metal-organic compounds
Tetrakis(acetonitrile)copper(I) hydrogen oxalate–oxalic acid–acetonitrile (1/0.5/0.5)
aDepartment of Chemistry, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, USA, bDepartment of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA, and cDepartment of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
*Correspondence e-mail: royappa@uwf.edu
In the title compound, [Cu(CH3CN)4](C2HO4)·0.5C2H2O4·0.5CH3CN, the CuI ion is coordinated by the N atoms of four acetonitrile ligands in a slightly distorted tetrahedral environment. The oxalic acid molecule lies across an inversion center. The acetonitrile solvent molecule is disordered across an inversion center and was refined with half occupancy. In the crystal, the hydrogen oxalate anions and oxalic acid molecules are linked via O—H⋯O hydrogen bonds, forming chains along [010].
Related literature
For background to tetrakis(acetonitrile)copper(I) complexes, see: Morgan (1923); Heckel (1966); Kubas et al. (1979). For details of the affinity of nitrile ligands for CuI ions, see: Cotton et al. (1999). For the hard–soft acid–base theory, see: Pearson (1968). For the structure of the closely related tetrakis(acetonitrile)copper(I) tetrafluoroborate, see: Jones & Crespo (1998).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: CHEMDRAW (Cambridgesoft, 2003).
Supporting information
10.1107/S1600536813024914/lh5649sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813024914/lh5649Isup2.hkl
All manipulations were carried out under nitrogen. In a 10 ml round-bottom flask, 180 mg anhydrous oxalic acid (2 mmol), 0.143 g copper(I) oxide (1 mmol) and 7 ml degassed, dry acetonitrile were stirred together. All the red Cu2O powder dissolved in 2 min., forming a white precipitate and a clear, pale blue supernatant. After 15 min. of stirring, a copious amount of white and dark purple solids settled to the bottom of the flask. The dark purple solid was likely copper metal powder. This reaction mixture was stirred for 1 hr., then heated at 313K for 15 min., during which the white solid redissolved. Cooling to room temperature produced mm-sized, colorless, air- and moisture-sensitive, platelike crystals in 2 hrs.
H atoms were placed in calculated positions with C—H = 0.96 Å and included in the
in a riding-motion approximation with Uiso(H) = 1.5Ueq(C). H atoms bonded to O atoms were refined independently with Uiso(H) = 1.5Ueq(O).Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: CHEMDRAW (Cambridgesoft, 2003).[Cu(C2H3N)4](C2HO4)·0.5C2H2O4·0.5C2H3N | F(000) = 784 |
Mr = 382.33 | Dx = 1.489 Mg m−3 |
Monoclinic, P21/n | Melting point: not measured K |
Hall symbol: -P 2yn | Cu Kα radiation, λ = 1.54184 Å |
a = 9.5637 (4) Å | θ = 2.8–66.4° |
b = 5.5670 (2) Å | µ = 2.15 mm−1 |
c = 32.0682 (12) Å | T = 100 K |
β = 92.901 (2)° | Plate, colorless |
V = 1705.16 (11) Å3 | 0.17 × 0.14 × 0.03 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2928 independent reflections |
Radiation source: fine-focus sealed tube | 2745 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ϕ and ω scans | θmax = 66.5°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −11→11 |
Tmin = 0.715, Tmax = 0.938 | k = −4→6 |
8349 measured reflections | l = −37→36 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0394P)2 + 2.6242P] where P = (Fo2 + 2Fc2)/3 |
2928 reflections | (Δ/σ)max < 0.001 |
236 parameters | Δρmax = 0.89 e Å−3 |
18 restraints | Δρmin = −0.50 e Å−3 |
[Cu(C2H3N)4](C2HO4)·0.5C2H2O4·0.5C2H3N | V = 1705.16 (11) Å3 |
Mr = 382.33 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 9.5637 (4) Å | µ = 2.15 mm−1 |
b = 5.5670 (2) Å | T = 100 K |
c = 32.0682 (12) Å | 0.17 × 0.14 × 0.03 mm |
β = 92.901 (2)° |
Bruker APEXII CCD diffractometer | 2928 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 2745 reflections with I > 2σ(I) |
Tmin = 0.715, Tmax = 0.938 | Rint = 0.020 |
8349 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 18 restraints |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 0.89 e Å−3 |
2928 reflections | Δρmin = −0.50 e Å−3 |
236 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.00357 (4) | 0.91194 (7) | 0.139464 (11) | 0.02214 (14) | |
N1 | 0.1201 (2) | 0.6945 (4) | 0.10675 (7) | 0.0249 (5) | |
C1 | 0.1869 (3) | 0.5512 (5) | 0.09207 (8) | 0.0223 (5) | |
C2 | 0.2716 (3) | 0.3648 (5) | 0.07389 (8) | 0.0270 (6) | |
H2A | 0.3673 | 0.3724 | 0.0863 | 0.040* | |
H2B | 0.2735 | 0.3897 | 0.0437 | 0.040* | |
H2C | 0.2312 | 0.2070 | 0.0794 | 0.040* | |
N2 | −0.1196 (2) | 1.1336 (4) | 0.10639 (7) | 0.0246 (5) | |
C3 | −0.1829 (3) | 1.2842 (5) | 0.09054 (7) | 0.0221 (5) | |
C4 | −0.2621 (3) | 1.4787 (5) | 0.07048 (8) | 0.0261 (6) | |
H4A | −0.2024 | 1.6211 | 0.0689 | 0.039* | |
H4B | −0.3433 | 1.5164 | 0.0868 | 0.039* | |
H4C | −0.2941 | 1.4297 | 0.0422 | 0.039* | |
N3 | 0.1258 (2) | 1.1393 (4) | 0.17405 (7) | 0.0233 (5) | |
C5 | 0.1743 (2) | 1.2988 (5) | 0.19157 (7) | 0.0197 (5) | |
C6 | 0.2332 (3) | 1.5037 (5) | 0.21462 (8) | 0.0228 (5) | |
H6A | 0.2187 | 1.6500 | 0.1979 | 0.034* | |
H6B | 0.3337 | 1.4783 | 0.2204 | 0.034* | |
H6C | 0.1868 | 1.5207 | 0.2410 | 0.034* | |
N4 | −0.0979 (2) | 0.6916 (4) | 0.17694 (7) | 0.0236 (5) | |
C7 | −0.1385 (3) | 0.5341 (5) | 0.19555 (8) | 0.0209 (5) | |
C8 | −0.1875 (3) | 0.3283 (5) | 0.21895 (8) | 0.0227 (5) | |
H8A | −0.1808 | 0.1826 | 0.2020 | 0.034* | |
H8B | −0.2852 | 0.3540 | 0.2257 | 0.034* | |
H8C | −0.1295 | 0.3102 | 0.2448 | 0.034* | |
C9 | 0.5095 (2) | 1.0524 (4) | 0.17421 (7) | 0.0159 (5) | |
C10 | 0.5127 (2) | 0.7966 (4) | 0.15534 (7) | 0.0163 (5) | |
O1 | 0.53399 (19) | 1.2210 (3) | 0.14699 (5) | 0.0218 (4) | |
H1 | 0.533 (3) | 1.355 (4) | 0.1595 (9) | 0.033* | |
O2 | 0.48651 (18) | 1.0852 (3) | 0.21057 (5) | 0.0203 (4) | |
O3 | 0.48900 (19) | 0.7711 (3) | 0.11715 (5) | 0.0230 (4) | |
O4 | 0.53722 (18) | 0.6316 (3) | 0.18140 (5) | 0.0203 (4) | |
C11 | 0.4732 (3) | 0.9454 (5) | 0.02028 (8) | 0.0263 (6) | |
O5 | 0.5469 (2) | 1.0158 (3) | 0.05293 (5) | 0.0268 (4) | |
H5 | 0.519 (3) | 0.957 (6) | 0.0747 (7) | 0.040* | |
O6 | 0.3702 (3) | 0.8228 (5) | 0.02020 (6) | 0.0575 (8) | |
N1S | −0.002 (6) | 0.4633 (17) | 0.0000 (16) | 0.0417 (18) | 0.50 |
C1S | −0.0067 (6) | 0.2602 (12) | 0.00027 (18) | 0.0306 (12) | 0.50 |
C2S | 0.011 (3) | 0.016 (4) | −0.0032 (11) | 0.042 (4) | 0.50 |
H2S1 | 0.1114 | −0.0221 | −0.0015 | 0.064* | 0.50 |
H2S2 | −0.0304 | −0.0391 | −0.0301 | 0.064* | 0.50 |
H2S3 | −0.0347 | −0.0653 | 0.0195 | 0.064* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0241 (2) | 0.0165 (2) | 0.0258 (2) | 0.00096 (15) | 0.00143 (15) | −0.00010 (15) |
N1 | 0.0270 (11) | 0.0223 (11) | 0.0256 (11) | −0.0008 (10) | 0.0035 (9) | −0.0003 (9) |
C1 | 0.0234 (13) | 0.0219 (13) | 0.0215 (12) | −0.0022 (11) | −0.0010 (10) | 0.0013 (11) |
C2 | 0.0266 (14) | 0.0234 (14) | 0.0308 (14) | 0.0039 (11) | 0.0001 (11) | −0.0054 (11) |
N2 | 0.0261 (12) | 0.0204 (11) | 0.0271 (11) | 0.0013 (10) | −0.0002 (9) | −0.0005 (9) |
C3 | 0.0218 (12) | 0.0233 (13) | 0.0213 (12) | −0.0020 (11) | 0.0017 (10) | −0.0042 (11) |
C4 | 0.0273 (13) | 0.0207 (13) | 0.0305 (13) | 0.0027 (11) | 0.0019 (10) | 0.0022 (11) |
N3 | 0.0232 (11) | 0.0201 (11) | 0.0265 (11) | 0.0000 (9) | −0.0004 (9) | 0.0006 (10) |
C5 | 0.0174 (12) | 0.0210 (13) | 0.0207 (12) | 0.0041 (11) | 0.0020 (9) | 0.0044 (11) |
C6 | 0.0211 (12) | 0.0204 (13) | 0.0269 (13) | 0.0009 (10) | 0.0014 (10) | −0.0028 (11) |
N4 | 0.0238 (11) | 0.0204 (11) | 0.0267 (11) | −0.0003 (9) | 0.0023 (9) | −0.0007 (10) |
C7 | 0.0185 (12) | 0.0203 (13) | 0.0238 (12) | 0.0022 (11) | 0.0001 (9) | −0.0048 (11) |
C8 | 0.0242 (13) | 0.0199 (13) | 0.0241 (12) | −0.0024 (11) | 0.0012 (10) | −0.0002 (10) |
C9 | 0.0142 (11) | 0.0134 (11) | 0.0198 (12) | 0.0006 (9) | −0.0005 (9) | 0.0016 (9) |
C10 | 0.0131 (11) | 0.0147 (12) | 0.0215 (12) | 0.0001 (9) | 0.0027 (9) | 0.0004 (10) |
O1 | 0.0346 (10) | 0.0102 (8) | 0.0208 (8) | −0.0010 (8) | 0.0037 (7) | 0.0004 (7) |
O2 | 0.0265 (9) | 0.0156 (8) | 0.0190 (9) | 0.0014 (7) | 0.0030 (7) | 0.0000 (7) |
O3 | 0.0353 (10) | 0.0144 (8) | 0.0191 (9) | −0.0016 (8) | −0.0005 (7) | −0.0009 (7) |
O4 | 0.0279 (9) | 0.0102 (8) | 0.0227 (8) | 0.0001 (7) | 0.0002 (7) | 0.0020 (7) |
C11 | 0.0323 (15) | 0.0246 (14) | 0.0220 (13) | −0.0025 (12) | 0.0013 (11) | 0.0012 (11) |
O5 | 0.0361 (11) | 0.0260 (10) | 0.0184 (9) | −0.0037 (8) | 0.0004 (7) | 0.0029 (8) |
O6 | 0.0642 (16) | 0.0815 (19) | 0.0265 (11) | −0.0442 (15) | −0.0011 (10) | 0.0054 (12) |
N1S | 0.048 (3) | 0.033 (4) | 0.043 (2) | 0.009 (14) | −0.002 (2) | 0.001 (13) |
C1S | 0.032 (3) | 0.036 (3) | 0.024 (2) | 0.001 (3) | −0.002 (2) | −0.003 (3) |
C2S | 0.073 (8) | 0.026 (5) | 0.029 (8) | −0.019 (6) | 0.017 (7) | 0.007 (6) |
Cu1—N2 | 1.977 (2) | C7—C8 | 1.460 (4) |
Cu1—N1 | 1.981 (2) | C8—H8A | 0.9800 |
Cu1—N4 | 2.002 (2) | C8—H8B | 0.9800 |
Cu1—N3 | 2.017 (2) | C8—H8C | 0.9800 |
N1—C1 | 1.139 (3) | C9—O2 | 1.211 (3) |
C1—C2 | 1.456 (4) | C9—O1 | 1.311 (3) |
C2—H2A | 0.9800 | C9—C10 | 1.548 (3) |
C2—H2B | 0.9800 | C10—O3 | 1.242 (3) |
C2—H2C | 0.9800 | C10—O4 | 1.256 (3) |
N2—C3 | 1.139 (3) | O1—H1 | 0.849 (18) |
C3—C4 | 1.452 (4) | C11—O6 | 1.198 (4) |
C4—H4A | 0.9800 | C11—O5 | 1.293 (3) |
C4—H4B | 0.9800 | C11—C11i | 1.547 (5) |
C4—H4C | 0.9800 | O5—H5 | 0.829 (18) |
N3—C5 | 1.137 (3) | N1S—C1S | 1.132 (12) |
C5—C6 | 1.457 (4) | C1S—C2S | 1.38 (3) |
C6—H6A | 0.9800 | C2S—H2S1 | 0.9800 |
C6—H6B | 0.9800 | C2S—H2S2 | 0.9800 |
C6—H6C | 0.9800 | C2S—H2S3 | 0.9800 |
N4—C7 | 1.140 (3) | ||
N2—Cu1—N1 | 115.66 (9) | H6A—C6—H6C | 109.5 |
N2—Cu1—N4 | 114.26 (9) | H6B—C6—H6C | 109.5 |
N1—Cu1—N4 | 104.25 (9) | C7—N4—Cu1 | 166.9 (2) |
N2—Cu1—N3 | 102.50 (9) | N4—C7—C8 | 178.4 (3) |
N1—Cu1—N3 | 110.40 (9) | C7—C8—H8A | 109.5 |
N4—Cu1—N3 | 109.84 (9) | C7—C8—H8B | 109.5 |
C1—N1—Cu1 | 171.6 (2) | H8A—C8—H8B | 109.5 |
N1—C1—C2 | 178.9 (3) | C7—C8—H8C | 109.5 |
C1—C2—H2A | 109.5 | H8A—C8—H8C | 109.5 |
C1—C2—H2B | 109.5 | H8B—C8—H8C | 109.5 |
H2A—C2—H2B | 109.5 | O2—C9—O1 | 125.5 (2) |
C1—C2—H2C | 109.5 | O2—C9—C10 | 121.6 (2) |
H2A—C2—H2C | 109.5 | O1—C9—C10 | 112.99 (19) |
H2B—C2—H2C | 109.5 | O3—C10—O4 | 126.2 (2) |
C3—N2—Cu1 | 171.1 (2) | O3—C10—C9 | 119.0 (2) |
N2—C3—C4 | 179.2 (3) | O4—C10—C9 | 114.79 (19) |
C3—C4—H4A | 109.5 | C9—O1—H1 | 108 (2) |
C3—C4—H4B | 109.5 | O6—C11—O5 | 126.1 (2) |
H4A—C4—H4B | 109.5 | O6—C11—C11i | 122.0 (3) |
C3—C4—H4C | 109.5 | O5—C11—C11i | 111.8 (3) |
H4A—C4—H4C | 109.5 | C11—O5—H5 | 112 (2) |
H4B—C4—H4C | 109.5 | N1S—C1S—C2S | 169 (3) |
C5—N3—Cu1 | 166.5 (2) | C1S—C2S—H2S1 | 109.5 |
N3—C5—C6 | 178.5 (3) | C1S—C2S—H2S2 | 109.5 |
C5—C6—H6A | 109.5 | H2S1—C2S—H2S2 | 109.5 |
C5—C6—H6B | 109.5 | C1S—C2S—H2S3 | 109.5 |
H6A—C6—H6B | 109.5 | H2S1—C2S—H2S3 | 109.5 |
C5—C6—H6C | 109.5 | H2S2—C2S—H2S3 | 109.5 |
Symmetry code: (i) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4ii | 0.85 (2) | 1.69 (2) | 2.538 (2) | 176 (3) |
O5—H5···O3 | 0.83 (2) | 1.74 (2) | 2.553 (2) | 165 (4) |
Symmetry code: (ii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.849 (18) | 1.690 (18) | 2.538 (2) | 176 (3) |
O5—H5···O3 | 0.829 (18) | 1.74 (2) | 2.553 (2) | 165 (4) |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
ATR, JRS, ODV and ADR are grateful for support from the Office of Research and Sponsored Programs, the Office of Undergraduate Research and the Department of Chemistry at the University of West Florida.
References
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cambridgesoft (2003). CHEMDRAW. Cambridgesoft Corporation, Cambridge, MA, USA. Google Scholar
Cotton, F. A., Wilkinson, G., Murillo, C. A. & Bochmann, M. (1999). Advanced Inorganic Chemistry, 6th ed., p. 856. New York: Wiley. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Heckel, E. (1966). German Patent 1230025. Google Scholar
Jones, P. G. & Crespo, O. (1998). Acta Cryst. C54, 18–20. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kubas, G. J., Monzyk, B. & Crumbliss, A. L. (1979). Inorg. Synth. 19, 90–92. CrossRef CAS Google Scholar
Morgan, H. H. (1923). J. Chem. Soc. 123, 2901–2907. CrossRef CAS Google Scholar
Pearson, R. G. (1968). J. Chem. Ed. 45, 581–587. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The tetrakis(acetonitrile)copper(I) ion, an important starting material for the synthesis of copper(I) complexes, was first synthesized as the nitrate salt (Morgan, 1923). Commonly available and easily synthesized compounds containing the [Cu(CH3CN)4]+ cation generally do contain weakly coordinating anions such as BF4- (Heckel, 1966) or PF6- (Kubas et al., 1979). The structure of tetrakis(acetonitrile)copper(I) tetrafluoroborate already appears in the literature (Jones & Crespo, 1998).
In this work, we report the synthesis and crystal structure of a compound containing the [Cu(CH3CN)4]+ cation containing a potentially coordinating HC2O4- anion, which does not coordinate to the metal center. This is in keeping with the known affinity of nitrile ligands for CuI (Cotton et al., 1999), and also with the hard-soft acid-base theory (Pearson, 1968), which predicts a weak interaction between the "hard" hydrogen oxalate ligand and the "soft" Cu+ ion.
In the title compound, the [Cu(CH3CN)4]+ cation adopts a slightly distorted tetrahedral geometry. The HC2O4- anion is not coordinated to the CuI center and the distances of the nearest O atoms to the CuI ion are all greater than 4.7 Å. The anion is non-planar, whereas the oxalic acid molecules are strictly planar, and reside on inversion centers. All the OH groups (in the hydrogen oxalate anion and in oxalic acid) in this structure are involved in intermolecular hydrogen bonding interactions with the carboxylate O atoms of the hydrogen oxalate anion, forming one-dimensional chains along [010]. The acetonitrile solvent molecules present in the structure are disordered, and positioned in linear channels between the [Cu(CH3CN)4]+ cations, parallel to the b axis.