metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ5-(4-meth­­oxy­benzene­sulfonato)-sodium]

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bFaculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 29 August 2013; accepted 19 September 2013; online 25 September 2013)

In the title complex, [Na(C7H7O4S)]n, the NaI ion is coord­inated in a slightly distorted penta­gonal-bipyramidal environment by seven O atoms [Na—O = 2.3198 (16)–2.5585 (17) Å]. The 4-methoxybenzenesulfonate anions act as bis-chelating and bridging ligands, forming a two-dimensional polymer parallel to (001), which is further linked into a three-dimensional network by weak C—H⋯O hydrogen bonds.

Related literature

For the appplications of aromatic sulfonic acids, see: Babu et al. (2003[Babu, K. S., Raju, B. C., Srinivas, P. V., Rao, A. S., Kumar, S. P. & Rao, J. M. (2003). Chem. Lett. 32, 704-705.]); Chanawanno et al. (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T. & Kanjana-Opas, A. (2010). Lat. Am. J. Pharm. 29, 1166-1170.]); King (1991[King, J. F. (1991). The Chemistry of Sulphonic Acids, Esters and their Derivatives, edited by S. Patai & Z. Rappoport, pp. 249-258. Chichester: Wiley.]); Ruanwas et al. (2010[Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819-824.]); Schöngut et al. (2011[Schöngut, M., Grof, Z. & Štěpánek, F. (2011). Ind. Eng. Chem. Res. 50, 11576-11584.]); Siril et al. (2007[Siril, P. F., Davison, A. D., Randhawa, J. K. & Brown, D. R. (2007). J. Mol. Catal. A Chem. 267, 72-78.]); Taylor et al. (2006[Taylor, G. E., Gosling, M. & Pearce, A. (2006). J. Chromatogr. A, 1119, 231-237.]). For a related structure, see: Smith et al. (2004[Smith, G., Wermuth, U. D., Young, D. J. & Healy, P. C. (2004). Acta Cryst. E60, m836-m838.]). For standard bond-lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C7H7O4S)]

  • Mr = 210.19

  • Orthorhombic, P b c a

  • a = 8.3121 (8) Å

  • b = 6.0287 (6) Å

  • c = 35.930 (3) Å

  • V = 1800.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 293 K

  • 0.54 × 0.46 × 0.22 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.819, Tmax = 0.920

  • 8793 measured reflections

  • 1769 independent reflections

  • 1720 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.20

  • 1769 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1i 0.93 2.37 3.282 (3) 165
C7—H7A⋯O4ii 0.96 2.56 3.407 (4) 148
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Aromatic sulfonic acids are one of several useful sulfonic acids which are frequently used as chemical reagents (King, 1991) such as reagents for phenol preparation. They are also widely used as acid catalysts in organic reactions (Siril et al., 2007) such as for the deprotection of O-allylphenols (Babu et al., 2003). Salts of benzenesulfonic acid exhibit pharmaceutical and biological activities (Chanawanno et al., 2010; Taylor et al., 2006), and are also used for nonlinear optical material preparations (Ruanwas et al., 2010) and as raw materials in detergent manufacture (Schöngut et al., 2011). Based on these significant roles played by aromatic sulfonic acids, we have synthesized the sodium salt of 4-methoxybenzenesulfonate and herein we report the crystal structure of the title compound (I).

Within the title coordination polymer there are tetranuclear clusters containing four NaI ions and four 4-methoxybenzenesulfonate ligands (Fig. 1). All three O atoms of the 4-methoxybenzenesulfonate ligands are involved in coordination to the NaI ion. The coordination modes of the sulfonate unit are chelating bidentate and bridging monodentate linking two NaI ions. Each NaI is in a distorted pentagonal-bipyramidal geometry (Fig. 2) with three pairs of chelating O atoms from the three bidentate sulfonate groups and one bridging O atom from another monodentate sulfonate group which is also coordinated to a symmetry related NaI ion. The distance of the NaI ion from the mean plane of the O5 equatorial atoms is 0.127 Å. Bond lengths (Allen et al., 1987) and angles in the ligand are in normal ranges. The Na—O bond distances in the equatorial plane range from 2.3198 (16) - 2.5585 (17) Å, and the two axial Na—O bond distances are 2.3734 (17) and 2.4637 (16) Å. The O—Na—O bond angles in the equatorial plane are in the range 56.76 (5)–85.88 (6) ° and the axial angle is 158.12 (7)°. These values are comparable to those reported for another Na—O donor complex (Smith et al., 2004). The overall structure is a two-dimensional polymer parallel to (001) (Fig. 3). In addition, weak C—H···O hydrogen bonds (Table 1) link the polymer into a three-dimensional network (Fig. 4).

Related literature top

For the appplications of aromatic sulfonic acids, see: Babu et al. (2003); Chanawanno et al. (2010); King (1991); Ruanwas et al. (2010); Schöngut et al. (2011); Siril et al. (2007); Taylor et al. (2006). For a related structure, see: Smith et al. (2004). For standard bond-lengths, see Allen et al. (1987).

Experimental top

To a solution of 4-methoxybenzenesulfonyl chloride (3.00 g, 14.50 mmol) in hot methanol, sodium hydroxide (0.58 g, 14.50 mmol) was added. The suspension was stirred for 1 h. The reaction mixture was then cooled to the room temperature and the resulting white solid formed was filtered off and washed with CH3OH. Colorless needle-shaped single crystals suitable for X-ray structure determination were recrystallized from a solution of (I) in CH3OH by slow evaporation at room temperature over a few days.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and 0.96 for CH3. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Part of the polymeric structure of (I) showing a tetranuclear cluster with 50% probability displacement ellipsoids. Atoms labelled with the suffix A, B, and C are generated by the symmetry operations (x + 1/2, -y + 1/2, -z + 2), (-x + 1, -y, -z + 2) and (-x + 1/2, y + 1/2, z), respectively.
[Figure 2] Fig. 2. Part of the polymeric structure of (I) showing the coordination environment of NaI ions in (I).
[Figure 3] Fig. 3. The two-dimensional polymer of (I) viewed along the b axis. Hydrogen bonds are drawn as dashed lines.
[Figure 4] Fig. 4. The crystal packing of (I), viewed along the c axis.
Poly[µ5-(4-methoxybenzenesulfonato)-sodium] top
Crystal data top
[Na(C7H7O4S)]F(000) = 864
Mr = 210.19Dx = 1.551 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1769 reflections
a = 8.3121 (8) Åθ = 2.3–26.0°
b = 6.0287 (6) ŵ = 0.38 mm1
c = 35.930 (3) ÅT = 293 K
V = 1800.5 (3) Å3Needle, colorless
Z = 80.54 × 0.46 × 0.22 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
1769 independent reflections
Radiation source: sealed tube1720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 810
Tmin = 0.819, Tmax = 0.920k = 77
8793 measured reflectionsl = 3744
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0372P)2 + 1.6253P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.001
1769 reflectionsΔρmax = 0.28 e Å3
119 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (3)
Crystal data top
[Na(C7H7O4S)]V = 1800.5 (3) Å3
Mr = 210.19Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.3121 (8) ŵ = 0.38 mm1
b = 6.0287 (6) ÅT = 293 K
c = 35.930 (3) Å0.54 × 0.46 × 0.22 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
1769 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1720 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.920Rint = 0.022
8793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.20Δρmax = 0.28 e Å3
1769 reflectionsΔρmin = 0.28 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50598 (6)0.11687 (8)0.950009 (13)0.0257 (2)
O10.67113 (17)0.0690 (2)0.96029 (4)0.0328 (4)
O20.39805 (19)0.0717 (3)0.95165 (4)0.0386 (4)
O30.44483 (18)0.3026 (2)0.97215 (4)0.0324 (4)
O40.4881 (4)0.4270 (4)0.79459 (6)0.0843 (8)
C10.5047 (2)0.2071 (4)0.90315 (6)0.0300 (5)
C20.4151 (4)0.0971 (4)0.87675 (7)0.0483 (6)
H2A0.35700.02910.88310.058*
C30.4122 (4)0.1762 (5)0.84065 (7)0.0603 (8)
H3A0.35110.10360.82270.072*
C40.4991 (4)0.3615 (5)0.83113 (7)0.0526 (7)
C50.5888 (4)0.4721 (5)0.85733 (7)0.0573 (8)
H5A0.64770.59740.85080.069*
C60.5902 (3)0.3942 (4)0.89371 (7)0.0482 (7)
H6A0.64930.46880.91180.058*
C70.5762 (7)0.6163 (7)0.78319 (10)0.1151 (19)
H7A0.55750.64310.75720.173*
H7B0.68880.59130.78730.173*
H7C0.54180.74280.79730.173*
Na0.18295 (10)0.12772 (12)0.98998 (2)0.0314 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0260 (3)0.0239 (3)0.0273 (3)0.00035 (18)0.00168 (17)0.00130 (18)
O10.0280 (7)0.0355 (8)0.0349 (8)0.0061 (6)0.0021 (6)0.0032 (6)
O20.0435 (9)0.0347 (8)0.0376 (8)0.0131 (7)0.0013 (7)0.0018 (6)
O30.0333 (8)0.0311 (8)0.0330 (8)0.0078 (6)0.0023 (6)0.0011 (6)
O40.143 (2)0.0803 (16)0.0299 (10)0.0139 (15)0.0124 (11)0.0134 (10)
C10.0332 (11)0.0318 (11)0.0250 (10)0.0001 (8)0.0003 (8)0.0022 (8)
C20.0630 (17)0.0453 (13)0.0367 (12)0.0158 (12)0.0037 (11)0.0029 (10)
C30.086 (2)0.0616 (17)0.0337 (13)0.0154 (16)0.0139 (13)0.0076 (12)
C40.077 (2)0.0512 (16)0.0294 (13)0.0020 (14)0.0036 (11)0.0044 (11)
C50.078 (2)0.0531 (15)0.0404 (13)0.0231 (15)0.0043 (13)0.0139 (12)
C60.0598 (16)0.0497 (14)0.0351 (12)0.0218 (12)0.0102 (11)0.0076 (10)
C70.210 (6)0.091 (3)0.0443 (19)0.023 (3)0.002 (3)0.0328 (19)
Na0.0295 (4)0.0227 (4)0.0420 (5)0.0004 (3)0.0039 (3)0.0000 (3)
Geometric parameters (Å, º) top
S1—O21.4495 (16)C3—C41.374 (4)
S1—O11.4506 (15)C3—H3A0.9300
S1—O31.4644 (15)C4—C51.374 (4)
S1—C11.769 (2)C5—C61.389 (3)
S1—Nai3.0304 (10)C5—H5A0.9300
S1—Na3.0457 (10)C6—H6A0.9300
O1—Naii2.4637 (16)C7—H7A0.9600
O1—Nai2.5585 (17)C7—H7B0.9600
O2—Naiii2.3734 (17)C7—H7C0.9600
O2—Na2.5572 (18)Na—O3iii2.3198 (16)
O3—Naiv2.3198 (16)Na—O2iv2.3734 (17)
O3—Nai2.4384 (17)Na—O3v2.4384 (17)
O3—Na2.5021 (17)Na—O1ii2.4637 (16)
O4—C41.374 (3)Na—O1v2.5585 (17)
O4—C71.416 (5)Na—S1v3.0304 (9)
C1—C61.376 (3)Na—Naiv3.2138 (6)
C1—C21.377 (3)Na—Naiii3.2138 (6)
C2—C31.382 (4)Na—Navi3.4843 (16)
C2—H2A0.9300
O2—S1—O1114.78 (10)O2iv—Na—O377.09 (6)
O2—S1—O3111.27 (9)O3v—Na—O3140.94 (4)
O1—S1—O3110.02 (9)O1ii—Na—O387.72 (6)
O2—S1—C1106.03 (10)O3iii—Na—O276.94 (6)
O1—S1—C1108.00 (9)O2iv—Na—O2104.17 (7)
O3—S1—C1106.25 (9)O3v—Na—O2161.64 (6)
O2—S1—Nai132.07 (7)O1ii—Na—O279.63 (5)
O1—S1—Nai57.36 (6)O3—Na—O256.76 (5)
O3—S1—Nai52.67 (6)O3iii—Na—O1v141.19 (6)
C1—S1—Nai121.58 (8)O2iv—Na—O1v81.30 (6)
O2—S1—Na56.77 (7)O3v—Na—O1v57.04 (5)
O1—S1—Na135.93 (6)O1ii—Na—O1v81.74 (5)
O3—S1—Na54.65 (6)O3—Na—O1v84.91 (5)
C1—S1—Na115.90 (7)O2—Na—O1v137.65 (6)
Nai—S1—Na94.675 (17)O3iii—Na—S1v113.81 (5)
S1—O1—Naii138.27 (9)O2iv—Na—S1v83.53 (4)
S1—O1—Nai94.12 (7)O3v—Na—S1v28.52 (4)
Naii—O1—Nai79.55 (5)O1ii—Na—S1v88.14 (4)
S1—O2—Naiii142.94 (10)O3—Na—S1v112.98 (4)
S1—O2—Na94.92 (8)O2—Na—S1v164.05 (5)
Naiii—O2—Na81.26 (5)O1v—Na—S1v28.52 (3)
S1—O3—Naiv162.75 (9)O3iii—Na—S1104.79 (5)
S1—O3—Nai98.81 (8)O2iv—Na—S189.59 (5)
Naiv—O3—Nai94.12 (6)O3v—Na—S1169.25 (5)
S1—O3—Na96.83 (8)O1ii—Na—S184.13 (4)
Naiv—O3—Na83.51 (5)O3—Na—S128.52 (3)
Nai—O3—Na129.48 (6)O2—Na—S128.31 (4)
C4—O4—C7118.3 (3)O1v—Na—S1112.25 (4)
C6—C1—C2120.3 (2)S1v—Na—S1140.75 (3)
C6—C1—S1118.91 (17)O3iii—Na—Naiv162.05 (5)
C2—C1—S1120.73 (18)O2iv—Na—Naiv51.86 (4)
C1—C2—C3119.3 (2)O3v—Na—Naiv96.89 (4)
C1—C2—H2A120.3O1ii—Na—Naiv106.30 (5)
C3—C2—H2A120.3O3—Na—Naiv45.82 (4)
C4—C3—C2120.3 (2)O2—Na—Naiv101.45 (5)
C4—C3—H3A119.8O1v—Na—Naiv48.93 (4)
C2—C3—H3A119.8S1v—Na—Naiv72.048 (19)
C3—C4—C5120.6 (2)S1—Na—Naiv73.41 (3)
C3—C4—O4115.9 (3)O3iii—Na—Naiii50.67 (4)
C5—C4—O4123.4 (3)O2iv—Na—Naiii144.53 (4)
C4—C5—C6119.0 (2)O3v—Na—Naiii116.30 (4)
C4—C5—H5A120.5O1ii—Na—Naiii51.52 (4)
C6—C5—H5A120.5O3—Na—Naiii95.36 (5)
C1—C6—C5120.3 (2)O2—Na—Naiii46.88 (4)
C1—C6—H6A119.8O1v—Na—Naiii133.13 (4)
C5—C6—H6A119.8S1v—Na—Naiii130.16 (2)
O4—C7—H7A109.5S1—Na—Naiii70.98 (3)
O4—C7—H7B109.5Naiv—Na—Naiii139.42 (5)
H7A—C7—H7B109.5O3iii—Na—Navi44.27 (4)
O4—C7—H7C109.5O2iv—Na—Navi102.10 (6)
H7A—C7—H7C109.5O3v—Na—Navi41.61 (4)
H7B—C7—H7C109.5O1ii—Na—Navi93.85 (5)
O3iii—Na—O2iv110.78 (7)O3—Na—Navi176.92 (6)
O3iii—Na—O3v85.88 (6)O2—Na—Navi120.91 (5)
O2iv—Na—O3v87.82 (6)O1v—Na—Navi97.94 (5)
O3iii—Na—O1ii91.09 (6)S1v—Na—Navi69.75 (3)
O2iv—Na—O1ii158.12 (7)S1—Na—Navi149.03 (4)
O3v—Na—O1ii94.46 (6)Naiv—Na—Navi135.83 (4)
O3iii—Na—O3133.13 (7)Naiii—Na—Navi83.58 (3)
O2—S1—O1—Naii46.59 (17)Nai—O3—Na—Naiv90.00 (8)
O3—S1—O1—Naii79.82 (15)S1—O3—Na—Naiii30.86 (7)
C1—S1—O1—Naii164.62 (13)Naiv—O3—Na—Naiii166.50 (4)
Nai—S1—O1—Naii78.90 (12)Nai—O3—Na—Naiii76.51 (7)
Na—S1—O1—Naii20.4 (2)S1—O2—Na—O3iii169.52 (8)
O2—S1—O1—Nai125.50 (8)Naiii—O2—Na—O3iii47.62 (6)
O3—S1—O1—Nai0.91 (9)S1—O2—Na—O2iv61.03 (8)
C1—S1—O1—Nai116.48 (9)Naiii—O2—Na—O2iv156.11 (6)
Na—S1—O1—Nai58.50 (10)S1—O2—Na—O3v169.45 (17)
O1—S1—O2—Naiii48.05 (19)Naiii—O2—Na—O3v26.6 (2)
O3—S1—O2—Naiii77.71 (18)S1—O2—Na—O1ii96.90 (8)
C1—S1—O2—Naiii167.19 (15)Naiii—O2—Na—O1ii45.95 (5)
Nai—S1—O2—Naiii19.4 (2)S1—O2—Na—O32.80 (6)
Na—S1—O2—Naiii82.01 (16)Naiii—O2—Na—O3140.06 (7)
O1—S1—O2—Na130.06 (8)S1—O2—Na—O1v31.57 (12)
O3—S1—O2—Na4.30 (10)Naiii—O2—Na—O1v111.29 (8)
C1—S1—O2—Na110.81 (8)S1—O2—Na—S1v56.4 (2)
Nai—S1—O2—Na62.61 (10)Naiii—O2—Na—S1v86.49 (17)
O2—S1—O3—Naiv94.5 (3)Naiii—O2—Na—S1142.86 (10)
O1—S1—O3—Naiv137.1 (3)S1—O2—Na—Naiv7.82 (8)
C1—S1—O3—Naiv20.5 (4)Naiii—O2—Na—Naiv150.67 (4)
Nai—S1—O3—Naiv138.1 (4)S1—O2—Na—Naiii142.86 (10)
Na—S1—O3—Naiv90.1 (3)S1—O2—Na—Navi174.81 (6)
O2—S1—O3—Nai127.40 (8)Naiii—O2—Na—Navi42.33 (7)
O1—S1—O3—Nai0.97 (10)O2—S1—Na—O3iii10.56 (9)
C1—S1—O3—Nai117.63 (8)O1—S1—Na—O3iii103.07 (11)
Na—S1—O3—Nai131.81 (8)O3—S1—Na—O3iii174.35 (10)
O2—S1—O3—Na4.41 (10)C1—S1—Na—O3iii82.24 (9)
O1—S1—O3—Na132.77 (7)Nai—S1—Na—O3iii149.16 (5)
C1—S1—O3—Na110.56 (8)O2—S1—Na—O2iv121.97 (9)
Nai—S1—O3—Na131.81 (8)O1—S1—Na—O2iv145.51 (10)
O2—S1—C1—C6176.20 (19)O3—S1—Na—O2iv62.94 (8)
O1—S1—C1—C660.3 (2)C1—S1—Na—O2iv29.17 (9)
O3—S1—C1—C657.7 (2)Nai—S1—Na—O2iv99.43 (5)
Nai—S1—C1—C61.9 (2)O2—S1—Na—O3v162.0 (3)
Na—S1—C1—C6115.82 (19)O1—S1—Na—O3v69.5 (3)
O2—S1—C1—C21.4 (2)O3—S1—Na—O3v13.1 (3)
O1—S1—C1—C2122.1 (2)C1—S1—Na—O3v105.2 (3)
O3—S1—C1—C2119.9 (2)Nai—S1—Na—O3v23.4 (3)
Nai—S1—C1—C2175.71 (18)O2—S1—Na—O1ii79.02 (9)
Na—S1—C1—C261.8 (2)O1—S1—Na—O1ii13.49 (13)
C6—C1—C2—C30.2 (4)O3—S1—Na—O1ii96.07 (8)
S1—C1—C2—C3177.8 (2)C1—S1—Na—O1ii171.82 (9)
C1—C2—C3—C40.6 (5)Nai—S1—Na—O1ii59.58 (4)
C2—C3—C4—C50.6 (5)O2—S1—Na—O3175.09 (11)
C2—C3—C4—O4179.9 (3)O1—S1—Na—O382.58 (12)
C7—O4—C4—C3179.6 (4)C1—S1—Na—O392.11 (11)
C7—O4—C4—C51.2 (5)Nai—S1—Na—O336.49 (7)
C3—C4—C5—C60.1 (5)O1—S1—Na—O292.51 (12)
O4—C4—C5—C6179.1 (3)O3—S1—Na—O2175.09 (11)
C2—C1—C6—C50.9 (4)C1—S1—Na—O292.80 (11)
S1—C1—C6—C5178.6 (2)Nai—S1—Na—O2138.60 (8)
C4—C5—C6—C10.9 (5)O2—S1—Na—O1v157.60 (9)
S1—O3—Na—O3iii7.49 (14)O1—S1—Na—O1v65.09 (12)
Naiv—O3—Na—O3iii155.15 (6)O3—S1—Na—O1v17.49 (8)
Nai—O3—Na—O3iii114.86 (10)C1—S1—Na—O1v109.60 (9)
S1—O3—Na—O2iv113.99 (8)Nai—S1—Na—O1v19.00 (4)
Naiv—O3—Na—O2iv48.64 (6)O2—S1—Na—S1v158.80 (9)
Nai—O3—Na—O2iv138.64 (9)O1—S1—Na—S1v66.29 (11)
S1—O3—Na—O3v176.15 (9)O3—S1—Na—S1v16.29 (8)
Naiv—O3—Na—O3v21.21 (9)C1—S1—Na—S1v108.40 (9)
Nai—O3—Na—O3v68.79 (11)Nai—S1—Na—S1v20.20 (4)
S1—O3—Na—O1ii81.88 (7)O2—S1—Na—Naiv172.01 (8)
Naiv—O3—Na—O1ii115.49 (5)O1—S1—Na—Naiv95.48 (10)
Nai—O3—Na—O1ii25.49 (8)O3—S1—Na—Naiv12.91 (7)
S1—O3—Na—O22.78 (6)C1—S1—Na—Naiv79.21 (8)
Naiv—O3—Na—O2165.42 (7)Nai—S1—Na—Naiv49.40 (2)
Nai—O3—Na—O2104.59 (9)O2—S1—Na—Naiii27.79 (8)
S1—O3—Na—O1v163.79 (7)O1—S1—Na—Naiii64.73 (10)
Naiv—O3—Na—O1v33.58 (5)O3—S1—Na—Naiii147.30 (7)
Nai—O3—Na—O1v56.42 (8)C1—S1—Na—Naiii120.59 (8)
S1—O3—Na—S1v168.89 (5)Nai—S1—Na—Naiii110.811 (19)
Naiv—O3—Na—S1v28.48 (6)O2—S1—Na—Navi8.67 (11)
Nai—O3—Na—S1v61.52 (8)O1—S1—Na—Navi101.19 (12)
Naiv—O3—Na—S1162.63 (10)O3—S1—Na—Navi176.24 (12)
Nai—O3—Na—S1107.37 (11)C1—S1—Na—Navi84.13 (12)
S1—O3—Na—Naiv162.63 (10)Nai—S1—Na—Navi147.27 (9)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+1, y, z+2; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z; (v) x1/2, y+1/2, z+2; (vi) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1vii0.932.373.282 (3)165
C7—H7A···O4viii0.962.563.407 (4)148
Symmetry codes: (vii) x+3/2, y+1/2, z; (viii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.932.373.282 (3)165
C7—H7A···O4ii0.962.563.407 (4)148
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1, y+1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, email: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Prince of Songkla University for generous support. The authors also thank the Universiti Sains Malaysia for the APEX DE2012 grant No.1002/PFIZIK/910323.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBabu, K. S., Raju, B. C., Srinivas, P. V., Rao, A. S., Kumar, S. P. & Rao, J. M. (2003). Chem. Lett. 32, 704–705.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T. & Kanjana-Opas, A. (2010). Lat. Am. J. Pharm. 29, 1166–1170.  CAS Google Scholar
First citationKing, J. F. (1991). The Chemistry of Sulphonic Acids, Esters and their Derivatives, edited by S. Patai & Z. Rappoport, pp. 249–258. Chichester: Wiley.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRuanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819–824.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchöngut, M., Grof, Z. & Štěpánek, F. (2011). Ind. Eng. Chem. Res. 50, 11576–11584.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiril, P. F., Davison, A. D., Randhawa, J. K. & Brown, D. R. (2007). J. Mol. Catal. A Chem. 267, 72–78.  Web of Science CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & Healy, P. C. (2004). Acta Cryst. E60, m836–m838.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, G. E., Gosling, M. & Pearce, A. (2006). J. Chromatogr. A, 1119, 231–237.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds