2)0.003 (2)0.002 (2)
C390.058 (3)0.048 (3)0.071 (3)0.004 (2)0.021 (3)0.002 (3)
C380.067 (3)0.080 (4)0.085 (4)0.008 (3)0.027 (3)0.002 (3)
C130.051 (3)0.060 (3)0.055 (3)0.019 (2)0.014 (3)0.017 (3)
C280.051 (3)0.058 (3)0.060 (3)0.017 (2)0.015 (3)0.004 (3)
C240.065 (3)0.070 (3)0.053 (3)0.020 (3)0.014 (3)0.004 (3)
C270.067 (3)0.056 (3)0.064 (3)0.005 (3)0.015 (3)0.009 (3)
C350.058 (3)0.048 (3)0.079 (4)0.004 (2)0.020 (3)0.004 (3)
C70.035 (2)0.044 (2)0.073 (3)0.003 (2)0.005 (2)0.009 (3)
C90.045 (2)0.040 (3)0.052 (3)0.003 (2)0.003 (2)0.008 (2)
C60.055 (3)0.080 (4)0.072 (4)0.006 (3)0.007 (3)0.006 (3)
C40.094 (4)0.062 (3)0.065 (4)0.004 (3)0.017 (3)0.005 (3)
C150.054 (3)0.067 (3)0.054 (3)0.009 (2)0.009 (3)0.002 (3)
C400.053 (3)0.061 (3)0.101 (4)0.016 (2)0.007 (3)0.017 (3)
C160.042 (2)0.061 (3)0.055 (3)0.001 (2)0.007 (2)0.006 (3)
C100.083 (3)0.052 (3)0.102 (4)0.006 (3)0.001 (3)0.030 (3)
C320.046 (3)0.088 (4)0.052 (3)0.007 (3)0.005 (3)0.017 (3)
C250.106 (4)0.049 (3)0.049 (3)0.020 (3)0.000 (3)0.008 (3)
C140.062 (3)0.081 (4)0.052 (3)0.004 (3)0.008 (3)0.008 (3)
C310.044 (2)0.105 (4)0.050 (3)0.012 (3)0.010 (2)0.002 (3)
C260.087 (4)0.052 (3)0.063 (3)0.003 (3)0.010 (3)0.001 (3)
C360.072 (3)0.060 (3)0.090 (4)0.004 (3)0.024 (3)0.016 (3)
C210.072 (3)0.089 (3)0.046 (3)0.025 (3)0.001 (3)0.006 (3)
C30.074 (3)0.085 (4)0.070 (4)0.028 (3)0.011 (3)0.015 (3)
C370.074 (3)0.081 (4)0.087 (4)0.008 (3)0.029 (3)0.012 (4)
C190.068 (3)0.072 (3)0.077 (4)0.027 (3)0.013 (3)0.021 (3)
C290.080 (3)0.066 (3)0.097 (4)0.006 (3)0.009 (3)0.016 (3)
C20.049 (3)0.081 (3)0.075 (4)0.015 (3)0.001 (3)0.008 (3)
C330.083 (4)0.140 (5)0.073 (4)0.014 (4)0.022 (3)0.039 (4)
C50.073 (4)0.089 (4)0.071 (4)0.022 (3)0.014 (3)0.005 (3)
Geometric parameters (Å, º) top
N4—C201.380 (5)C24—H240.9300
N4—C171.443 (5)C27—C261.370 (6)
N4—C181.458 (5)C27—H270.9300
N3—C111.378 (5)C35—C361.368 (7)
N3—C91.422 (5)C35—H350.9300
N3—C101.463 (5)C7—C401.493 (6)
N2—C71.335 (6)C6—C51.374 (7)
N2—N11.361 (4)C6—H60.9300
N5—C201.281 (5)C4—C31.361 (7)
N5—C221.402 (5)C4—C51.380 (7)
N8—C301.364 (5)C4—H40.9300
N8—N71.375 (4)C15—C141.367 (6)
N8—C341.418 (5)C15—C161.374 (6)
N7—C321.336 (6)C15—H150.9300
N6—C281.355 (6)C40—H40A0.9600
N6—C301.410 (6)C40—H40B0.9600
N6—C291.467 (6)C40—H40C0.9600
O1—C111.217 (5)C16—H160.9300
O2—C281.221 (5)C10—H10A0.9600
C30—C311.366 (6)C10—H10B0.9600
C22—C271.384 (6)C10—H10C0.9600
C22—C231.410 (6)C32—C311.396 (6)
C11—C121.492 (6)C32—C331.484 (7)
C8—C91.369 (5)C25—C261.368 (7)
C8—C71.416 (5)C25—H250.9300
C8—C181.464 (6)C14—H140.9300
N1—C91.356 (5)C31—H310.9300
N1—C11.426 (6)C26—H260.9300
C34—C351.371 (6)C36—C371.367 (6)
C34—C391.389 (6)C36—H360.9300
C23—C241.397 (6)C21—H21A0.9600
C23—C281.498 (6)C21—H21B0.9600
C12—C171.382 (5)C21—H21C0.9600
C12—C131.389 (6)C3—C21.365 (6)
C17—C161.375 (5)C3—H30.9300
C20—C211.501 (6)C37—H370.9300
C1—C61.378 (6)C19—H19A0.9300
C1—C21.389 (6)C19—H19B0.9300
C18—C191.320 (5)C29—H29A0.9600
C39—C381.391 (7)C29—H29B0.9600
C39—H390.9300C29—H29C0.9600
C38—C371.384 (7)C2—H20.9300
C38—H380.9300C33—H33A0.9600
C13—C141.371 (6)C33—H33B0.9600
C13—H130.9300C33—H33C0.9600
C24—C251.383 (6)C5—H50.9300
C20—N4—C17121.2 (3)C8—C9—N3132.4 (4)
C20—N4—C18124.1 (3)C5—C6—C1120.3 (5)
C17—N4—C18114.2 (3)C5—C6—H6119.8
C11—N3—C9123.7 (4)C1—C6—H6119.8
C11—N3—C10117.9 (3)C3—C4—C5120.1 (5)
C9—N3—C10117.8 (4)C3—C4—H4120.0
C7—N2—N1105.8 (3)C5—C4—H4120.0
C20—N5—C22121.2 (4)C14—C15—C16121.2 (4)
C30—N8—N7110.8 (4)C14—C15—H15119.4
C30—N8—C34129.5 (4)C16—C15—H15119.4
N7—N8—C34119.6 (3)C7—C40—H40A109.5
C32—N7—N8104.8 (3)C7—C40—H40B109.5
C28—N6—C30121.2 (4)H40A—C40—H40B109.5
C28—N6—C29121.2 (4)C7—C40—H40C109.5
C30—N6—C29117.6 (4)H40A—C40—H40C109.5
N8—C30—C31107.2 (4)H40B—C40—H40C109.5
N8—C30—N6120.9 (4)C15—C16—C17120.0 (4)
C31—C30—N6131.9 (4)C15—C16—H16120.0
C27—C22—N5122.8 (4)C17—C16—H16120.0
C27—C22—C23117.9 (4)N3—C10—H10A109.5
N5—C22—C23119.1 (4)N3—C10—H10B109.5
O1—C11—N3121.3 (4)H10A—C10—H10B109.5
O1—C11—C12122.7 (4)N3—C10—H10C109.5
N3—C11—C12116.0 (4)H10A—C10—H10C109.5
C9—C8—C7104.7 (4)H10B—C10—H10C109.5
C9—C8—C18127.0 (4)N7—C32—C31111.3 (4)
C7—C8—C18128.0 (4)N7—C32—C33119.4 (5)
C9—N1—N2110.7 (4)C31—C32—C33129.2 (5)
C9—N1—C1128.5 (4)C26—C25—C24120.4 (5)
N2—N1—C1120.7 (4)C26—C25—H25119.8
C35—C34—C39119.7 (4)C24—C25—H25119.8
C35—C34—N8121.4 (4)C15—C14—C13118.9 (5)
C39—C34—N8119.0 (4)C15—C14—H14120.6
C24—C23—C22119.6 (4)C13—C14—H14120.6
C24—C23—C28120.7 (4)C30—C31—C32105.8 (4)
C22—C23—C28119.5 (4)C30—C31—H31127.1
C17—C12—C13119.4 (4)C32—C31—H31127.1
C17—C12—C11121.8 (4)C25—C26—C27119.9 (5)
C13—C12—C11118.8 (4)C25—C26—H26120.1
C16—C17—C12119.6 (4)C27—C26—H26120.1
C16—C17—N4120.1 (4)C37—C36—C35121.5 (5)
C12—C17—N4120.3 (4)C37—C36—H36119.3
N5—C20—N4116.9 (4)C35—C36—H36119.3
N5—C20—C21126.3 (4)C20—C21—H21A109.5
N4—C20—C21116.8 (4)C20—C21—H21B109.5
C6—C1—C2119.2 (5)H21A—C21—H21B109.5
C6—C1—N1119.4 (4)C20—C21—H21C109.5
C2—C1—N1121.4 (4)H21A—C21—H21C109.5
C19—C18—N4119.2 (4)H21B—C21—H21C109.5
C19—C18—C8127.6 (4)C4—C3—C2120.7 (5)
N4—C18—C8113.1 (3)C4—C3—H3119.6
C34—C39—C38118.7 (5)C2—C3—H3119.6
C34—C39—H39120.7C36—C37—C38118.2 (5)
C38—C39—H39120.7C36—C37—H37120.9
C37—C38—C39121.4 (5)C38—C37—H37120.9
C37—C38—H38119.3C18—C19—H19A120.0
C39—C38—H38119.3C18—C19—H19B120.0
C14—C13—C12120.9 (4)H19A—C19—H19B120.0
C14—C13—H13119.6N6—C29—H29A109.5
C12—C13—H13119.6N6—C29—H29B109.5
O2—C28—N6121.9 (5)H29A—C29—H29B109.5
O2—C28—C23120.4 (5)N6—C29—H29C109.5
N6—C28—C23117.8 (4)H29A—C29—H29C109.5
C25—C24—C23120.0 (5)H29B—C29—H29C109.5
C25—C24—H24120.0C3—C2—C1119.9 (5)
C23—C24—H24120.0C3—C2—H2120.1
C26—C27—C22122.1 (5)C1—C2—H2120.1
C26—C27—H27119.0C32—C33—H33A109.5
C22—C27—H27119.0C32—C33—H33B109.5
C36—C35—C34120.5 (4)H33A—C33—H33B109.5
C36—C35—H35119.7C32—C33—H33C109.5
C34—C35—H35119.7H33A—C33—H33C109.5
N2—C7—C8110.6 (4)H33B—C33—H33C109.5
N2—C7—C40118.6 (4)C6—C5—C4119.7 (5)
C8—C7—C40130.7 (4)C6—C5—H5120.2
N1—C9—C8108.0 (3)C4—C5—H5120.2
N1—C9—N3119.1 (4)
C30—N8—N7—C321.8 (4)C17—C12—C13—C142.9 (6)
C34—N8—N7—C32180.0 (4)C11—C12—C13—C14179.7 (4)
N7—N8—C30—C311.1 (5)C30—N6—C28—O2170.1 (4)
C34—N8—C30—C31179.1 (4)C29—N6—C28—O212.9 (6)
N7—N8—C30—N6177.1 (3)C30—N6—C28—C239.6 (5)
C34—N8—C30—N61.0 (6)C29—N6—C28—C23167.4 (4)
C28—N6—C30—N874.1 (5)C24—C23—C28—O270.1 (5)
C29—N6—C30—N8108.7 (5)C22—C23—C28—O2105.2 (5)
C28—N6—C30—C31103.5 (6)C24—C23—C28—N6109.7 (5)
C29—N6—C30—C3173.6 (6)C22—C23—C28—N675.0 (5)
C20—N5—C22—C2759.3 (6)C22—C23—C24—C252.6 (6)
C20—N5—C22—C23125.3 (4)C28—C23—C24—C25177.9 (4)
C9—N3—C11—O1167.6 (5)N5—C22—C27—C26178.2 (4)
C10—N3—C11—O12.7 (7)C23—C22—C27—C262.8 (6)
C9—N3—C11—C1212.1 (6)C39—C34—C35—C362.1 (7)
C10—N3—C11—C12177.5 (4)N8—C34—C35—C36178.0 (4)
C7—N2—N1—C92.1 (4)N1—N2—C7—C80.1 (4)
C7—N2—N1—C1176.2 (4)N1—N2—C7—C40178.7 (4)
C30—N8—C34—C35137.3 (5)C9—C8—C7—N22.1 (5)
N7—N8—C34—C3540.6 (5)C18—C8—C7—N2172.4 (4)
C30—N8—C34—C3942.8 (6)C9—C8—C7—C40179.5 (4)
N7—N8—C34—C39139.3 (4)C18—C8—C7—C406.0 (7)
C27—C22—C23—C243.9 (6)N2—N1—C9—C83.5 (4)
N5—C22—C23—C24179.5 (4)C1—N1—C9—C8174.6 (4)
C27—C22—C23—C28179.3 (4)N2—N1—C9—N3169.9 (3)
N5—C22—C23—C285.1 (6)C1—N1—C9—N312.0 (6)
O1—C11—C12—C17123.3 (5)C7—C8—C9—N13.3 (4)
N3—C11—C12—C1756.9 (5)C18—C8—C9—N1171.3 (4)
O1—C11—C12—C1354.1 (6)C7—C8—C9—N3168.9 (4)
N3—C11—C12—C13125.7 (4)C18—C8—C9—N316.6 (7)
C13—C12—C17—C160.8 (5)C11—N3—C9—N1110.1 (5)
C11—C12—C17—C16178.2 (4)C10—N3—C9—N160.2 (5)
C13—C12—C17—N4179.0 (3)C11—N3—C9—C878.4 (6)
C11—C12—C17—N43.7 (5)C10—N3—C9—C8111.3 (5)
C20—N4—C17—C16110.6 (4)C2—C1—C6—C54.3 (7)
C18—N4—C17—C1677.7 (4)N1—C1—C6—C5175.1 (4)
C20—N4—C17—C1271.2 (5)C14—C15—C16—C170.9 (7)
C18—N4—C17—C12100.5 (4)C12—C17—C16—C151.1 (6)
C22—N5—C20—N4172.8 (4)N4—C17—C16—C15177.1 (4)
C22—N5—C20—C218.5 (6)N8—N7—C32—C311.8 (5)
C17—N4—C20—N59.5 (6)N8—N7—C32—C33179.9 (4)
C18—N4—C20—N5179.7 (4)C23—C24—C25—C260.1 (7)
C17—N4—C20—C21171.6 (4)C16—C15—C14—C131.2 (7)
C18—N4—C20—C210.8 (6)C12—C13—C14—C153.1 (6)
C9—N1—C1—C646.4 (6)N8—C30—C31—C320.1 (5)
N2—N1—C1—C6131.5 (4)N6—C30—C31—C32177.9 (4)
C9—N1—C1—C2133.1 (5)N7—C32—C31—C301.2 (5)
N2—N1—C1—C249.0 (6)C33—C32—C31—C30179.1 (5)
C20—N4—C18—C1972.7 (5)C24—C25—C26—C271.3 (7)
C17—N4—C18—C19115.9 (5)C22—C27—C26—C250.2 (7)
C20—N4—C18—C8111.4 (4)C34—C35—C36—C370.6 (7)
C17—N4—C18—C860.0 (4)C5—C4—C3—C23.5 (8)
C9—C8—C18—C19170.2 (5)C35—C36—C37—C382.3 (8)
C7—C8—C18—C1916.6 (7)C39—C38—C37—C361.3 (8)
C9—C8—C18—N414.3 (6)C4—C3—C2—C10.2 (8)
C7—C8—C18—N4158.9 (4)C6—C1—C2—C33.7 (7)
C35—C34—C39—C383.0 (6)N1—C1—C2—C3175.8 (4)
N8—C34—C39—C38177.1 (4)C1—C6—C5—C41.1 (7)
C34—C39—C38—C371.3 (7)C3—C4—C5—C62.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.932.573.173 (6)124 (3)
C36—H36···O1ii0.932.553.409 (6)153 (3)
Symmetry codes: (i) x, y, z1/2; (ii) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.932.5703.173 (6)124 (3)
C36—H36···O1ii0.932.5503.409 (6)153 (3)
Symmetry codes: (i) x, y, z1/2; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank MIUR for financial support. Financial support from the Fondo di Finanziamento della Ricerca (ex 60%) dell'Ateneo di Palermo is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHeitmann, W., Liepmann, H., Maetzel, U., Zeugner, H., Fuchs, A. M., Kraehling, H., Ruhland, M., Mol, F. & Tulp, M. (1988). Eur. J. Med. Chem. 23, 249–256.  CrossRef CAS Web of Science Google Scholar
First citationMilkowski, W., Liepmann, H., Zeugner, H., Ruhland, M. & Tulp, M. (1985). Eur. J. Med. Chem. 20, 345–358.  CAS Google Scholar
First citationPlescia, S., Daidone, G. & Sprio, V. (1979). J. Heterocycl. Chem. 16, 935–937.  CrossRef CAS Google Scholar
First citationPlescia, S., Daidone, G. & Sprio, V. (1983). Boll. Chim. Farm. 122, 190–195.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds