metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­carbonyl­chlorido­(6′,7′-di­hydro-5′H-spiro­[cyclo­pentane-1,6′-dipyrido[3,2-d:2′,3′-f][1,3]diazepine]-κ2N1,N11)rhenium(I)

aDepartment of Chemical & Biological Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, England
*Correspondence e-mail: l.p.harding@hud.ac.uk

(Received 7 August 2013; accepted 16 August 2013; online 4 September 2013)

In the title compound, [ReCl(C15H16N4)(CO)3], the ReI ion is coordinated in a distorted octa­hedral geometry by one Cl atom, two N atoms of the bidentate ligand and three carbonyl groups. The cyclo­pentane group is orientated in a transoid fashion with respect to the chloride ligand. The dihedral angle between the pryridine rings is 10.91 (12)°. In the crystal, N—H⋯Cl hydrogen bonds link complex mol­ecules, forming a two-dimensional network parallel to (001).

Related literature

For a review of the photophysical properties of Re–polypyridyl complexes, see: Coleman et al. (2008[Coleman, A., Brennan, C., Vos, J. G. & Pryce, M. T. (2008). Coord. Chem. Rev. 252, 2585-2595.]). For the synthesis of [Re(3,3′-di­amino-2,2′-bi­pyridine)(CO)3Cl] and for the preparation of oxo-steroid derivatives of [Re(3,3′-di­amino-2,2′-bi­pyridine)(CO)3Cl], see: Bullock et al. (2012[Bullock, S., Hallett, A. J., Harding, L. P., Higginson, J. J., Piela, S. A. F., Pope, S. J. A. & Rice, C. R. (2012). Dalton Trans. 41, 14690-14696.]). For the reaction of [Re(3,3′-di­amino-2,2′-bi­pyridine)(CO)3Cl] with ketones, see: Clayton et al. (2008[Clayton, H. J., Harding, L. P., Irvine, J. P., Jeffery, J. C., Riis-Johannessen, T., Laws, A. P., Rice, C. R. & Whitehead, M. (2008). Chem. Commun. pp. 108-110.]). For the structure of the cyclo­hexane analog of the title compound, see: Clegg et al. (2013[Clegg, O. R., Harding, L. P., Miller, J. W. & Rice, C. R. (2013). Acta Cryst. E69, m527.]).

[Scheme 1]

Experimental

Crystal data
  • [ReCl(C15H16N4)(CO)3]

  • Mr = 558.00

  • Orthorhombic, P b c a

  • a = 12.1162 (5) Å

  • b = 11.9638 (5) Å

  • c = 24.9181 (9) Å

  • V = 3612.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.90 mm−1

  • T = 150 K

  • 0.50 × 0.50 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.16, Tmax = 0.34

  • 45382 measured reflections

  • 10757 independent reflections

  • 7941 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.075

  • S = 1.04

  • 10757 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 2.28 e Å−3

  • Δρmin = −5.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl1i 0.88 2.53 3.363 (3) 158
N4—H4⋯Cl1ii 0.88 2.65 3.419 (2) 147
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title complex was prepared as part of a larger study into conjugation of [Re(3,3'-diamino-2,2'-bipyridine)(CO)3Cl] with oxo-steroids to form luminescent derivatives (Bullock et al. 2012). These steroids contain a cyclopentyl ring (ring D) with a ketone group in the 17-position; therefore, cyclopentanone was used as a model compound to examine the potential reactivity of such steroids with the rhenium complex. The photophysical properties of Re-polypyridyl complexes have been studied (Coleman et al., 2008) as well as the reaction of [Re(3,3'-diamino-2,2'-bipyridine)(CO)3Cl] with ketones (Clayton et al., 2008).

Single-crystal X-ray analysis of the product gave the structure shown in Fig. 1. The rhenium centre adopts a distorted octahedral coordination geometry and is coordinated by two nitrogen atoms from 3,3'-diamino-2,2'-bipyridyl and two carbonyl ligands in the equatorial positions (Re—N distances 2.158 (2) - 2.169 (2) Å, Re—C distances 1.924 (3) - 1.925 (3) Å). Carbonyl and chloride ligands occupy the axial positions (Re—C distance 1.891 (3) Å, Re—Cl distance 2.5046 (6) Å). The cyclopentyl ring is orientated in a trans-oid fashion with respect to the chloride ligand on the rhenium centre. In the crystal, N—H···O hydrogen bonds (see, Table 1) link complex molecules to form a two-dimensional network parallel (001).

A similar compound has been prepared using cyclohexanone instead of cyclopentanone. This compound is essentially isostructural with the compound reported here (Clegg et al. 2013).

Related literature top

For a review of the photophysical properties of Re–polypyridyl complexes, see: Coleman et al. (2008). For the synthesis of [Re(3,3'-diamino-2,2'-bipyridine)(CO)3Cl] and for the preparation of oxo-steroid derivatives of [Re(3,3'-diamino-2,2'-bipyridine)(CO)3Cl], see: Bullock et al. (2012). For the reaction of [Re(3,3'-diamino-2,2'-bipyridine)(CO)3Cl] with ketones, see: Clayton et al. (2008). For the structure of the cyclohexane analog of the title compound, see: Clegg et al. (2013).

Experimental top

To a solution of [Re(3,3'-diamino-2,2'-bipyridine)(CO)3Cl] in dichloromethane was added cyclopentanone (10 µL, ca 2 eq.) and a few grains of camphorsulfonic acid. The solution was stirred at room temperature for 2 h. The resulting precipitate was filtered in vacuo, washed with dichloromethane and dried, affording the product as a yellow solid. Slow evaporation of an acetonitrile solution of the complex gave yellow crystals suitable for X-ray analysis.

Refinement top

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on sp2 and sp3 carbons were placed in calculated positions (C—H = 0.95 - 0.99Å) and refined with riding constraints and with isotropic displacement parameters 1.2 x their parent carbon atoms. H atoms on the nitrogen atoms were treated similarly with N—H = 0.88Å.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids shown for non-H atoms at the 50% probability level.
Tricarbonylchlorido(6',7'-dihydro-5'H-spiro[cyclopentane-1,6'-dipyrido[3,2-d:2',3'-f][1,3]diazepine]-κ2N1,N11)rhenium(I) top
Crystal data top
[ReCl(C15H16N4)(CO)3]Dx = 2.052 Mg m3
Mr = 558.00Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9921 reflections
a = 12.1162 (5) Åθ = 2.9–39.3°
b = 11.9638 (5) ŵ = 6.90 mm1
c = 24.9181 (9) ÅT = 150 K
V = 3612.0 (2) Å3Block, yellow
Z = 80.50 × 0.50 × 0.20 mm
F(000) = 2144
Data collection top
Bruker APEXII CCD
diffractometer
10757 independent reflections
Graphite monochromator7941 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.053
ϕ and ω scansθmax = 39.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2120
Tmin = 0.16, Tmax = 0.34k = 2113
45382 measured reflectionsl = 4441
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0093P)2 + 8.4209P]
where P = (Fo2 + 2Fc2)/3
10757 reflections(Δ/σ)max = 0.002
244 parametersΔρmax = 2.28 e Å3
0 restraintsΔρmin = 5.29 e Å3
Crystal data top
[ReCl(C15H16N4)(CO)3]V = 3612.0 (2) Å3
Mr = 558.00Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.1162 (5) ŵ = 6.90 mm1
b = 11.9638 (5) ÅT = 150 K
c = 24.9181 (9) Å0.50 × 0.50 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
10757 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7941 reflections with I > 2σ(I)
Tmin = 0.16, Tmax = 0.34Rint = 0.053
45382 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.04Δρmax = 2.28 e Å3
10757 reflectionsΔρmin = 5.29 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.454601 (7)0.268496 (9)0.14683 (4)0.01301 (3)
Cl10.61326 (5)0.24039 (6)0.08383 (3)0.01986 (12)
N10.39870 (16)0.38723 (19)0.08695 (8)0.0143 (4)
N20.53943 (17)0.4231 (2)0.16399 (9)0.0156 (4)
N30.4418 (2)0.6806 (2)0.04288 (10)0.0216 (5)
H3A0.41750.71690.01450.026*
N40.61142 (17)0.6801 (2)0.09197 (9)0.0170 (4)
H40.67350.69570.07520.02*
O10.55829 (19)0.1241 (2)0.23572 (10)0.0301 (5)
O20.3300 (2)0.0584 (2)0.10992 (12)0.0425 (7)
O30.2621 (2)0.3006 (3)0.22352 (12)0.0467 (7)
C10.3219 (2)0.3577 (2)0.05113 (10)0.0177 (5)
H10.28980.28540.05330.021*
C20.2877 (2)0.4305 (3)0.01061 (10)0.0191 (5)
H20.23510.40730.01540.023*
C30.3314 (2)0.5352 (3)0.00911 (10)0.0182 (5)
H30.30840.58540.01820.022*
C40.41063 (19)0.5711 (2)0.04738 (9)0.0149 (4)
C50.44682 (18)0.4917 (2)0.08588 (9)0.0131 (4)
C60.53279 (19)0.5069 (2)0.12741 (9)0.0133 (4)
C70.60801 (19)0.5965 (2)0.13002 (10)0.0153 (4)
C80.6856 (2)0.5981 (3)0.17185 (12)0.0211 (5)
H80.7370.65780.17420.025*
C90.6876 (2)0.5138 (3)0.20945 (12)0.0242 (6)
H90.73930.5150.23810.029*
C100.6127 (2)0.4277 (3)0.20445 (11)0.0219 (5)
H100.61290.36970.23050.026*
C110.5101 (2)0.7430 (2)0.07960 (11)0.0173 (5)
C120.5445 (3)0.8552 (3)0.05556 (13)0.0249 (6)
H12A0.4810.89270.03820.03*
H12B0.6040.84530.02870.03*
C130.5857 (3)0.9228 (3)0.10410 (14)0.0303 (7)
H13A0.56681.00290.10.036*
H13B0.66670.91570.1080.036*
C140.5256 (3)0.8717 (3)0.15337 (13)0.0319 (7)
H14A0.57960.840.1790.038*
H14B0.48150.92950.17210.038*
C150.4503 (2)0.7797 (3)0.13103 (13)0.0228 (5)
H15A0.37580.80910.12290.027*
H15B0.44350.71680.15670.027*
C160.5196 (2)0.1764 (3)0.20172 (11)0.0189 (5)
C170.3787 (2)0.1363 (3)0.12295 (12)0.0228 (5)
C180.3353 (2)0.2923 (3)0.19437 (12)0.0238 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01383 (4)0.01096 (5)0.01425 (4)0.00013 (3)0.00075 (3)0.00102 (3)
Cl10.0199 (2)0.0217 (3)0.0180 (2)0.0056 (2)0.00425 (19)0.0036 (2)
N10.0139 (7)0.0123 (10)0.0166 (8)0.0004 (7)0.0027 (6)0.0025 (7)
N20.0174 (8)0.0125 (10)0.0170 (8)0.0000 (7)0.0035 (7)0.0010 (7)
N30.0285 (11)0.0178 (13)0.0183 (9)0.0037 (9)0.0082 (8)0.0047 (8)
N40.0163 (8)0.0146 (11)0.0202 (9)0.0006 (7)0.0012 (7)0.0025 (8)
O10.0363 (12)0.0265 (13)0.0275 (11)0.0024 (9)0.0035 (9)0.0085 (10)
O20.0472 (15)0.0211 (14)0.0590 (18)0.0087 (11)0.0202 (13)0.0053 (12)
O30.0349 (13)0.058 (2)0.0469 (16)0.0043 (13)0.0198 (12)0.0117 (15)
C10.0174 (9)0.0164 (13)0.0193 (10)0.0012 (8)0.0041 (8)0.0063 (9)
C20.0177 (10)0.0242 (15)0.0156 (10)0.0013 (9)0.0036 (8)0.0039 (9)
C30.0194 (10)0.0227 (15)0.0126 (9)0.0005 (9)0.0032 (8)0.0007 (9)
C40.0163 (9)0.0160 (13)0.0125 (9)0.0004 (8)0.0002 (7)0.0004 (8)
C50.0143 (8)0.0128 (11)0.0121 (8)0.0008 (7)0.0019 (7)0.0009 (7)
C60.0166 (9)0.0100 (11)0.0132 (9)0.0001 (7)0.0015 (7)0.0010 (7)
C70.0157 (9)0.0118 (12)0.0183 (10)0.0010 (8)0.0021 (8)0.0019 (8)
C80.0201 (10)0.0182 (14)0.0250 (12)0.0054 (9)0.0067 (9)0.0023 (10)
C90.0241 (12)0.0233 (16)0.0252 (13)0.0047 (10)0.0120 (10)0.0025 (11)
C100.0249 (12)0.0205 (15)0.0205 (11)0.0004 (10)0.0085 (9)0.0022 (10)
C110.0217 (10)0.0126 (13)0.0176 (10)0.0001 (9)0.0019 (8)0.0020 (8)
C120.0297 (13)0.0180 (15)0.0271 (13)0.0026 (11)0.0042 (11)0.0073 (11)
C130.0381 (17)0.0156 (15)0.0373 (17)0.0025 (12)0.0048 (13)0.0031 (13)
C140.0504 (19)0.0193 (16)0.0259 (15)0.0032 (14)0.0048 (13)0.0067 (12)
C150.0252 (12)0.0195 (16)0.0237 (12)0.0053 (10)0.0018 (9)0.0016 (10)
C160.0207 (10)0.0160 (14)0.0200 (11)0.0019 (9)0.0019 (8)0.0006 (9)
C170.0267 (12)0.0186 (15)0.0232 (12)0.0020 (10)0.0037 (10)0.0000 (10)
C180.0208 (11)0.0261 (17)0.0245 (12)0.0018 (10)0.0032 (9)0.0062 (11)
Geometric parameters (Å, º) top
Re1—C181.891 (3)C3—H30.95
Re1—C171.924 (3)C4—C51.419 (4)
Re1—C161.925 (3)C5—C61.479 (3)
Re1—N22.158 (2)C6—C71.409 (4)
Re1—N12.169 (2)C7—C81.404 (4)
Re1—Cl12.5046 (6)C8—C91.377 (4)
N1—C11.337 (3)C8—H80.95
N1—C51.380 (3)C9—C101.378 (4)
N2—C101.345 (3)C9—H90.95
N2—C61.358 (3)C10—H100.95
N3—C41.368 (4)C11—C121.528 (4)
N3—C111.442 (4)C11—C151.536 (4)
N3—H3A0.88C12—C131.538 (5)
N4—C71.379 (4)C12—H12A0.99
N4—C111.473 (3)C12—H12B0.99
N4—H40.88C13—C141.553 (5)
O1—C161.153 (4)C13—H13A0.99
O2—C171.149 (4)C13—H13B0.99
O3—C181.150 (4)C14—C151.535 (5)
C1—C21.396 (4)C14—H14A0.99
C1—H10.95C14—H14B0.99
C2—C31.361 (4)C15—H15A0.99
C2—H20.95C15—H15B0.99
C3—C41.420 (3)
C18—Re1—C1787.23 (13)N4—C7—C8118.7 (2)
C18—Re1—C1687.36 (13)N4—C7—C6122.7 (2)
C17—Re1—C1686.85 (12)C8—C7—C6118.6 (2)
C18—Re1—N296.39 (12)C9—C8—C7120.5 (3)
C17—Re1—N2173.32 (11)C9—C8—H8119.8
C16—Re1—N298.89 (10)C7—C8—H8119.8
C18—Re1—N195.38 (11)C8—C9—C10118.3 (2)
C17—Re1—N1100.15 (11)C8—C9—H9120.8
C16—Re1—N1172.58 (10)C10—C9—H9120.8
N2—Re1—N173.97 (8)N2—C10—C9122.2 (3)
C18—Re1—Cl1179.06 (11)N2—C10—H10118.9
C17—Re1—Cl193.60 (9)C9—C10—H10118.9
C16—Re1—Cl193.12 (8)N3—C11—N4110.3 (2)
N2—Re1—Cl182.74 (6)N3—C11—C12111.3 (2)
N1—Re1—Cl184.05 (6)N4—C11—C12107.7 (2)
C1—N1—C5121.4 (2)N3—C11—C15114.0 (2)
C1—N1—Re1120.25 (19)N4—C11—C15111.4 (2)
C5—N1—Re1118.36 (15)C12—C11—C15101.8 (2)
C10—N2—C6120.8 (2)C11—C12—C13104.0 (2)
C10—N2—Re1119.9 (2)C11—C12—H12A111.0
C6—N2—Re1118.13 (16)C13—C12—H12A111.0
C4—N3—C11127.0 (2)C11—C12—H12B111.0
C4—N3—H3A116.5C13—C12—H12B111.0
C11—N3—H3A116.5H12A—C12—H12B109.0
C7—N4—C11119.3 (2)C12—C13—C14105.2 (3)
C7—N4—H4120.3C12—C13—H13A110.7
C11—N4—H4120.3C14—C13—H13A110.7
N1—C1—C2121.6 (3)C12—C13—H13B110.7
N1—C1—H1119.2C14—C13—H13B110.7
C2—C1—H1119.2H13A—C13—H13B108.8
C3—C2—C1118.6 (2)C15—C14—C13105.9 (3)
C3—C2—H2120.7C15—C14—H14A110.5
C1—C2—H2120.7C13—C14—H14A110.5
C2—C3—C4121.6 (2)C15—C14—H14B110.5
C2—C3—H3119.2C13—C14—H14B110.5
C4—C3—H3119.2H14A—C14—H14B108.7
N3—C4—C5127.7 (2)C14—C15—C11103.1 (2)
N3—C4—C3114.9 (2)C14—C15—H15A111.1
C5—C4—C3117.4 (2)C11—C15—H15A111.1
N1—C5—C4119.3 (2)C14—C15—H15B111.1
N1—C5—C6113.3 (2)C11—C15—H15B111.1
C4—C5—C6127.5 (2)H15A—C15—H15B109.1
N2—C6—C7119.5 (2)O1—C16—Re1177.8 (3)
N2—C6—C5114.9 (2)O2—C17—Re1177.4 (3)
C7—C6—C5125.5 (2)O3—C18—Re1176.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl1i0.882.533.363 (3)158
N4—H4···Cl1ii0.882.653.419 (2)147
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl1i0.882.533.363 (3)158
N4—H4···Cl1ii0.882.653.419 (2)147
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y+1/2, z.
 

Acknowledgements

The authors wish to thank the University of Huddersfield for financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBullock, S., Hallett, A. J., Harding, L. P., Higginson, J. J., Piela, S. A. F., Pope, S. J. A. & Rice, C. R. (2012). Dalton Trans. 41, 14690–14696.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationClayton, H. J., Harding, L. P., Irvine, J. P., Jeffery, J. C., Riis-Johannessen, T., Laws, A. P., Rice, C. R. & Whitehead, M. (2008). Chem. Commun. pp. 108–110.  Web of Science CSD CrossRef Google Scholar
First citationClegg, O. R., Harding, L. P., Miller, J. W. & Rice, C. R. (2013). Acta Cryst. E69, m527.  CSD CrossRef IUCr Journals Google Scholar
First citationColeman, A., Brennan, C., Vos, J. G. & Pryce, M. T. (2008). Coord. Chem. Rev. 252, 2585–2595.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds