organic compounds
6-Methoxy-4-(2,4,5-trimethoxyphenyl)-2,2′-bipyridine-5-carbonitrile
aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th
In the title 3-cyanopyridine derivative, C21H19N3O4, the 3-cyano-substituted pyridine ring forms dihedral angles of 2.35 (5) and 41.60 (5)° with the unsubstituted pyridine and 2,4,5-trimethoxy-substituted benzene rings, respectively. The dihedral angle between the unsubstituted pyridine and benzene rings is 39.84 (5)°. The methoxy groups form Cmethyl—O—C—(C,N) torsion angles in the range 0.80 (15)–11.45 (15)°. In the crystal, molecules related by 21 screw axes are linked by weak C—H⋯N hydrogen bonds along [010]. In addition, weak C—H⋯π interactions and π–π stacking interactions between pyridine rings, with a centroid–centroid distance of 3.6448 (6) Å, are observed.
Related literature
For the synthesis and applications of 3-cyanopyridine derivatives, see: Al-Jaber et al. (2012); Brandt et al. (2010); El-Sayed et al. (2011); Ji et al. (2007); Kim et al. (2005); Koner et al. (2012); Suwunwong et al. (2011); Zhou et al. (2006). For related structures, see: Chantrapromma et al. (2010); Suwunwong et al. (2012). For standard bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813023891/lh5641sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813023891/lh5641Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813023891/lh5641Isup3.cml
The title compound (I) was synthesized by stirring a solution of (E)-1-(pyridin-2-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (Suwunwong et al., 2011) (0.30 g, 1 mmol) in 10 ml of methanol with a freshly prepared sodium methoxide (1 mmol of sodium in 20 ml of methanol). Excess malononitrile (0.13 g, 2 mmol) was then added with continuous stirring at room temperature until the precipitate was separated out. The resulting solid was filtered and washed with hexane. Colorless block-shaped single crystals of the title compound suitable for x-ray
were recrystallized from ethanol/methanol (1:1 v/v) by the slow evaporation of the solvent at room temperature after several days, Mp. 506–507 K.All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.95 Å for aromatic and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the
for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).C21H19N3O4 | F(000) = 792 |
Mr = 377.39 | Dx = 1.407 Mg m−3 |
Monoclinic, P21/c | Melting point = 506–507 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 14.9967 (3) Å | Cell parameters from 5182 reflections |
b = 7.4039 (2) Å | θ = 2.4–30.0° |
c = 17.5795 (4) Å | µ = 0.10 mm−1 |
β = 114.080 (1)° | T = 100 K |
V = 1782.06 (7) Å3 | Block, colorless |
Z = 4 | 0.60 × 0.29 × 0.23 mm |
Bruker APEXII CCD area-detector diffractometer | 5182 independent reflections |
Radiation source: sealed tube | 4386 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ϕ and ω scans | θmax = 30.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −21→21 |
Tmin = 0.943, Tmax = 0.977 | k = −10→10 |
20323 measured reflections | l = −22→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0629P)2 + 0.5246P] where P = (Fo2 + 2Fc2)/3 |
5182 reflections | (Δ/σ)max = 0.001 |
257 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
C21H19N3O4 | V = 1782.06 (7) Å3 |
Mr = 377.39 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.9967 (3) Å | µ = 0.10 mm−1 |
b = 7.4039 (2) Å | T = 100 K |
c = 17.5795 (4) Å | 0.60 × 0.29 × 0.23 mm |
β = 114.080 (1)° |
Bruker APEXII CCD area-detector diffractometer | 5182 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 4386 reflections with I > 2σ(I) |
Tmin = 0.943, Tmax = 0.977 | Rint = 0.030 |
20323 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.40 e Å−3 |
5182 reflections | Δρmin = −0.31 e Å−3 |
257 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.08878 (6) | 0.11337 (11) | −0.09750 (5) | 0.01663 (17) | |
O2 | 0.21018 (6) | 0.46941 (10) | 0.24541 (5) | 0.01852 (17) | |
O3 | 0.48961 (5) | 0.12019 (10) | 0.42643 (5) | 0.01676 (17) | |
O4 | 0.44854 (6) | −0.13384 (11) | 0.31664 (5) | 0.02014 (18) | |
N1 | −0.10990 (7) | 0.40828 (13) | 0.10405 (6) | 0.01619 (19) | |
N2 | −0.00502 (6) | 0.22953 (12) | −0.03257 (5) | 0.01373 (18) | |
N3 | 0.32255 (7) | 0.04540 (15) | 0.03661 (7) | 0.0231 (2) | |
C1 | −0.19408 (8) | 0.48087 (15) | 0.09883 (7) | 0.0174 (2) | |
H1A | −0.1982 | 0.5191 | 0.1489 | 0.021* | |
C2 | −0.27560 (8) | 0.50345 (15) | 0.02446 (7) | 0.0176 (2) | |
H2A | −0.3340 | 0.5543 | 0.0239 | 0.021* | |
C3 | −0.26961 (8) | 0.44990 (16) | −0.04895 (7) | 0.0187 (2) | |
H3A | −0.3240 | 0.4640 | −0.1009 | 0.022* | |
C4 | −0.18290 (8) | 0.37531 (15) | −0.04529 (7) | 0.0160 (2) | |
H4A | −0.1768 | 0.3381 | −0.0947 | 0.019* | |
C5 | −0.10496 (7) | 0.35617 (13) | 0.03249 (6) | 0.01291 (19) | |
C6 | −0.01002 (7) | 0.27984 (13) | 0.03969 (6) | 0.01266 (19) | |
C7 | 0.06802 (7) | 0.26430 (14) | 0.11670 (6) | 0.0139 (2) | |
H7A | 0.0605 | 0.2991 | 0.1658 | 0.017* | |
C8 | 0.15792 (7) | 0.19739 (13) | 0.12237 (6) | 0.01287 (19) | |
C9 | 0.16324 (7) | 0.14605 (14) | 0.04744 (6) | 0.01298 (19) | |
C10 | 0.07884 (7) | 0.16495 (14) | −0.02772 (6) | 0.01309 (19) | |
C11 | 0.24309 (7) | 0.18194 (14) | 0.20364 (6) | 0.01303 (19) | |
C12 | 0.26734 (7) | 0.31794 (14) | 0.26440 (6) | 0.0139 (2) | |
C13 | 0.34940 (7) | 0.30003 (14) | 0.33993 (6) | 0.0140 (2) | |
H13A | 0.3648 | 0.3925 | 0.3808 | 0.017* | |
C14 | 0.40836 (7) | 0.14785 (14) | 0.35544 (6) | 0.01330 (19) | |
C15 | 0.38513 (7) | 0.00954 (14) | 0.29540 (7) | 0.0144 (2) | |
C16 | 0.30335 (7) | 0.02751 (14) | 0.22149 (6) | 0.01395 (19) | |
H16A | 0.2872 | −0.0669 | 0.1815 | 0.017* | |
C17 | 0.00747 (8) | 0.15056 (17) | −0.17547 (7) | 0.0197 (2) | |
H17A | 0.0223 | 0.1065 | −0.2216 | 0.030* | |
H17B | −0.0042 | 0.2811 | −0.1813 | 0.030* | |
H17C | −0.0510 | 0.0894 | −0.1766 | 0.030* | |
C18 | 0.25207 (8) | 0.08862 (14) | 0.04235 (7) | 0.0156 (2) | |
C19 | 0.22509 (8) | 0.59686 (15) | 0.31086 (7) | 0.0179 (2) | |
H19A | 0.1754 | 0.6919 | 0.2905 | 0.027* | |
H19B | 0.2901 | 0.6508 | 0.3286 | 0.027* | |
H19C | 0.2199 | 0.5350 | 0.3582 | 0.027* | |
C20 | 0.51581 (8) | 0.25983 (15) | 0.48834 (7) | 0.0176 (2) | |
H20A | 0.5748 | 0.2240 | 0.5366 | 0.026* | |
H20B | 0.4622 | 0.2786 | 0.5057 | 0.026* | |
H20C | 0.5284 | 0.3722 | 0.4649 | 0.026* | |
C21 | 0.43561 (9) | −0.26391 (16) | 0.25325 (8) | 0.0222 (2) | |
H21A | 0.4884 | −0.3531 | 0.2740 | 0.033* | |
H21B | 0.4369 | −0.2032 | 0.2042 | 0.033* | |
H21C | 0.3727 | −0.3249 | 0.2380 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0182 (4) | 0.0217 (4) | 0.0112 (3) | 0.0019 (3) | 0.0073 (3) | −0.0016 (3) |
O2 | 0.0206 (4) | 0.0147 (4) | 0.0154 (4) | 0.0058 (3) | 0.0025 (3) | −0.0031 (3) |
O3 | 0.0152 (3) | 0.0164 (4) | 0.0146 (4) | 0.0022 (3) | 0.0019 (3) | −0.0016 (3) |
O4 | 0.0214 (4) | 0.0175 (4) | 0.0186 (4) | 0.0082 (3) | 0.0052 (3) | −0.0020 (3) |
N1 | 0.0170 (4) | 0.0174 (4) | 0.0164 (4) | 0.0018 (3) | 0.0091 (3) | 0.0008 (3) |
N2 | 0.0147 (4) | 0.0135 (4) | 0.0135 (4) | −0.0011 (3) | 0.0063 (3) | −0.0006 (3) |
N3 | 0.0234 (5) | 0.0244 (5) | 0.0266 (5) | 0.0047 (4) | 0.0154 (4) | 0.0035 (4) |
C1 | 0.0202 (5) | 0.0171 (5) | 0.0187 (5) | 0.0027 (4) | 0.0119 (4) | 0.0012 (4) |
C2 | 0.0152 (5) | 0.0150 (5) | 0.0248 (6) | 0.0012 (4) | 0.0104 (4) | 0.0006 (4) |
C3 | 0.0143 (4) | 0.0197 (5) | 0.0196 (5) | 0.0000 (4) | 0.0043 (4) | −0.0017 (4) |
C4 | 0.0160 (4) | 0.0168 (5) | 0.0152 (5) | −0.0007 (4) | 0.0062 (4) | −0.0025 (4) |
C5 | 0.0141 (4) | 0.0111 (4) | 0.0153 (5) | −0.0013 (3) | 0.0077 (4) | 0.0000 (3) |
C6 | 0.0142 (4) | 0.0110 (4) | 0.0144 (5) | −0.0008 (3) | 0.0075 (4) | −0.0004 (3) |
C7 | 0.0150 (4) | 0.0148 (4) | 0.0135 (5) | −0.0001 (4) | 0.0074 (4) | −0.0011 (3) |
C8 | 0.0141 (4) | 0.0120 (4) | 0.0129 (4) | −0.0006 (3) | 0.0059 (4) | −0.0001 (3) |
C9 | 0.0139 (4) | 0.0122 (4) | 0.0142 (5) | 0.0003 (3) | 0.0072 (4) | −0.0002 (3) |
C10 | 0.0167 (4) | 0.0119 (4) | 0.0120 (4) | −0.0006 (3) | 0.0073 (4) | −0.0005 (3) |
C11 | 0.0128 (4) | 0.0144 (5) | 0.0125 (4) | 0.0001 (3) | 0.0058 (3) | 0.0000 (3) |
C12 | 0.0140 (4) | 0.0135 (5) | 0.0146 (5) | 0.0013 (4) | 0.0061 (4) | 0.0005 (4) |
C13 | 0.0152 (4) | 0.0136 (5) | 0.0134 (5) | 0.0001 (4) | 0.0059 (4) | −0.0011 (4) |
C14 | 0.0123 (4) | 0.0152 (5) | 0.0124 (4) | −0.0005 (3) | 0.0051 (4) | 0.0014 (3) |
C15 | 0.0151 (4) | 0.0130 (5) | 0.0167 (5) | 0.0022 (4) | 0.0083 (4) | 0.0010 (4) |
C16 | 0.0158 (4) | 0.0136 (5) | 0.0135 (5) | −0.0004 (4) | 0.0071 (4) | −0.0016 (4) |
C17 | 0.0215 (5) | 0.0256 (6) | 0.0107 (5) | −0.0002 (4) | 0.0051 (4) | 0.0000 (4) |
C18 | 0.0183 (5) | 0.0152 (5) | 0.0143 (5) | 0.0003 (4) | 0.0078 (4) | 0.0011 (4) |
C19 | 0.0188 (5) | 0.0158 (5) | 0.0172 (5) | 0.0028 (4) | 0.0055 (4) | −0.0041 (4) |
C20 | 0.0156 (5) | 0.0177 (5) | 0.0162 (5) | −0.0018 (4) | 0.0030 (4) | −0.0029 (4) |
C21 | 0.0273 (6) | 0.0188 (5) | 0.0225 (6) | 0.0059 (4) | 0.0122 (5) | −0.0033 (4) |
O1—C10 | 1.3499 (12) | C8—C9 | 1.4041 (14) |
O1—C17 | 1.4415 (13) | C8—C11 | 1.4820 (13) |
O2—C12 | 1.3676 (12) | C9—C10 | 1.4152 (13) |
O2—C19 | 1.4332 (13) | C9—C18 | 1.4355 (14) |
O3—C14 | 1.3576 (12) | C11—C12 | 1.4036 (14) |
O3—C20 | 1.4349 (13) | C11—C16 | 1.4110 (14) |
O4—C15 | 1.3715 (12) | C12—C13 | 1.4006 (14) |
O4—C21 | 1.4250 (14) | C13—C14 | 1.3888 (14) |
N1—C1 | 1.3403 (14) | C13—H13A | 0.9500 |
N1—C5 | 1.3465 (13) | C14—C15 | 1.4085 (14) |
N2—C10 | 1.3152 (13) | C15—C16 | 1.3819 (14) |
N2—C6 | 1.3549 (13) | C16—H16A | 0.9500 |
N3—C18 | 1.1476 (14) | C17—H17A | 0.9800 |
C1—C2 | 1.3883 (15) | C17—H17B | 0.9800 |
C1—H1A | 0.9500 | C17—H17C | 0.9800 |
C2—C3 | 1.3876 (16) | C19—H19A | 0.9800 |
C2—H2A | 0.9500 | C19—H19B | 0.9800 |
C3—C4 | 1.3899 (15) | C19—H19C | 0.9800 |
C3—H3A | 0.9500 | C20—H20A | 0.9800 |
C4—C5 | 1.3970 (14) | C20—H20B | 0.9800 |
C4—H4A | 0.9500 | C20—H20C | 0.9800 |
C5—C6 | 1.4885 (14) | C21—H21A | 0.9800 |
C6—C7 | 1.3866 (14) | C21—H21B | 0.9800 |
C7—C8 | 1.4013 (14) | C21—H21C | 0.9800 |
C7—H7A | 0.9500 | ||
C10—O1—C17 | 116.48 (8) | O2—C12—C11 | 117.43 (9) |
C12—O2—C19 | 117.84 (8) | C13—C12—C11 | 120.54 (9) |
C14—O3—C20 | 116.99 (8) | C14—C13—C12 | 120.38 (9) |
C15—O4—C21 | 116.88 (8) | C14—C13—H13A | 119.8 |
C1—N1—C5 | 117.40 (9) | C12—C13—H13A | 119.8 |
C10—N2—C6 | 117.15 (9) | O3—C14—C13 | 124.30 (9) |
N1—C1—C2 | 123.76 (10) | O3—C14—C15 | 115.72 (9) |
N1—C1—H1A | 118.1 | C13—C14—C15 | 119.98 (9) |
C2—C1—H1A | 118.1 | O4—C15—C16 | 125.54 (9) |
C3—C2—C1 | 118.37 (10) | O4—C15—C14 | 115.26 (9) |
C3—C2—H2A | 120.8 | C16—C15—C14 | 119.20 (9) |
C1—C2—H2A | 120.8 | C15—C16—C11 | 121.96 (9) |
C2—C3—C4 | 119.00 (10) | C15—C16—H16A | 119.0 |
C2—C3—H3A | 120.5 | C11—C16—H16A | 119.0 |
C4—C3—H3A | 120.5 | O1—C17—H17A | 109.5 |
C3—C4—C5 | 118.62 (10) | O1—C17—H17B | 109.5 |
C3—C4—H4A | 120.7 | H17A—C17—H17B | 109.5 |
C5—C4—H4A | 120.7 | O1—C17—H17C | 109.5 |
N1—C5—C4 | 122.85 (9) | H17A—C17—H17C | 109.5 |
N1—C5—C6 | 116.40 (9) | H17B—C17—H17C | 109.5 |
C4—C5—C6 | 120.73 (9) | N3—C18—C9 | 178.32 (12) |
N2—C6—C7 | 123.03 (9) | O2—C19—H19A | 109.5 |
N2—C6—C5 | 116.20 (9) | O2—C19—H19B | 109.5 |
C7—C6—C5 | 120.77 (9) | H19A—C19—H19B | 109.5 |
C6—C7—C8 | 120.21 (9) | O2—C19—H19C | 109.5 |
C6—C7—H7A | 119.9 | H19A—C19—H19C | 109.5 |
C8—C7—H7A | 119.9 | H19B—C19—H19C | 109.5 |
C7—C8—C9 | 116.76 (9) | O3—C20—H20A | 109.5 |
C7—C8—C11 | 121.44 (9) | O3—C20—H20B | 109.5 |
C9—C8—C11 | 121.80 (9) | H20A—C20—H20B | 109.5 |
C8—C9—C10 | 118.53 (9) | O3—C20—H20C | 109.5 |
C8—C9—C18 | 123.23 (9) | H20A—C20—H20C | 109.5 |
C10—C9—C18 | 118.06 (9) | H20B—C20—H20C | 109.5 |
N2—C10—O1 | 120.08 (9) | O4—C21—H21A | 109.5 |
N2—C10—C9 | 124.32 (9) | O4—C21—H21B | 109.5 |
O1—C10—C9 | 115.60 (9) | H21A—C21—H21B | 109.5 |
C12—C11—C16 | 117.94 (9) | O4—C21—H21C | 109.5 |
C12—C11—C8 | 122.14 (9) | H21A—C21—H21C | 109.5 |
C16—C11—C8 | 119.92 (9) | H21B—C21—H21C | 109.5 |
O2—C12—C13 | 121.99 (9) | ||
C5—N1—C1—C2 | 0.52 (16) | C8—C9—C10—O1 | 179.95 (9) |
N1—C1—C2—C3 | −0.76 (17) | C18—C9—C10—O1 | 4.76 (14) |
C1—C2—C3—C4 | 0.29 (16) | C7—C8—C11—C12 | −42.34 (15) |
C2—C3—C4—C5 | 0.33 (16) | C9—C8—C11—C12 | 137.61 (11) |
C1—N1—C5—C4 | 0.16 (15) | C7—C8—C11—C16 | 138.34 (10) |
C1—N1—C5—C6 | 178.65 (9) | C9—C8—C11—C16 | −41.70 (14) |
C3—C4—C5—N1 | −0.58 (16) | C19—O2—C12—C13 | −11.45 (15) |
C3—C4—C5—C6 | −179.01 (10) | C19—O2—C12—C11 | 171.00 (9) |
C10—N2—C6—C7 | −0.63 (15) | C16—C11—C12—O2 | 178.04 (9) |
C10—N2—C6—C5 | 178.74 (9) | C8—C11—C12—O2 | −1.29 (15) |
N1—C5—C6—N2 | −179.26 (9) | C16—C11—C12—C13 | 0.46 (15) |
C4—C5—C6—N2 | −0.74 (14) | C8—C11—C12—C13 | −178.87 (9) |
N1—C5—C6—C7 | 0.12 (14) | O2—C12—C13—C14 | −176.97 (10) |
C4—C5—C6—C7 | 178.65 (10) | C11—C12—C13—C14 | 0.50 (16) |
N2—C6—C7—C8 | 1.31 (16) | C20—O3—C14—C13 | −0.80 (15) |
C5—C6—C7—C8 | −178.03 (9) | C20—O3—C14—C15 | 179.26 (9) |
C6—C7—C8—C9 | −0.94 (15) | C12—C13—C14—O3 | 179.36 (10) |
C6—C7—C8—C11 | 179.02 (9) | C12—C13—C14—C15 | −0.70 (16) |
C7—C8—C9—C10 | 0.02 (14) | C21—O4—C15—C16 | 8.11 (16) |
C11—C8—C9—C10 | −179.94 (9) | C21—O4—C15—C14 | −171.38 (10) |
C7—C8—C9—C18 | 174.95 (9) | O3—C14—C15—O4 | −0.60 (14) |
C11—C8—C9—C18 | −5.01 (16) | C13—C14—C15—O4 | 179.45 (9) |
C6—N2—C10—O1 | −179.62 (9) | O3—C14—C15—C16 | 179.88 (9) |
C6—N2—C10—C9 | −0.37 (15) | C13—C14—C15—C16 | −0.07 (15) |
C17—O1—C10—N2 | 6.18 (14) | O4—C15—C16—C11 | −178.40 (10) |
C17—O1—C10—C9 | −173.13 (9) | C14—C15—C16—C11 | 1.06 (16) |
C8—C9—C10—N2 | 0.67 (16) | C12—C11—C16—C15 | −1.25 (15) |
C18—C9—C10—N2 | −174.53 (10) | C8—C11—C16—C15 | 178.09 (10) |
Cg3 is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20C···N3i | 0.98 | 2.59 | 3.3774 (17) | 138 |
C1—H1A···Cg3ii | 0.95 | 2.89 | 3.7062 (13) | 145 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2. |
Cg3 is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20C···N3i | 0.98 | 2.59 | 3.3774 (17) | 138 |
C1—H1A···Cg3ii | 0.95 | 2.89 | 3.7062 (13) | 145 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2. |
Acknowledgements
TS and SC thank the Thailand Research Fund through the Royal Golden Jubilee PhD Program (grant No. PHD/0257/2553) for financial support. The authors thank the Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.
References
Al-Jaber, N. A., Bougasim, A. S. A. & Karah, M. M. S. (2012). J. Saudi Chem. Soc. 16, 45–53. CAS Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Brandt, W., Mologni, L., Preu, L., Lemcke, T., Gambacorti-Passerini, C. & Kunick, C. (2010). Eur. J. Med. Chem. 45, 2919–2927. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chantrapromma, S., Fun, H.-K., Suwunwong, T., Padaki, M. & Isloor, A. M. (2010). Acta Cryst. E66, o79–o80. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
El-Sayed, H. A., Moustafa, A. H., Haikal, A. E.-F. Z., Abu-El-Halawa, R. & Ashry, E. S. H. E. (2011). Eur. J. Med. Chem. 46, 2948–2954. Web of Science CAS PubMed Google Scholar
Ji, J., Bunnelle, W. H., Anderson, D. J., Faltynek, C., Dyhring, T., Ahring, P. K., Rueter, L. E., Curzon, P., Buckley, M. J., Marsh, K. C., Kempf-Grote, A. & Meyer, M. D. (2007). Biochem. Pharmacol. 74, 1253–1262. Web of Science CrossRef PubMed CAS Google Scholar
Kim, K.-R., Rhee, S.-D., Kim, H. Y., Jung, W. H., Yang, S.-D., Kim, S. S., Ahn, J. H. & Cheon, H. G. (2005). Eur. J. Pharmacol. 518, 63–70. Web of Science CrossRef PubMed CAS Google Scholar
Koner, R. R., Sinha, S., Kumar, S., Nandi, C. K. & Ghosh, S. (2012). Tetrahedron Lett. 53, 2302–2307. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Chem. Pap. 65, 890–897. Web of Science CSD CrossRef CAS Google Scholar
Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o2812–o2813. CSD CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhou, W.-J., Ji, S.-J. & Shen, Z.-L. (2006). J. Organomet. Chem. 691, 1356–1360. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
3-Cyanopyridine derivatives have been reported for their wide range of applications such as in antimicrobial, analgesic, anti-hyperglycemic, antiproliferative and antitumor activities (Brandt et al., 2010; El-Sayed et al., 2011; Ji et al., 2007; Kim et al., 2005), as well as in usage as fluorescence materials (Koner et al., 2012). There are several methods to synthesize substituted 3-cyanopyridine derivatives including by condensation of α,β-unsaturated ketones and malononitrile (Al-Jaber et al., 2012; Zhou et al., 2006). Our research is aimed at the synthesis and preliminary fluorescent and antibacterial screening of the 3-cyanopyridine derivatives. The title compound (I) was synthesized and was found to exhibit fluorescence property which will be reported elsewhere together with the other related compounds. Herein the crystal structure of (I) was reported.
The title compound (I), C21H19N3O4 is a non-planar molecule (Fig. 1) in which the 3-cyano-substituted pyridine ring is approximately co-planar with the unsubstituted pyridine ring and inclined to the 2,4,5-trimethoxy-substituted ring with dihedral angles of 2.35 (5) and 41.60 (5)°, respectively. The dihedral angle between the unsubstituted pyridine and benzene rings is 39.84 (5)°. For the 2,4,5-trimethoxyphenyl moiety, the two substituted methoxy groups at ortho and meta positions are slightly twisted with the attached benzene ring with torsion angles C19–O2–C12–C13 = -11.45 (15)° and C21–O4–C15–C16 = -8.11 (16)° whereas the para methoxy group is essentially co-planar with a dihedral angle of C20–O3–C14–C13 = -0.80 (15)°. In addition, the methoxy group of the 3-cyanopyridine group is also essentially co-planar with the pyridine ring as indicated by the torsion angle C17–O1–C10–N2 = 6.18 (14)°. The bond distances agree with the literature values (Allen et al., 1987) and are comparable with those found in the related structures (Chantrapromma et al., 2010; Suwunwong et al., 2012).
In the crystal (Fig. 2), molecules related by 21 screw axes are linked by weak C—H···N interactions (Table 1) to form helical chains. The crystal is further stabilized by weak C—H···π interactions (Table 1) and π–π interaction with the Cg1···Cg2iii distance of 3.6448 (6) Å (iii = -x, 1 - y, -z); Cg1 and Cg2 are the centroids of N1/C1–C5 and N2/C6–C10 pyridine rings, respectively.