metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages m559-m560

{5,5′-Di­hydroxy-2,2′-[(2-hydroxypropane-1,3-diyl)bis­(nitrilomethanylyli­dene)]diphenolato}nickel(II) dihydrate

aDepartment of Chemistry, National Changhua University of Education, Changhua, 50058, Taiwan, and bDepartment of Occupational Health and Safety, Chang Jung Christian University, Tainan City, 71101, Taiwan
*Correspondence e-mail: scschem@mail.cjcu.edu.tw

(Received 21 August 2013; accepted 20 September 2013; online 25 September 2013)

In the title complex, [Ni(C17H16N2O5)]·2H2O, the NiII ion is four-coordinated by two azomethine N and two phenolato O atoms of the tetradentate Schiff base ligand in a slightly distorted square-planar geometry. In the six-membered ring containing the metal, the azomethine N atoms and the three C atoms of the connecting 1,3-di­amino­propane-2-ol, all atoms except the metal are disordered over two sets of sites with an occupacy ratio of 0.566 (3):0.434 (3). The central C atom of the major component is significantly out of the mean plane of the remaing atoms while the conformation of this ring in the minor component is noticeably different. In the crystal, O—H⋯O hydrogen bonds involving the lattice water mol­ecules and the hy­droxy groups are observed.

Related literature

For related structures, see: Averseng et al. (2001[Averseng, F., Lacroix, P. G., Malfant, I., Perisse, N., Lepetit, C. & Nakatani, K. (2001). Inorg. Chem. 40, 3797-3804.]); Donmez et al. (2007[Donmez, E., Kara, H., Karakas, A., Unver, H. & Elmali, A. (2007). Spectrochim. Acta A, 66, 1141-1146.]). For ring-puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C17H16N2O5)]·2H2O

  • Mr = 423.06

  • Monoclinic, P 21 /n

  • a = 8.201 (1) Å

  • b = 17.887 (3) Å

  • c = 11.863 (2) Å

  • β = 92.444 (3)°

  • V = 1738.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 293 K

  • 0.13 × 0.10 × 0.06 mm

Data collection
  • Bruker BREEZE CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.599, Tmax = 0.746

  • 23452 measured reflections

  • 4164 independent reflections

  • 2986 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.093

  • S = 1.04

  • 4164 reflections

  • 263 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2 0.82 1.96 2.770 (2) 167
O1W—H1W⋯O1 0.82 2.53 3.087 (2) 127
O1W—H2W⋯O4i 0.82 2.18 2.951 (3) 158
O2W—H3W⋯O1ii 0.82 1.98 2.787 (3) 168
O2W—H4W⋯O3iii 0.82 2.04 2.837 (2) 165
O3—H3O⋯O1Wiv 0.82 1.87 2.665 (3) 165
O4—H4O⋯O2Wv 0.82 1.81 2.626 (3) 171
O5—H5OA⋯O1Wvi 0.82 1.97 2.78 (3) 166
O5′—H5OB⋯O1Wvi 0.82 2.28 3.03 (4) 151
Symmetry codes: (i) x-1, y, z; (ii) x, y, z-1; (iii) x+1, y, z-1; (iv) -x+1, -y+1, -z+2; (v) -x+2, -y+1, -z+1; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the title complex, [Ni(OC6H3OH)—CH=N—CH2—CH(OH)—CH2—N=CH- (OHC6H3O)], the NiII metal center is coordinated by a pair of phenolate O and imine N atoms from the corresponding Schiff base precursor (Fig. 1). The square-planar N2O2 coordination sphere is slightly distorted as indicated by the less than linear bond angles, N1—Ni1—O2 and N2—Ni1—O1 (170.11 (14)° and 172.70 (7)° respectively). In the coordination plane, the bond distances Ni1–N1, Ni1–N2, Ni1–O1 and Ni1–O2 are 1.980 (5), 1.971 (2), 1.926 (2) and 1.913 (2) Å, respectively. The dihedral angle between the two C1—C6 and C8—C13 benzene rings of the ligand is 4.95 (8)°. The atoms C7, N1, O5 and C15–C17 are disordered over two sites in a 57:43 ratio. A puckering analysis (Cremer & Pople, 1975) of the conformation of the major component of the six-membered ring containing the metal, the azomethine N atoms and the three carbon atoms of the connecting 1,3-diaminopropane-2-ol yielded the parameters Q = 0.579 (7) Å, θ = 110.6 (7)° and ϕ = 337.9 (8)° while for the minor component, the parameters are Q = 0.562 (8) Å, θ = 100.4 (10)° and ϕ = 44.6 (10)°. The N2—Ni1—N1 angle of the central chelating diamine portion is 95.06 (15)° while the O2—Ni1—O1 angle is 80.63 (7)° as a result of the steric congestion of the central six-membered chelate ring. In the crystal intermolecular O—H···O hydrogen bonds between water molecules and hydroxy groups are observed (Table 1 and Fig. 2).

Related literature top

For related structures, see: Averseng et al. (2001); Donmez et al. (2007). For ring-puckering analysis, see: Cremer & Pople (1975).

Experimental top

The Schiff base ligand, 4,4'-(1E,1'E)-(2-hydroxypropane-1,3-diyl)bis(azan-1-yl-1-ylidene) bis(methan-1-yl-1-ylidene)dibenzene-1,3-diol was prepared by condensation of 2,4-dihydroxybenzaldehyde (0.276 g, 2 mmol) and 1,3-diaminopropane-2-ol (0.090 g, 1 mmol) in methanol (25 mL). After 2 h reflux, the pale yellow solution was cooled to room temperature. The solvent was removed under reduced pressure and the Schiff-base ligand was obtained as a light-yellow liquid that was used without further purification. To prepare the complex, the Schiff base ligand (0.301 g, 1 mmol) was added to a methanolic solution (20 ml) of Ni(CH3COO)2· 4H2O (0.248 g, 1 mmol) which immediately produced an intensely brownish-red solution. The solution was heated to boiling and then kept undisturbed in a dark place. On cooling and after slow evaporation of the solution, dark brown plate-shaped single crystals of the complex separated out over 3 days. The crystals were filtered off and washed with water and dried in air.

Refinement top

All of the H-atoms were placed in calculated positions (C—H 0.93 to 0.98 Å and O—H 0.82 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2Ueq (C,O). The C7, N1, C15, C16, C17 and O5 atoms of the ligand are disordered over two sites with an occupancy ratio of 0.566 (3):0.434 (3). The SADI restraint and EADP constraint commands in the SHELXL97 software were used for the disordered atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXP (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound as viewed down the b axis. Intermolecular O—H···O hydrogen bonds are shown as dashed lines.
{5,5'-Dihydroxy-2,2'-[(2-hydroxypropane-1,3-diyl)bis(nitrilomethanylylidene)]diphenolato}nickel(II) dihydrate top
Crystal data top
[Ni(C17H16N2O5)]·2H2OF(000) = 880
Mr = 423.06Dx = 1.616 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 692 reflections
a = 8.201 (1) Åθ = 2.1–27.8°
b = 17.887 (3) ŵ = 1.16 mm1
c = 11.863 (2) ÅT = 293 K
β = 92.444 (3)°Thin plate, brown
V = 1738.6 (5) Å30.13 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker BREEZE CCD area-detector
diffractometer
4164 independent reflections
Radiation source: fine-focus sealed tube2986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω–scanθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.599, Tmax = 0.746k = 2323
23452 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.7206P]
where P = (Fo2 + 2Fc2)/3
4164 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.32 e Å3
18 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ni(C17H16N2O5)]·2H2OV = 1738.6 (5) Å3
Mr = 423.06Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.201 (1) ŵ = 1.16 mm1
b = 17.887 (3) ÅT = 293 K
c = 11.863 (2) Å0.13 × 0.10 × 0.06 mm
β = 92.444 (3)°
Data collection top
Bruker BREEZE CCD area-detector
diffractometer
4164 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2986 reflections with I > 2σ(I)
Tmin = 0.599, Tmax = 0.746Rint = 0.046
23452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03718 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
4164 reflectionsΔρmin = 0.35 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.76757 (3)0.236496 (16)0.93756 (3)0.03859 (11)
N10.6337 (6)0.1583 (3)1.0070 (4)0.0460 (10)0.566 (3)
N1'0.5940 (8)0.1599 (4)0.9475 (5)0.0460 (10)0.434 (3)
N20.9310 (2)0.16644 (11)0.88144 (19)0.0466 (5)
O10.63064 (19)0.31366 (9)0.99584 (15)0.0473 (4)
O20.88647 (18)0.32255 (8)0.89186 (15)0.0450 (4)
O30.1513 (2)0.43146 (10)1.11744 (16)0.0566 (5)
H3O0.21140.46801.12410.068*
O41.3374 (2)0.46782 (10)0.78268 (19)0.0716 (6)
H4O1.28270.50120.80980.086*
O50.757 (6)0.0234 (7)0.894 (3)0.071 (5)0.566 (3)
H5OA0.76050.03870.82910.085*0.566 (3)
O5'0.770 (8)0.0278 (9)0.919 (4)0.071 (5)0.434 (3)
H5OB0.81570.03710.86070.085*0.434 (3)
C10.4836 (3)0.30825 (13)1.0367 (2)0.0394 (5)
C20.3974 (3)0.37316 (13)1.0600 (2)0.0402 (5)
H20.44500.41961.04840.048*
C30.2424 (3)0.36936 (14)1.1002 (2)0.0426 (6)
C40.1706 (3)0.30072 (15)1.1231 (2)0.0514 (7)
H40.06760.29851.15280.062*
C50.2534 (3)0.23743 (15)1.1013 (2)0.0522 (7)
H50.20570.19161.11650.063*
C60.4093 (3)0.23866 (13)1.0564 (2)0.0445 (6)
C70.4929 (10)0.1699 (5)1.0482 (6)0.048 (2)0.566 (3)
H7A0.44020.12821.07580.057*0.566 (3)
C7'0.4642 (14)0.1703 (6)1.0048 (8)0.048 (2)0.434 (3)
H7B0.39840.12851.01390.057*0.434 (3)
C81.0308 (3)0.32654 (13)0.84706 (19)0.0370 (5)
C91.1033 (3)0.39629 (13)0.8323 (2)0.0428 (6)
H91.04780.43940.85160.051*
C101.2565 (3)0.40182 (14)0.7892 (2)0.0506 (7)
C111.3385 (3)0.33891 (16)0.7536 (3)0.0620 (8)
H111.43950.34330.72150.074*
C121.2684 (3)0.27072 (15)0.7665 (3)0.0556 (7)
H121.32270.22840.74230.067*
C131.1161 (3)0.26237 (13)0.8153 (2)0.0419 (5)
C141.0606 (3)0.18853 (14)0.8326 (2)0.0481 (6)
H141.12610.15080.80530.058*
C150.6836 (7)0.0784 (2)1.0058 (5)0.0631 (12)0.566 (3)
H15A0.59040.04721.02130.076*0.566 (3)
H15B0.76690.06981.06490.076*0.566 (3)
C15'0.6172 (9)0.0838 (3)0.9034 (6)0.0631 (12)0.434 (3)
H15C0.60920.08520.82160.076*0.434 (3)
H15D0.53040.05190.92870.076*0.434 (3)
C160.7488 (11)0.0567 (5)0.8937 (5)0.0492 (18)0.566 (3)
H16A0.67200.07310.83320.059*0.566 (3)
C16'0.7765 (14)0.0510 (7)0.9401 (9)0.0492 (18)0.434 (3)
H16B0.78020.05531.02250.059*0.434 (3)
C170.9129 (16)0.0834 (5)0.8700 (10)0.053 (3)0.566 (3)
H17A0.93790.06890.79380.063*0.566 (3)
H17B0.99150.05920.92140.063*0.566 (3)
C17'0.927 (2)0.0850 (7)0.9064 (15)0.053 (3)0.434 (3)
H17C0.96120.05890.83970.063*0.434 (3)
H17D1.00950.07540.96580.063*0.434 (3)
O1W0.6893 (2)0.44265 (10)0.82950 (17)0.0640 (5)
H1W0.73600.40510.85400.077*
H2W0.58950.44090.83100.077*
O2W0.8076 (2)0.41714 (11)0.1272 (2)0.0741 (6)
H3W0.76370.38860.08110.089*
H4W0.90350.42140.11130.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03398 (17)0.02135 (15)0.0616 (2)0.00177 (12)0.01543 (13)0.00026 (13)
N10.056 (3)0.0281 (12)0.056 (3)0.0013 (15)0.020 (2)0.001 (2)
N1'0.056 (3)0.0281 (12)0.056 (3)0.0013 (15)0.020 (2)0.001 (2)
N20.0432 (11)0.0274 (10)0.0698 (14)0.0003 (8)0.0094 (10)0.0024 (9)
O10.0345 (8)0.0292 (8)0.0802 (12)0.0041 (7)0.0240 (8)0.0010 (8)
O20.0334 (8)0.0285 (8)0.0745 (12)0.0016 (6)0.0203 (8)0.0002 (8)
O30.0338 (9)0.0478 (11)0.0899 (14)0.0001 (8)0.0208 (9)0.0065 (10)
O40.0518 (11)0.0453 (11)0.1213 (17)0.0134 (9)0.0476 (11)0.0103 (11)
O50.107 (7)0.0272 (16)0.082 (12)0.009 (3)0.038 (10)0.002 (3)
O5'0.107 (7)0.0272 (16)0.082 (12)0.009 (3)0.038 (10)0.002 (3)
C10.0337 (11)0.0353 (12)0.0499 (14)0.0051 (9)0.0112 (10)0.0020 (10)
C20.0330 (11)0.0314 (12)0.0572 (15)0.0045 (9)0.0117 (10)0.0029 (10)
C30.0336 (12)0.0433 (14)0.0518 (14)0.0010 (10)0.0107 (10)0.0011 (11)
C40.0346 (13)0.0548 (16)0.0664 (17)0.0081 (11)0.0206 (12)0.0001 (13)
C50.0441 (14)0.0437 (14)0.0702 (17)0.0157 (12)0.0187 (12)0.0039 (13)
C60.0392 (12)0.0344 (12)0.0609 (15)0.0061 (10)0.0147 (11)0.0037 (11)
C70.052 (3)0.0304 (14)0.062 (6)0.0118 (19)0.016 (4)0.003 (3)
C7'0.052 (3)0.0304 (14)0.062 (6)0.0118 (19)0.016 (4)0.003 (3)
C80.0300 (11)0.0360 (12)0.0457 (13)0.0004 (9)0.0103 (10)0.0028 (10)
C90.0364 (12)0.0330 (12)0.0602 (15)0.0012 (10)0.0164 (11)0.0032 (11)
C100.0426 (14)0.0403 (14)0.0705 (18)0.0093 (11)0.0218 (12)0.0063 (12)
C110.0458 (15)0.0545 (17)0.088 (2)0.0060 (13)0.0344 (14)0.0147 (15)
C120.0460 (14)0.0447 (15)0.0782 (19)0.0008 (12)0.0267 (13)0.0157 (14)
C130.0365 (12)0.0346 (12)0.0556 (15)0.0002 (10)0.0116 (10)0.0079 (11)
C140.0408 (13)0.0344 (13)0.0700 (17)0.0026 (10)0.0133 (12)0.0108 (12)
C150.086 (3)0.0290 (18)0.077 (3)0.0026 (19)0.035 (3)0.002 (2)
C15'0.086 (3)0.0290 (18)0.077 (3)0.0026 (19)0.035 (3)0.002 (2)
C160.069 (4)0.0227 (19)0.057 (6)0.003 (2)0.012 (4)0.001 (4)
C16'0.069 (4)0.0227 (19)0.057 (6)0.003 (2)0.012 (4)0.001 (4)
C170.058 (3)0.0264 (13)0.075 (8)0.0046 (14)0.011 (5)0.005 (3)
C17'0.058 (3)0.0264 (13)0.075 (8)0.0046 (14)0.011 (5)0.005 (3)
O1W0.0493 (11)0.0433 (11)0.0997 (16)0.0012 (8)0.0081 (10)0.0162 (10)
O2W0.0406 (10)0.0589 (13)0.1241 (19)0.0093 (9)0.0197 (11)0.0314 (12)
Geometric parameters (Å, º) top
Ni1—O21.9129 (15)C6—C7'1.448 (10)
Ni1—O11.9262 (15)C7—H7A0.9300
Ni1—N21.9713 (19)C7'—H7B0.9300
Ni1—N11.980 (5)C8—C91.396 (3)
Ni1—N1'1.983 (7)C8—C131.404 (3)
N1—C71.290 (8)C9—C101.380 (3)
N1—C151.486 (6)C9—H90.9300
N1'—C7'1.300 (10)C10—C111.386 (3)
N1'—C15'1.474 (9)C11—C121.360 (4)
N2—C141.294 (3)C11—H110.9300
N2—C17'1.487 (12)C12—C131.407 (3)
N2—C171.498 (9)C12—H120.9300
O1—C11.322 (3)C13—C141.415 (3)
O2—C81.320 (2)C14—H140.9300
O3—C31.359 (3)C15—C161.505 (8)
O3—H3O0.8200C15—H15A0.9700
O4—C101.358 (3)C15—H15B0.9700
O4—H4O0.8200C15'—C16'1.481 (10)
O5—C161.433 (10)C15'—H15C0.9700
O5—H5OA0.8200C15'—H15D0.9700
O5'—C16'1.432 (13)C16—C171.466 (9)
O5'—H5OB0.8200C16—H16A0.9800
C1—C21.393 (3)C16'—C17'1.449 (12)
C1—C61.410 (3)C16'—H16B0.9800
C2—C31.378 (3)C17—H17A0.9700
C2—H20.9300C17—H17B0.9700
C3—C41.393 (3)C17'—H17C0.9700
C4—C51.350 (4)C17'—H17D0.9700
C4—H40.9300O1W—H1W0.8201
C5—C61.406 (3)O1W—H2W0.8200
C5—H50.9300O2W—H3W0.8200
C6—C71.413 (8)O2W—H4W0.8200
O2—Ni1—O180.63 (7)C10—C9—H9119.7
O2—Ni1—N293.08 (8)C8—C9—H9119.7
O1—Ni1—N2172.70 (7)O4—C10—C9122.5 (2)
O2—Ni1—N1170.11 (14)O4—C10—C11116.3 (2)
O1—Ni1—N190.86 (14)C9—C10—C11121.1 (2)
N2—Ni1—N195.06 (15)C12—C11—C10118.7 (2)
O2—Ni1—N1'161.6 (2)C12—C11—H11120.6
O1—Ni1—N1'92.43 (19)C10—C11—H11120.6
N2—Ni1—N1'94.7 (2)C11—C12—C13121.9 (2)
C7—N1—C15114.3 (5)C11—C12—H12119.0
C7—N1—Ni1124.4 (5)C13—C12—H12119.0
C15—N1—Ni1121.2 (3)C8—C13—C12119.0 (2)
C7'—N1'—C15'116.0 (7)C8—C13—C14123.9 (2)
C7'—N1'—Ni1122.6 (7)C12—C13—C14117.1 (2)
C15'—N1'—Ni1120.9 (5)N2—C14—C13128.7 (2)
C14—N2—C17'114.4 (7)N2—C14—H14115.6
C14—N2—C17110.0 (5)C13—C14—H14115.6
C14—N2—Ni1122.71 (16)N1—C15—C16111.4 (5)
C17'—N2—Ni1122.4 (7)N1—C15—H15A109.3
C17—N2—Ni1126.5 (5)C16—C15—H15A109.3
C1—O1—Ni1129.33 (14)N1—C15—H15B109.3
C8—O2—Ni1129.38 (14)C16—C15—H15B109.3
C3—O3—H3O109.5H15A—C15—H15B108.0
C10—O4—H4O109.5N1'—C15'—C16'112.8 (7)
C16—O5—H5OA109.6N1'—C15'—H15C109.0
C16'—O5'—H5OB109.2C16'—C15'—H15C109.0
O1—C1—C2119.4 (2)N1'—C15'—H15D109.0
O1—C1—C6122.2 (2)C16'—C15'—H15D109.0
C2—C1—C6118.4 (2)H15C—C15'—H15D107.8
C3—C2—C1120.7 (2)O5—C16—C17107 (2)
C3—C2—H2119.6O5—C16—C15105.8 (15)
C1—C2—H2119.6C17—C16—C15116.7 (8)
O3—C3—C2122.2 (2)O5—C16—H16A109.2
O3—C3—C4116.8 (2)C17—C16—H16A109.2
C2—C3—C4121.0 (2)C15—C16—H16A109.2
C5—C4—C3118.8 (2)O5'—C16'—C17'113 (3)
C5—C4—H4120.6O5'—C16'—C15'108 (3)
C3—C4—H4120.6C17'—C16'—C15'120.3 (10)
C4—C5—C6122.1 (2)O5'—C16'—H16B104.5
C4—C5—H5118.9C17'—C16'—H16B104.5
C6—C5—H5118.9C15'—C16'—H16B104.5
C5—C6—C1118.9 (2)C16—C17—N2113.2 (9)
C5—C6—C7117.7 (4)C16—C17—H17A108.9
C1—C6—C7122.8 (4)N2—C17—H17A108.9
C5—C6—C7'116.8 (5)C16—C17—H17B108.9
C1—C6—C7'122.1 (5)N2—C17—H17B108.9
N1—C7—C6127.7 (7)H17A—C17—H17B107.7
N1—C7—H7A116.1C16'—C17'—N2119.4 (13)
C6—C7—H7A116.1C16'—C17'—H17C107.5
N1'—C7'—C6128.1 (10)N2—C17'—H17C107.5
N1'—C7'—H7B115.9C16'—C17'—H17D107.5
C6—C7'—H7B115.9N2—C17'—H17D107.5
O2—C8—C9119.52 (19)H17C—C17'—H17D107.0
O2—C8—C13122.0 (2)H1W—O1W—H2W114.4
C9—C8—C13118.5 (2)H3W—O2W—H4W107.6
C10—C9—C8120.6 (2)
O1—Ni1—N1—C712.6 (5)Ni1—N1—C7—C62.5 (9)
N2—Ni1—N1—C7171.6 (5)C5—C6—C7—N1177.9 (5)
N1'—Ni1—N1—C781.7 (9)C1—C6—C7—N111.2 (8)
O1—Ni1—N1—C15173.2 (4)C7'—C6—C7—N184 (2)
N2—Ni1—N1—C152.6 (4)C15'—N1'—C7'—C6179.1 (8)
N1'—Ni1—N1—C1592.5 (8)Ni1—N1'—C7'—C69.5 (13)
O2—Ni1—N1'—C7'81.6 (9)C5—C6—C7'—N1'171.9 (8)
O1—Ni1—N1'—C7'14.4 (7)C1—C6—C7'—N1'8.9 (12)
N2—Ni1—N1'—C7'163.9 (7)C7—C6—C7'—N1'90 (2)
N1—Ni1—N1'—C7'71.9 (9)Ni1—O2—C8—C9172.50 (17)
O2—Ni1—N1'—C15'107.4 (7)Ni1—O2—C8—C136.3 (3)
O1—Ni1—N1'—C15'174.5 (5)O2—C8—C9—C10177.8 (2)
N2—Ni1—N1'—C15'7.2 (5)C13—C8—C9—C101.1 (4)
N1—Ni1—N1'—C15'99.1 (10)C8—C9—C10—O4174.1 (3)
O2—Ni1—N2—C140.8 (2)C8—C9—C10—C113.7 (4)
N1—Ni1—N2—C14175.2 (3)O4—C10—C11—C12175.0 (3)
N1'—Ni1—N2—C14162.4 (3)C9—C10—C11—C122.9 (5)
O2—Ni1—N2—C17'170.2 (9)C10—C11—C12—C130.4 (5)
N1—Ni1—N2—C17'4.2 (9)O2—C8—C13—C12179.1 (2)
N1'—Ni1—N2—C17'26.6 (9)C9—C8—C13—C122.1 (4)
O2—Ni1—N2—C17169.7 (6)O2—C8—C13—C143.0 (4)
N1—Ni1—N2—C1716.0 (6)C9—C8—C13—C14175.8 (2)
N1'—Ni1—N2—C176.4 (7)C11—C12—C13—C82.9 (4)
O2—Ni1—O1—C1169.3 (2)C11—C12—C13—C14175.2 (3)
N1—Ni1—O1—C115.8 (3)C17'—N2—C14—C13167.9 (8)
N1'—Ni1—O1—C16.5 (3)C17—N2—C14—C13174.3 (6)
O1—Ni1—O2—C8172.1 (2)Ni1—N2—C14—C133.8 (4)
N2—Ni1—O2—C84.1 (2)C8—C13—C14—N22.3 (5)
N1'—Ni1—O2—C8118.9 (6)C12—C13—C14—N2175.6 (3)
Ni1—O1—C1—C2171.24 (17)C7—N1—C15—C16133.4 (6)
Ni1—O1—C1—C68.0 (4)Ni1—N1—C15—C1641.3 (7)
O1—C1—C2—C3178.5 (2)C7'—N1'—C15'—C16'124.1 (9)
C6—C1—C2—C30.8 (4)Ni1—N1'—C15'—C16'47.5 (8)
C1—C2—C3—O3176.0 (2)N1—C15—C16—O5167.0 (19)
C1—C2—C3—C42.8 (4)N1—C15—C16—C1774.6 (9)
O3—C3—C4—C5176.4 (2)N1'—C15'—C16'—O5'165 (2)
C2—C3—C4—C52.4 (4)N1'—C15'—C16'—C17'63.0 (13)
C3—C4—C5—C60.0 (4)O5—C16—C17—N2172.5 (14)
C4—C5—C6—C12.0 (4)C15—C16—C17—N254.6 (11)
C4—C5—C6—C7173.2 (4)C14—N2—C17—C16163.7 (6)
C4—C5—C6—C7'161.6 (5)C17'—N2—C17—C1688 (4)
O1—C1—C6—C5179.2 (2)Ni1—N2—C17—C166.4 (11)
C2—C1—C6—C51.5 (4)O5'—C16'—C17'—N2157 (2)
O1—C1—C6—C78.4 (5)C15'—C16'—C17'—N227.0 (19)
C2—C1—C6—C7172.3 (4)C14—N2—C17'—C16'167.9 (10)
O1—C1—C6—C7'18.2 (6)C17—N2—C17'—C16'89 (4)
C2—C1—C6—C7'161.1 (5)Ni1—N2—C17'—C16'20.5 (17)
C15—N1—C7—C6177.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O20.821.962.770 (2)167
O1W—H1W···O10.822.533.087 (2)127
O1W—H2W···O4i0.822.182.951 (3)158
O2W—H3W···O1ii0.821.982.787 (3)168
O2W—H4W···O3iii0.822.042.837 (2)165
O3—H3O···O1Wiv0.821.872.665 (3)165
O4—H4O···O2Wv0.821.812.626 (3)171
O5—H5OA···O1Wvi0.821.972.78 (3)166
O5—H5OB···O1Wvi0.822.283.03 (4)151
Symmetry codes: (i) x1, y, z; (ii) x, y, z1; (iii) x+1, y, z1; (iv) x+1, y+1, z+2; (v) x+2, y+1, z+1; (vi) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O20.821.962.770 (2)167.4
O1W—H1W···O10.822.533.087 (2)126.8
O1W—H2W···O4i0.822.182.951 (3)157.6
O2W—H3W···O1ii0.821.982.787 (3)168.2
O2W—H4W···O3iii0.822.042.837 (2)164.7
O3—H3O···O1Wiv0.821.872.665 (3)164.5
O4—H4O···O2Wv0.821.812.626 (3)170.9
O5—H5OA···O1Wvi0.821.972.78 (3)166.3
O5'—H5OB···O1Wvi0.822.283.03 (4)151.3
Symmetry codes: (i) x1, y, z; (ii) x, y, z1; (iii) x+1, y, z1; (iv) x+1, y+1, z+2; (v) x+2, y+1, z+1; (vi) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the National Science Council of Taiwan for financial support. The authors also wish to acknowledge Dr Chiara Massera, Dipartimento di Chimica, Universita degli Studi di Parma Viale delle Scienze 17/A, 43124 Parma, Italy, for her kind help.

References

First citationAverseng, F., Lacroix, P. G., Malfant, I., Perisse, N., Lepetit, C. & Nakatani, K. (2001). Inorg. Chem. 40, 3797–3804.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDonmez, E., Kara, H., Karakas, A., Unver, H. & Elmali, A. (2007). Spectrochim. Acta A, 66, 1141–1146.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages m559-m560
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds