metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages m549-m550

Tris­[4-(di­methyl­amino)­pyridine][tris­(pyra­zol-1-yl)methane]­­ruthenium(II) bis­­(hexa­fluorido­phosphate) di­ethyl ether monosolvate

aSchool of Chemistry, University of Manchester, Manchester M13 9PL, UK
*Correspondence e-mail: b.coe@manchester.ac.uk

(Received 3 September 2013; accepted 11 September 2013; online 21 September 2013)

In the title compound, [Ru(C10H10N6)(C7H10N2)3](PF6)2·C4H10O, the RuII cation is coordinated by one tris­(1-pyrazol­yl)methane (Tpm) and three dimethylaminopyridine (dmap) ligands in a slightly distorted octa­hedral geometry. The asymmetric unit consists of one complex cation, two hexa­fluorido­phosphate anions and one diethyl ether solvent mol­ecule in general positions. Although quite a large number of ruthenium complexes of the facially coordinating tridentate Tpm ligand have been structurally characterized, this is only the second one containing three pyridyl co-ligands. The average Ru—N(Tpm) distance is 2.059 (12) Å, while the average Ru—N(dmap) [dmap = 4-(di­methyl­amino)­pyridine] distance is somewhat longer at 2.108 (13) Å. The orientation of the dmap ligands varies greatly, with dihedral angles between the pyridyl and opposite pyrazolyl rings of 14.3 (2), 23.2 (2) and 61.2 (2)°.

Related literature

For background to the synthesis, see: Llobet et al. (1988[Llobet, A., Doppelt, P. & Meyer, T. J. (1988). Inorg. Chem. 27, 514-520.]); Calvert et al. (1983[Calvert, J. M., Schmehl, R. H., Sullivan, B. P., Facci, J. S., Meyer, T. J. & Murray, R. W. (1983). Inorg. Chem. 22, 2151-2162.]). For examples of other structures of ruthenium complexes of the Tpm ligand, see: Llobet et al. (1989[Llobet, A., Curry, M. E., Evans, H. T. & Meyer, T. J. (1989). Inorg. Chem. 28, 3131-3137.]); Wilson & Nelson (2003[Wilson, D. C. & Nelson, J. H. (2003). J. Organomet. Chem. 682, 272-289.]); Katz et al. (2005[Katz, N. E., Romero, I., Llobet, A., Parella, T. & Benet-Buchholz, J. (2005). Eur. J. Inorg. Chem. pp. 272-277.]); Iengo et al. (2005[Iengo, E., Zangrando, E., Baiutti, E., Munini, F. & Alessio, E. (2005). Eur. J. Inorg. Chem. pp. 1019-1031.]); Foxon et al. (2007[Foxon, S. P., Metcalfe, C., Adams, H., Webb, M. & Thomas, J. A. (2007). Inorg. Chem. 46, 409-416.]); Kuzu et al. (2009[Kuzu, I., Nied, D. & Breher, F. (2009). Eur. J. Inorg. Chem. pp. 872-879.]); Waywell et al. (2010[Waywell, P., Gonzalez, V., Gill, M. R., Adams, H., Meijer, A. J. H. M., Williamson, M. P. & Thomas, J. A. (2010). Chem. Eur. J. 16, 2407-2417.]); Zagermann et al. (2011[Zagermann, J., Klein, K., Merz, K., Molon, M. & Metzler-Nolte, N. (2011). Eur. J. Inorg. Chem. pp. 4212-4219.]); De et al. (2011[De, P., Mondal, T. K., Mobin, S. M. & Lahiri, G. K. (2011). Inorg. Chim. Acta, 372, 250-258.]); Agarwala et al. (2011[Agarwala, H., Das, D., Mobin, S. M., Mondal, T. K. & Lahiri, G. K. (2011). Inorg. Chim. Acta, 374, 216-225.], 2013[Agarwala, H., Ehret, F., Chowdhury, A. D., Maji, S., Mobin, S. M., Kaim, W. & Lahiri, G. K. (2013). Dalton Trans. 42, 3721-3734.]); Serrano et al. (2011[Serrano, I., López, M. I., Ferrer, I., Poater, A., Parella, T., Fontrodona, X., Solà, M., Llobet, A., Rodríguez, M. & Romero, I. (2011). Inorg. Chem. 50, 6044-6054.]); Cadranel et al. (2012[Cadranel, A., Alborés, P., Yamazaki, S., Kleiman, V. D. & Baraldo, L. M. (2012). Dalton Trans. 41, 5343-5350.]). For examples of other structures of ruthenium complexes of the dmap ligand, see: Bonnet et al. (2003[Bonnet, S., Collin, J.-P., Gruber, N., Sauvage, J.-P. & Schofield, E. R. (2003). Dalton Trans. pp. 4654-4662.]); Rossi et al. (2008[Rossi, M. B., Piro, O. E., Castellano, E. E., Alborés, P. & Baraldo, L. M. (2008). Inorg. Chem. 47, 2416-2427.], 2010[Rossi, M. B., Abboud, K. A., Alborés, P. & Baraldo, L. M. (2010). Eur. J. Inorg. Chem. pp. 5613-5616.]); Mutoh et al. (2010[Mutoh, Y., Kozono, N., Araki, M., Tsuchida, N., Takano, K. & Ishii, Y. (2010). Organometallics, 29, 519-522.]); Dunbar et al. (2011[Dunbar, M. A., Balof, S. L., Roberts, A. N., Valente, E. J. & Schanz, H.-J. (2011). Organometallics, 30, 199-203.]). For the closest related structure, see: Laurent et al. (1999[Laurent, F., Plantalech, E., Donnadieu, B., Jiménez, A., Hernández, F., Martínez-Ripoll, M., Biner, M. & Llobet, A. (1999). Polyhedron, 18, 3321-3331.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C10H10N6)(C7H10N2)3](PF6)2·C4H10O

  • Mr = 1045.88

  • Triclinic, [P \overline 1]

  • a = 12.1005 (9) Å

  • b = 12.5711 (9) Å

  • c = 15.7032 (11) Å

  • α = 80.047 (1)°

  • β = 75.377 (1)°

  • γ = 71.449 (1)°

  • V = 2180.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.03 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 19049 measured reflections

  • 9932 independent reflections

  • 7805 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.114

  • S = 0.95

  • 9932 reflections

  • 576 parameters

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Selected bond lengths (Å)

N1—Ru1 2.122 (3)
N3—Ru1 2.097 (3)
N5—Ru1 2.104 (3)
N8—Ru1 2.071 (3)
N10—Ru1 2.048 (3)
N12—Ru1 2.059 (3)

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ruthenium complexes of the tris(1-pyrazolyl)methane (Tpm) ligand have been studied in a number of laboratories, and many examples have been structurally characterized (e.g. Llobet et al., 1989; Wilson & Nelson, 2003; Katz et al., 2005; Iengo et al., 2005; Foxon et al., 2007; Kuzu et al., 2009; Zagermann et al., 2011; De et al., 2011; Agarwala et al., 2011; Serrano et al., 2011; Cadranel et al., 2012; Agarwala et al., 2013). However, the only one featuring three pyridine (py) or pyridyl coligands is the complex salt [RuII(Tpm)(py)3][PF6]2 (Laurent et al., 1999), while [RuII(Tpm)(dppz)(3-NH2py)][PF6]2·2MeCN·0.5H2O (dppz = dipyrido[3,2-a:2',3'-c]phenazine) (Waywell et al., 2010) contains one chelating coligand.

The new compound (I) was synthesized simply by substituting all three chloride ligands in RuIIICl3(Tpm) (Llobet et al., 1988) with 4-(dimethylamino)pyridine (dmap) under reducing conditions, by adapting a method used previously to prepare [RuII(Tpm)(vpy)3][PF6]2 (vpy = 4-vinylpyridine) (Calvert et al., 1983). The isolated yield is reasonably high, while the blue colour is attributable to traces of the Ru(III) form of the complex which is rendered relatively electron-rich by the three dmap ligands. If a drop of ascorbic acid solution is added to an acetone solution of (I), the solution turns pale yellow immediately, indicating complete reduction to the Ru(II) species. The signals in the 1H NMR spectrum show no broadening, consistent with an adequately pure sample.

The complex salt (I) shows an intense, broad UV absorption band at λmax = 322 nm in acetonitrile. This absorption is attributable to dπ* metal-to-ligand charge-transfer (MLCT) transitions from the Ru-based HOMO to the LUMOs localized on the dmap ligands. An additional band at λmax = 264 nm is ascribed to ligand-based ππ* transitions, while a very weak band at λmax ca 590 nm is due to the blue-coloured Ru(III) form that disappears upon reduction with ascorbic acid. By way of comparison, the compound [RuII(Tpm)(py)3][PF6]2 shows a MLCT band at 344 nm in acetonitrile; this is red-shifted when compared with that for (I) because the py ligands are more strongly electron-accepting than dmap.

Cyclic voltammetric studies on (I) reveal a reversible RuIII/II wave at E1/2 = 0.75 V versus. Ag–AgCl, much lower than the value of 1.25 V for [RuII(Tpm)(py)3][PF6]2 recorded under the same conditions (acetonitrile, 0.1 M [N(n-Bu4)]PF6, 100 mv s-1, ferrocene/ferrocenium standard at 0.44 V). This difference reflects the strong electron-donating ability of the dimethylamino substituents.

The molecular structure of the complex cation in (I) is as indicated by 1NMR spectroscopy, with a facially coordinating Tpm ligand and a slightly distorted octahedral coordination geometry. The N(Tpm)–Ru–N(Tpm) angles cover the range ca 85.3–86.5°, and the other angles at the Ru centre show small deviations from the ideal values. The average Ru–N(Tpm) distance of 2.059 (5) Å is similar to that reported for [RuII(Tpm)(py)3][PF6]2 (2.074 (16) Å; Laurent et al., 1999). The average Ru–N(dmap) distance of 2.108 (5) Å is the same as that reported for [RuII(tpy)(phen)(dmap)][PF6]2 (tpy = 2,2';6',2''-terpyridine; phen = 1,10-phenanthroline) (2.107 (2) Å; Bonnet et al., 2003), but a little shorter than that found in [RuII(dmap)6]Cl2·6EtOH (2.131 (1) Å; Rossi et al., 2008). A significantly shorter average Ru–N(dmap) distance has been reported for the trinuclear complex in trans-[(dmap)4RuII{(µ-NC)OsIII(CN)5}2][PPh4]4.10H2O (2.089 (13) Å; Rossi et al., 2010). Considerably longer Ru–N(dmap) distances have been reported also, for example 2.333 (4) Å when positioned trans to a tellurocarbonyl ligand in trans,cis-RuIICl2(dmap)2(CTe)(H2IMes) (H2IMes = 1,3-dimesitylimidazolin-2-ylidene) (Mutoh et al., 2010), and as long as 2.338 (3) Å when located trans to a carbene ligand in trans,cis-RuIICl2(dmap)2(PCy3){CH(C6H4)-4-NMe2} (Dunbar et al., 2011).

The orientation of the dmap rings in (I) with respect to their opposite pyrazolyl rings is highly variable, with the following dihedral angles: 61.2° between N1/C1/C2/C3/C4/C5 and N9/N10/C26/C27/C28; 23.2° between N3/C8/C9/C10/C11/C12 and N11/N12/C29/C30/C31; 14.3° between N5/C15/C16/C17/C18/C19 and N7/N8/C23/C24/C25. A similar orientational variability of the py rings is found in [RuII(Tpm)(py)3][PF6]2, with corresponding dihedral angles of 70.0, 20.6 and 10.2° (Laurent et al., 1999).

Related literature top

For background to the synthesis, see: Llobet et al. (1988); Calvert et al. (1983). For examples of other structures of ruthenium complexes of the Tpm ligand, see: Llobet et al. (1989); Wilson & Nelson (2003); Katz et al. (2005); Iengo et al. (2005); Foxon et al. (2007); Kuzu et al. (2009); Waywell et al. (2010); Zagermann et al. (2011); De et al. (2011); Agarwala et al. (2011, 2013); Serrano et al. (2011); Cadranel et al. (2012). For examples of other structures of ruthenium complexes of the dmap ligand, see: Bonnet et al. (2003); Rossi et al. (2008, 2010); Mutoh et al. (2010); Dunbar et al. (2011). For the closest related structure, see: Laurent et al. (1999).

Experimental top

RuIIICl3(Tpm)·1.5H2O (123 mg, 0.274 mmol), dmap (344 mg, 2.812 mmol) and 3:1 ethanol/water (degassed, 20 cm3) were heated at reflux under N2 for 18 h. As the temperature increased, the brown suspension became a blue-green colour. After cooling to room temperature, the solution was evaporated to a minimum volume and 0.1 M aqueous NH4PF6 (5 cm3) was added. The light-blue precipitate was filtered off, then dissolved through the glass sinter in acetone, removing a white residue. The acetone solution was evaporated to a minimum volume and diethyl ether was added, forming a blue oil. The diethyl ether was decanted off and the oil was dissolved in dichloromethane and washed (5 times) with water. The green dichloromethane layer was dried over MgSO4 and filtered through celite. The filtrate was evaporated to a minimum volume and diethyl ether was added. The pale blue precipitate was filtered off, washed with diethyl ether and dried. Yield: 199 mg (73%). Analysis calculated for C31H40F12N12P2Ru·0.3CH2Cl2: C 37.7, H 4.1, N 16.9%; found: C 37.5, H 3.7, N 16.6%. Spectroscopic analysis, 1H NMR (300 MHz, CD3COCD3, δ, p.p.m.) 9.79 (1H, s, CH), 8.70 (3H, d, J = 2.9 Hz, C3H3N2), 7.86 (6H, d, J = 7.1 Hz, C5H4N), 7.75 (3H, d, J = 1.7 Hz, C3H3N2), 6.74–6.63 (9H, C3H3N2 + C5H4N), 3.10 (18H, s, Me). ES–MS m/z = 827 ({M – PF6-}+), 681 ({M – 2PF6-}+), 341 ({M – 2PF6-}2+). Single crystals (pale yellow but coated in blue oil) suitable for X-ray diffraction studies were grown by slow diffusion of diethyl ether vapour into an acetone solution at room temperature.

Refinement top

The structure was solved by direct methods. The H atoms were placed in calculated positions (methyl H atoms were allowed to rotate but not to tip) and were refined isotropically with Uiso(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H lengths of 0.95(CH), 0.99(CH2) & 0.98(CH3) Å.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
Tris[4-(dimethylamino)pyridine][tris(pyrazol-1-yl)methane]ruthenium(II) bis(hexafluoridophosphate) diethyl ether monosolvate top
Crystal data top
[Ru(C10H10N6)(C7H10N2)3](PF6)2·C4H10OZ = 2
Mr = 1045.88F(000) = 1068
Triclinic, P1Dx = 1.593 Mg m3
a = 12.1005 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5711 (9) ÅCell parameters from 3615 reflections
c = 15.7032 (11) Åθ = 2.5–26.4°
α = 80.047 (1)°µ = 0.53 mm1
β = 75.377 (1)°T = 100 K
γ = 71.449 (1)°Plate, white
V = 2180.1 (3) Å30.30 × 0.10 × 0.03 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7805 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 28.3°, θmin = 1.7°
phi and ω scansh = 1515
19049 measured reflectionsk = 1616
9932 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0406P)2]
where P = (Fo2 + 2Fc2)/3
9932 reflections(Δ/σ)max = 0.001
576 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Ru(C10H10N6)(C7H10N2)3](PF6)2·C4H10Oγ = 71.449 (1)°
Mr = 1045.88V = 2180.1 (3) Å3
Triclinic, P1Z = 2
a = 12.1005 (9) ÅMo Kα radiation
b = 12.5711 (9) ŵ = 0.53 mm1
c = 15.7032 (11) ÅT = 100 K
α = 80.047 (1)°0.30 × 0.10 × 0.03 mm
β = 75.377 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7805 reflections with I > 2σ(I)
19049 measured reflectionsRint = 0.051
9932 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.95Δρmax = 1.03 e Å3
9932 reflectionsΔρmin = 0.98 e Å3
576 parameters
Special details top

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7382 (4)0.1177 (3)0.5113 (2)0.0248 (9)
H10.75830.18060.52200.030*
C20.7017 (4)0.0496 (3)0.5832 (3)0.0275 (9)
H20.69810.06590.64090.033*
C30.6696 (3)0.0442 (3)0.5727 (3)0.0234 (9)
C40.6752 (4)0.0577 (3)0.4850 (3)0.0246 (9)
H40.65220.11800.47260.030*
C50.7135 (3)0.0148 (3)0.4170 (2)0.0229 (9)
H50.71600.00180.35860.027*
C60.6289 (4)0.0952 (4)0.7321 (3)0.0379 (11)
H6A0.70680.09170.73700.057*
H6B0.60750.15690.77340.057*
H6C0.56850.02370.74620.057*
C70.5928 (4)0.2053 (4)0.6294 (3)0.0377 (11)
H7A0.51940.17340.60670.057*
H7B0.57670.25090.68580.057*
H7C0.65380.25290.58670.057*
C81.0074 (3)0.0062 (3)0.3353 (3)0.0218 (8)
H80.96460.01090.39490.026*
C91.1044 (3)0.0934 (3)0.3096 (3)0.0222 (8)
H91.12660.15670.35110.027*
C101.1722 (3)0.0919 (3)0.2237 (3)0.0225 (8)
C111.1297 (3)0.0029 (3)0.1662 (3)0.0248 (9)
H111.16950.00840.10590.030*
C121.0311 (3)0.0871 (3)0.1973 (2)0.0206 (8)
H121.00520.15020.15670.025*
C131.3138 (4)0.2704 (3)0.2609 (3)0.0307 (10)
H13A1.31590.24190.31460.046*
H13B1.39410.31540.23490.046*
H13C1.25940.31750.27590.046*
C141.3387 (4)0.1768 (4)0.1074 (3)0.0469 (13)
H14A1.28440.16490.06750.070*
H14B1.39960.24960.09980.070*
H14C1.37730.11630.09360.070*
C150.8290 (3)0.3890 (3)0.4188 (3)0.0211 (8)
H150.77410.43590.38440.025*
C160.8523 (3)0.4366 (3)0.4819 (2)0.0221 (8)
H160.81350.51380.49020.027*
C170.9334 (3)0.3716 (3)0.5346 (3)0.0249 (9)
C180.9956 (3)0.2630 (3)0.5096 (3)0.0250 (9)
H181.05900.21760.53700.030*
C190.9656 (3)0.2218 (3)0.4458 (2)0.0216 (8)
H191.00910.14730.43170.026*
C200.8716 (4)0.5209 (4)0.6324 (3)0.0329 (10)
H20A0.87800.58110.58430.049*
H20B0.89470.53660.68340.049*
H20C0.78920.51700.64950.049*
C211.0310 (4)0.3439 (4)0.6590 (3)0.0396 (12)
H21A0.99260.29180.70020.059*
H21B1.05010.39230.69240.059*
H21C1.10460.30090.62220.059*
C220.6585 (3)0.3694 (3)0.1915 (2)0.0188 (8)
H220.60960.42060.14990.023*
C230.7489 (4)0.0752 (3)0.1931 (2)0.0250 (9)
H230.78970.00100.21380.030*
C240.6901 (4)0.1006 (3)0.1235 (3)0.0291 (10)
H240.68310.04890.08900.035*
C250.6447 (3)0.2147 (3)0.1149 (3)0.0236 (9)
H250.59960.25840.07280.028*
C260.9455 (3)0.3760 (3)0.1926 (2)0.0205 (8)
H261.01770.34980.21350.025*
C270.9210 (4)0.4656 (3)0.1276 (3)0.0239 (9)
H270.97140.51060.09690.029*
C280.8095 (4)0.4752 (3)0.1172 (2)0.0230 (9)
H280.76660.52920.07790.028*
C290.5636 (3)0.3661 (3)0.4219 (3)0.0208 (8)
H290.57350.33990.48080.025*
C300.4624 (3)0.4454 (3)0.3999 (3)0.0259 (9)
H300.39250.48270.43940.031*
C310.4845 (3)0.4584 (3)0.3095 (3)0.0248 (9)
H310.43220.50650.27360.030*
C320.0178 (5)0.1634 (5)0.9442 (4)0.0647 (17)
H32A0.02430.10480.90400.097*
H32B0.08810.21360.92290.097*
H32C0.04300.12811.00360.097*
C330.0611 (5)0.2281 (4)0.9471 (4)0.0560 (15)
H33A0.08450.26580.88740.067*
H33B0.01850.28730.98770.067*
C340.2419 (5)0.2204 (4)0.9812 (4)0.0560 (16)
H34A0.19990.27741.02380.067*
H34B0.26500.26040.92250.067*
C350.3515 (5)0.1424 (5)1.0105 (4)0.0682 (18)
H35A0.32810.09981.06700.102*
H35B0.40160.18661.01780.102*
H35C0.39630.09000.96580.102*
F10.4903 (2)0.2958 (2)0.63159 (16)0.0468 (7)
F20.4247 (3)0.1426 (2)0.6560 (2)0.0637 (9)
F30.2520 (2)0.2383 (3)0.7375 (2)0.0811 (12)
F40.3175 (3)0.3913 (3)0.7116 (2)0.0787 (11)
F50.3163 (2)0.3063 (2)0.59690 (17)0.0450 (7)
F60.4260 (2)0.2253 (3)0.77040 (17)0.0532 (8)
F70.4333 (2)0.5084 (2)0.11112 (17)0.0446 (7)
F80.3946 (2)0.3930 (2)0.03370 (17)0.0482 (7)
F90.1992 (2)0.4556 (2)0.09274 (17)0.0458 (7)
F100.2368 (2)0.5714 (2)0.16910 (17)0.0455 (7)
F110.3025 (2)0.5791 (2)0.02154 (15)0.0354 (6)
F120.3306 (3)0.3853 (2)0.18237 (17)0.0495 (8)
N10.7480 (3)0.1031 (3)0.4263 (2)0.0194 (7)
N20.6349 (3)0.1148 (3)0.6426 (2)0.0284 (8)
N30.9678 (3)0.0875 (3)0.2810 (2)0.0195 (7)
N41.2724 (3)0.1759 (3)0.1975 (2)0.0296 (8)
N50.8787 (3)0.2796 (3)0.4016 (2)0.0203 (7)
N60.9507 (3)0.4134 (3)0.6027 (2)0.0300 (8)
N70.6755 (3)0.2541 (2)0.1773 (2)0.0189 (7)
N80.7408 (3)0.1685 (3)0.2272 (2)0.0194 (7)
N90.7719 (3)0.3937 (3)0.1732 (2)0.0180 (7)
N100.8545 (3)0.3320 (3)0.2215 (2)0.0197 (7)
N110.5944 (3)0.3900 (2)0.2808 (2)0.0176 (7)
N120.6450 (3)0.3315 (3)0.3498 (2)0.0189 (7)
O10.1650 (3)0.1576 (3)0.9763 (2)0.0442 (8)
P10.37068 (10)0.26663 (11)0.68477 (8)0.0332 (3)
P20.31577 (10)0.48166 (9)0.10162 (7)0.0247 (2)
Ru10.80863 (3)0.21377 (3)0.31963 (2)0.01498 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (2)0.028 (2)0.018 (2)0.0160 (19)0.0042 (17)0.0023 (17)
C20.037 (3)0.034 (2)0.016 (2)0.019 (2)0.0055 (18)0.0012 (18)
C30.019 (2)0.027 (2)0.022 (2)0.0071 (17)0.0044 (16)0.0026 (17)
C40.031 (2)0.020 (2)0.026 (2)0.0109 (18)0.0069 (18)0.0029 (17)
C50.027 (2)0.026 (2)0.0153 (19)0.0056 (18)0.0050 (16)0.0056 (16)
C60.054 (3)0.043 (3)0.024 (2)0.029 (2)0.009 (2)0.008 (2)
C70.056 (3)0.030 (2)0.035 (3)0.025 (2)0.011 (2)0.003 (2)
C80.021 (2)0.022 (2)0.021 (2)0.0054 (16)0.0062 (16)0.0020 (16)
C90.025 (2)0.0164 (19)0.023 (2)0.0013 (16)0.0100 (17)0.0016 (16)
C100.020 (2)0.022 (2)0.027 (2)0.0040 (16)0.0076 (17)0.0049 (17)
C110.022 (2)0.025 (2)0.021 (2)0.0012 (17)0.0025 (17)0.0008 (17)
C120.021 (2)0.021 (2)0.0153 (19)0.0019 (16)0.0065 (16)0.0029 (16)
C130.028 (2)0.024 (2)0.037 (3)0.0013 (18)0.0105 (19)0.0026 (19)
C140.043 (3)0.039 (3)0.036 (3)0.006 (2)0.009 (2)0.004 (2)
C150.0135 (18)0.025 (2)0.026 (2)0.0067 (16)0.0069 (16)0.0018 (17)
C160.0162 (19)0.025 (2)0.024 (2)0.0071 (16)0.0005 (16)0.0036 (17)
C170.021 (2)0.034 (2)0.021 (2)0.0157 (18)0.0018 (17)0.0021 (18)
C180.021 (2)0.027 (2)0.026 (2)0.0066 (17)0.0096 (17)0.0074 (18)
C190.021 (2)0.021 (2)0.021 (2)0.0051 (16)0.0050 (16)0.0050 (16)
C200.028 (2)0.046 (3)0.027 (2)0.015 (2)0.0007 (19)0.013 (2)
C210.044 (3)0.051 (3)0.035 (3)0.026 (2)0.020 (2)0.007 (2)
C220.0185 (19)0.0182 (19)0.0179 (19)0.0011 (15)0.0056 (15)0.0023 (15)
C230.031 (2)0.019 (2)0.020 (2)0.0052 (17)0.0036 (17)0.0017 (16)
C240.046 (3)0.024 (2)0.021 (2)0.015 (2)0.0078 (19)0.0037 (17)
C250.026 (2)0.028 (2)0.020 (2)0.0103 (18)0.0089 (17)0.0015 (17)
C260.0173 (19)0.024 (2)0.0175 (19)0.0034 (16)0.0022 (15)0.0016 (16)
C270.028 (2)0.024 (2)0.020 (2)0.0105 (18)0.0037 (17)0.0002 (17)
C280.031 (2)0.0153 (19)0.021 (2)0.0039 (17)0.0084 (17)0.0029 (16)
C290.019 (2)0.025 (2)0.020 (2)0.0107 (17)0.0009 (16)0.0037 (16)
C300.016 (2)0.027 (2)0.035 (2)0.0058 (17)0.0015 (17)0.0104 (19)
C310.0157 (19)0.019 (2)0.037 (2)0.0006 (16)0.0072 (17)0.0050 (18)
C320.064 (4)0.051 (4)0.078 (4)0.001 (3)0.031 (3)0.008 (3)
C330.082 (4)0.030 (3)0.047 (3)0.010 (3)0.010 (3)0.003 (2)
C340.080 (4)0.037 (3)0.050 (3)0.033 (3)0.015 (3)0.014 (3)
C350.069 (4)0.065 (4)0.085 (5)0.043 (4)0.005 (4)0.016 (4)
F10.0441 (17)0.072 (2)0.0310 (15)0.0305 (15)0.0070 (13)0.0029 (14)
F20.069 (2)0.0452 (19)0.084 (2)0.0043 (16)0.0411 (19)0.0128 (17)
F30.0309 (17)0.146 (3)0.055 (2)0.033 (2)0.0158 (15)0.044 (2)
F40.092 (3)0.060 (2)0.063 (2)0.0124 (19)0.010 (2)0.0282 (18)
F50.0372 (16)0.0582 (18)0.0358 (15)0.0088 (14)0.0133 (13)0.0038 (14)
F60.0439 (17)0.087 (2)0.0326 (16)0.0264 (16)0.0167 (13)0.0107 (15)
F70.0339 (15)0.0624 (19)0.0471 (17)0.0187 (14)0.0236 (13)0.0003 (14)
F80.0586 (19)0.0390 (16)0.0414 (17)0.0108 (14)0.0025 (14)0.0148 (13)
F90.0405 (16)0.0616 (19)0.0482 (17)0.0324 (14)0.0149 (13)0.0022 (14)
F100.0530 (18)0.0419 (16)0.0365 (16)0.0129 (14)0.0033 (13)0.0113 (13)
F110.0413 (15)0.0402 (15)0.0302 (14)0.0187 (12)0.0179 (12)0.0105 (12)
F120.071 (2)0.0390 (16)0.0378 (16)0.0171 (15)0.0236 (15)0.0167 (13)
N10.0181 (16)0.0179 (16)0.0202 (17)0.0031 (13)0.0032 (13)0.0024 (13)
N20.038 (2)0.0274 (19)0.0232 (19)0.0166 (16)0.0074 (16)0.0036 (15)
N30.0191 (17)0.0204 (17)0.0162 (16)0.0011 (13)0.0062 (13)0.0002 (13)
N40.029 (2)0.0246 (19)0.0260 (19)0.0021 (15)0.0030 (15)0.0007 (15)
N50.0219 (17)0.0219 (17)0.0161 (16)0.0080 (14)0.0054 (13)0.0058 (13)
N60.030 (2)0.037 (2)0.028 (2)0.0152 (17)0.0107 (16)0.0010 (17)
N70.0199 (17)0.0173 (16)0.0184 (17)0.0016 (13)0.0083 (13)0.0005 (13)
N80.0199 (17)0.0186 (16)0.0148 (16)0.0018 (13)0.0024 (13)0.0016 (13)
N90.0180 (16)0.0180 (16)0.0180 (16)0.0046 (13)0.0066 (13)0.0011 (13)
N100.0162 (16)0.0203 (17)0.0206 (17)0.0014 (13)0.0079 (13)0.0016 (13)
N110.0149 (16)0.0192 (16)0.0183 (16)0.0028 (13)0.0058 (13)0.0018 (13)
N120.0191 (17)0.0201 (17)0.0174 (16)0.0048 (13)0.0044 (13)0.0023 (13)
O10.059 (2)0.0349 (19)0.040 (2)0.0188 (17)0.0111 (17)0.0052 (15)
P10.0269 (6)0.0413 (7)0.0265 (6)0.0052 (5)0.0055 (5)0.0007 (5)
P20.0261 (6)0.0282 (6)0.0216 (6)0.0085 (5)0.0097 (5)0.0010 (5)
Ru10.01359 (15)0.01514 (15)0.01397 (15)0.00199 (11)0.00331 (11)0.00089 (11)
Geometric parameters (Å, º) top
C1—N11.348 (5)C22—N91.447 (4)
C1—C21.362 (5)C22—H221.0000
C1—H10.9500C23—N81.338 (5)
C2—C31.400 (5)C23—C241.389 (5)
C2—H20.9500C23—H230.9500
C3—N21.354 (5)C24—C251.358 (5)
C3—C41.399 (5)C24—H240.9500
C4—C51.367 (5)C25—N71.348 (4)
C4—H40.9500C25—H250.9500
C5—N11.346 (5)C26—N101.333 (4)
C5—H50.9500C26—C271.393 (5)
C6—N21.448 (5)C26—H260.9500
C6—H6A0.9800C27—C281.365 (5)
C6—H6B0.9800C27—H270.9500
C6—H6C0.9800C28—N91.347 (4)
C7—N21.450 (5)C28—H280.9500
C7—H7A0.9800C29—N121.333 (4)
C7—H7B0.9800C29—C301.389 (5)
C7—H7C0.9800C29—H290.9500
C8—C91.355 (5)C30—C311.368 (5)
C8—N31.358 (4)C30—H300.9500
C8—H80.9500C31—N111.347 (4)
C9—C101.391 (5)C31—H310.9500
C9—H90.9500C32—C331.451 (7)
C10—N41.356 (5)C32—H32A0.9800
C10—C111.405 (5)C32—H32B0.9800
C11—C121.365 (5)C32—H32C0.9800
C11—H110.9500C33—O11.421 (6)
C12—N31.343 (4)C33—H33A0.9900
C12—H120.9500C33—H33B0.9900
C13—N41.455 (5)C34—O11.421 (6)
C13—H13A0.9800C34—C351.501 (7)
C13—H13B0.9800C34—H34A0.9900
C13—H13C0.9800C34—H34B0.9900
C14—N41.440 (5)C35—H35A0.9800
C14—H14A0.9800C35—H35B0.9800
C14—H14B0.9800C35—H35C0.9800
C14—H14C0.9800F1—P11.597 (3)
C15—N51.358 (5)F2—P11.584 (3)
C15—C161.369 (5)F3—P11.580 (3)
C15—H150.9500F4—P11.580 (3)
C16—C171.408 (5)F5—P11.612 (3)
C16—H160.9500F6—P11.587 (3)
C17—N61.357 (5)F7—P21.608 (3)
C17—C181.403 (5)F8—P21.584 (3)
C18—C191.374 (5)F9—P21.590 (3)
C18—H180.9500F10—P21.589 (3)
C19—N51.350 (4)F11—P21.598 (2)
C19—H190.9500F12—P21.598 (3)
C20—N61.459 (5)N1—Ru12.122 (3)
C20—H20A0.9800N3—Ru12.097 (3)
C20—H20B0.9800N5—Ru12.104 (3)
C20—H20C0.9800N7—N81.370 (4)
C21—N61.454 (5)N8—Ru12.071 (3)
C21—H21A0.9800N9—N101.364 (4)
C21—H21B0.9800N10—Ru12.048 (3)
C21—H21C0.9800N11—N121.365 (4)
C22—N111.443 (4)N12—Ru12.059 (3)
C22—N71.446 (5)
N1—C1—C2125.4 (4)C29—C30—H30127.2
N1—C1—H1117.3N11—C31—C30107.1 (3)
C2—C1—H1117.3N11—C31—H31126.5
C1—C2—C3120.5 (4)C30—C31—H31126.5
C1—C2—H2119.7C33—C32—H32A109.5
C3—C2—H2119.7C33—C32—H32B109.5
N2—C3—C2122.1 (4)H32A—C32—H32B109.5
N2—C3—C4123.4 (4)C33—C32—H32C109.5
C2—C3—C4114.5 (4)H32A—C32—H32C109.5
C5—C4—C3120.7 (4)H32B—C32—H32C109.5
C5—C4—H4119.6O1—C33—C32111.0 (4)
C3—C4—H4119.6O1—C33—H33A109.4
N1—C5—C4125.0 (4)C32—C33—H33A109.4
N1—C5—H5117.5O1—C33—H33B109.4
C4—C5—H5117.5C32—C33—H33B109.4
N2—C6—H6A109.5H33A—C33—H33B108.0
N2—C6—H6B109.5O1—C34—C35109.8 (4)
H6A—C6—H6B109.5O1—C34—H34A109.7
N2—C6—H6C109.5C35—C34—H34A109.7
H6A—C6—H6C109.5O1—C34—H34B109.7
H6B—C6—H6C109.5C35—C34—H34B109.7
N2—C7—H7A109.5H34A—C34—H34B108.2
N2—C7—H7B109.5C34—C35—H35A109.5
H7A—C7—H7B109.5C34—C35—H35B109.5
N2—C7—H7C109.5H35A—C35—H35B109.5
H7A—C7—H7C109.5C34—C35—H35C109.5
H7B—C7—H7C109.5H35A—C35—H35C109.5
C9—C8—N3123.9 (4)H35B—C35—H35C109.5
C9—C8—H8118.0C5—N1—C1113.7 (3)
N3—C8—H8118.0C5—N1—Ru1124.4 (3)
C8—C9—C10121.3 (4)C1—N1—Ru1121.9 (2)
C8—C9—H9119.4C3—N2—C7120.2 (3)
C10—C9—H9119.4C3—N2—C6120.8 (3)
N4—C10—C9122.3 (4)C7—N2—C6118.8 (3)
N4—C10—C11122.5 (4)C12—N3—C8114.7 (3)
C9—C10—C11115.3 (3)C12—N3—Ru1122.1 (2)
C12—C11—C10119.8 (4)C8—N3—Ru1122.8 (2)
C12—C11—H11120.1C10—N4—C14122.0 (3)
C10—C11—H11120.1C10—N4—C13119.9 (3)
N3—C12—C11125.0 (3)C14—N4—C13118.1 (3)
N3—C12—H12117.5C19—N5—C15114.1 (3)
C11—C12—H12117.5C19—N5—Ru1126.5 (3)
N4—C13—H13A109.5C15—N5—Ru1119.2 (2)
N4—C13—H13B109.5C17—N6—C21121.2 (4)
H13A—C13—H13B109.5C17—N6—C20120.2 (3)
N4—C13—H13C109.5C21—N6—C20117.4 (4)
H13A—C13—H13C109.5C25—N7—N8111.6 (3)
H13B—C13—H13C109.5C25—N7—C22129.3 (3)
N4—C14—H14A109.5N8—N7—C22118.8 (3)
N4—C14—H14B109.5C23—N8—N7104.1 (3)
H14A—C14—H14B109.5C23—N8—Ru1138.5 (3)
N4—C14—H14C109.5N7—N8—Ru1117.2 (2)
H14A—C14—H14C109.5C28—N9—N10111.6 (3)
H14B—C14—H14C109.5C28—N9—C22129.7 (3)
N5—C15—C16124.8 (4)N10—N9—C22118.5 (3)
N5—C15—H15117.6C26—N10—N9104.7 (3)
C16—C15—H15117.6C26—N10—Ru1137.0 (3)
C15—C16—C17120.3 (4)N9—N10—Ru1118.0 (2)
C15—C16—H16119.9C31—N11—N12111.4 (3)
C17—C16—H16119.9C31—N11—C22129.4 (3)
N6—C17—C18123.5 (4)N12—N11—C22119.2 (3)
N6—C17—C16121.7 (4)C29—N12—N11104.7 (3)
C18—C17—C16114.8 (4)C29—N12—Ru1137.9 (3)
C19—C18—C17120.5 (4)N11—N12—Ru1117.2 (2)
C19—C18—H18119.8C33—O1—C34111.6 (4)
C17—C18—H18119.8F4—P1—F390.4 (2)
N5—C19—C18124.7 (4)F4—P1—F2178.9 (2)
N5—C19—H19117.7F3—P1—F290.3 (2)
C18—C19—H19117.7F4—P1—F691.35 (18)
N6—C20—H20A109.5F3—P1—F690.14 (15)
N6—C20—H20B109.5F2—P1—F689.47 (17)
H20A—C20—H20B109.5F4—P1—F189.37 (19)
N6—C20—H20C109.5F3—P1—F1179.8 (2)
H20A—C20—H20C109.5F2—P1—F189.91 (17)
H20B—C20—H20C109.5F6—P1—F189.88 (14)
N6—C21—H21A109.5F4—P1—F589.74 (17)
N6—C21—H21B109.5F3—P1—F590.22 (15)
H21A—C21—H21B109.5F2—P1—F589.44 (16)
N6—C21—H21C109.5F6—P1—F5178.85 (18)
H21A—C21—H21C109.5F1—P1—F589.76 (14)
H21B—C21—H21C109.5F8—P2—F10179.54 (16)
N11—C22—N7110.1 (3)F8—P2—F989.91 (16)
N11—C22—N9110.9 (3)F10—P2—F990.15 (15)
N7—C22—N9110.7 (3)F8—P2—F1290.61 (15)
N11—C22—H22108.3F10—P2—F1289.85 (15)
N7—C22—H22108.3F9—P2—F1290.19 (15)
N9—C22—H22108.3F8—P2—F1189.81 (14)
N8—C23—C24111.3 (4)F10—P2—F1189.73 (14)
N8—C23—H23124.3F9—P2—F1190.88 (13)
C24—C23—H23124.3F12—P2—F11178.86 (15)
C25—C24—C23105.8 (4)F8—P2—F790.42 (16)
C25—C24—H24127.1F10—P2—F789.52 (15)
C23—C24—H24127.1F9—P2—F7179.66 (18)
N7—C25—C24107.2 (3)F12—P2—F789.72 (15)
N7—C25—H25126.4F11—P2—F789.21 (14)
C24—C25—H25126.4N10—Ru1—N1286.48 (12)
N10—C26—C27111.0 (3)N10—Ru1—N885.34 (12)
N10—C26—H26124.5N12—Ru1—N886.28 (12)
C27—C26—H26124.5N10—Ru1—N393.90 (12)
C28—C27—C26105.8 (3)N12—Ru1—N3174.30 (12)
C28—C27—H27127.1N8—Ru1—N388.08 (12)
C26—C27—H27127.1N10—Ru1—N587.03 (12)
N9—C28—C27106.9 (3)N12—Ru1—N591.45 (12)
N9—C28—H28126.5N8—Ru1—N5172.16 (12)
C27—C28—H28126.5N3—Ru1—N594.25 (12)
N12—C29—C30111.3 (4)N10—Ru1—N1174.85 (12)
N12—C29—H29124.4N12—Ru1—N188.56 (12)
C30—C29—H29124.4N8—Ru1—N195.73 (12)
C31—C30—C29105.5 (3)N3—Ru1—N191.17 (11)
C31—C30—H30127.2N5—Ru1—N191.71 (12)
N1—C1—C2—C30.5 (7)C30—C31—N11—C22177.8 (3)
C1—C2—C3—N2178.9 (4)N7—C22—N11—C31113.9 (4)
C1—C2—C3—C41.8 (6)N9—C22—N11—C31123.2 (4)
N2—C3—C4—C5178.5 (4)N7—C22—N11—N1263.2 (4)
C2—C3—C4—C52.1 (6)N9—C22—N11—N1259.8 (4)
C3—C4—C5—N10.2 (6)C30—C29—N12—N110.0 (4)
N3—C8—C9—C100.6 (6)C30—C29—N12—Ru1174.8 (3)
C8—C9—C10—N4177.2 (4)C31—N11—N12—C290.4 (4)
C8—C9—C10—C112.6 (6)C22—N11—N12—C29177.9 (3)
N4—C10—C11—C12177.2 (4)C31—N11—N12—Ru1175.7 (2)
C9—C10—C11—C122.5 (6)C22—N11—N12—Ru11.8 (4)
C10—C11—C12—N30.5 (6)C32—C33—O1—C34178.8 (5)
N5—C15—C16—C170.3 (6)C35—C34—O1—C33178.8 (4)
C15—C16—C17—N6174.2 (3)C26—N10—Ru1—N12131.7 (4)
C15—C16—C17—C187.3 (5)N9—N10—Ru1—N1241.4 (3)
N6—C17—C18—C19173.5 (4)C26—N10—Ru1—N8141.7 (4)
C16—C17—C18—C198.0 (5)N9—N10—Ru1—N845.1 (3)
C17—C18—C19—N51.2 (6)C26—N10—Ru1—N354.0 (4)
N8—C23—C24—C250.2 (5)N9—N10—Ru1—N3132.9 (3)
C23—C24—C25—N70.2 (5)C26—N10—Ru1—N540.1 (4)
N10—C26—C27—C280.1 (5)N9—N10—Ru1—N5133.0 (3)
C26—C27—C28—N90.6 (4)C26—N10—Ru1—N1116.1 (13)
N12—C29—C30—C310.3 (4)N9—N10—Ru1—N157.1 (15)
C29—C30—C31—N110.5 (4)C29—N12—Ru1—N10142.1 (4)
C4—C5—N1—C12.0 (6)N11—N12—Ru1—N1043.5 (2)
C4—C5—N1—Ru1179.4 (3)C29—N12—Ru1—N8132.4 (4)
C2—C1—N1—C52.4 (6)N11—N12—Ru1—N842.0 (2)
C2—C1—N1—Ru1179.0 (3)C29—N12—Ru1—N3123.9 (12)
C2—C3—N2—C7174.8 (4)N11—N12—Ru1—N350.5 (13)
C4—C3—N2—C74.5 (6)C29—N12—Ru1—N555.1 (4)
C2—C3—N2—C60.3 (6)N11—N12—Ru1—N5130.4 (2)
C4—C3—N2—C6178.9 (4)C29—N12—Ru1—N136.5 (4)
C11—C12—N3—C81.6 (6)N11—N12—Ru1—N1137.9 (3)
C11—C12—N3—Ru1174.3 (3)C23—N8—Ru1—N10128.6 (4)
C9—C8—N3—C121.5 (6)N7—N8—Ru1—N1044.0 (2)
C9—C8—N3—Ru1174.2 (3)C23—N8—Ru1—N12144.6 (4)
C9—C10—N4—C14176.7 (4)N7—N8—Ru1—N1242.8 (2)
C11—C10—N4—C143.5 (6)C23—N8—Ru1—N334.5 (4)
C9—C10—N4—C131.6 (6)N7—N8—Ru1—N3138.1 (3)
C11—C10—N4—C13178.2 (4)C23—N8—Ru1—N5142.0 (8)
C18—C19—N5—C156.4 (5)N7—N8—Ru1—N530.6 (10)
C18—C19—N5—Ru1168.9 (3)C23—N8—Ru1—N156.5 (4)
C16—C15—N5—C197.2 (5)N7—N8—Ru1—N1131.0 (2)
C16—C15—N5—Ru1168.5 (3)C12—N3—Ru1—N1026.3 (3)
C18—C17—N6—C214.2 (6)C8—N3—Ru1—N10161.6 (3)
C16—C17—N6—C21177.5 (4)C12—N3—Ru1—N1267.3 (13)
C18—C17—N6—C20171.7 (4)C8—N3—Ru1—N12104.8 (12)
C16—C17—N6—C2010.0 (6)C12—N3—Ru1—N858.9 (3)
C24—C25—N7—N80.1 (4)C8—N3—Ru1—N8113.2 (3)
C24—C25—N7—C22173.9 (4)C12—N3—Ru1—N5113.6 (3)
N11—C22—N7—C25124.6 (4)C8—N3—Ru1—N574.2 (3)
N9—C22—N7—C25112.3 (4)C12—N3—Ru1—N1154.6 (3)
N11—C22—N7—N862.0 (4)C8—N3—Ru1—N117.6 (3)
N9—C22—N7—N861.1 (4)C19—N5—Ru1—N10123.4 (3)
C24—C23—N8—N70.1 (4)C15—N5—Ru1—N1061.5 (3)
C24—C23—N8—Ru1173.3 (3)C19—N5—Ru1—N12150.2 (3)
C25—N7—N8—C230.0 (4)C15—N5—Ru1—N1224.9 (3)
C22—N7—N8—C23174.5 (3)C19—N5—Ru1—N8136.8 (8)
C25—N7—N8—Ru1174.9 (2)C15—N5—Ru1—N848.1 (10)
C22—N7—N8—Ru10.4 (4)C19—N5—Ru1—N329.7 (3)
C27—C28—N9—N101.2 (4)C15—N5—Ru1—N3155.2 (3)
C27—C28—N9—C22177.0 (3)C19—N5—Ru1—N161.6 (3)
N11—C22—N9—C28113.2 (4)C15—N5—Ru1—N1113.5 (3)
N7—C22—N9—C28124.3 (4)C5—N1—Ru1—N10119.0 (13)
N11—C22—N9—N1062.4 (4)C1—N1—Ru1—N1059.5 (15)
N7—C22—N9—N1060.2 (4)C5—N1—Ru1—N12103.4 (3)
C27—C26—N10—N90.8 (4)C1—N1—Ru1—N1275.1 (3)
C27—C26—N10—Ru1173.0 (3)C5—N1—Ru1—N817.2 (3)
C28—N9—N10—C261.2 (4)C1—N1—Ru1—N8161.2 (3)
C22—N9—N10—C26177.6 (3)C5—N1—Ru1—N371.0 (3)
C28—N9—N10—Ru1173.9 (2)C1—N1—Ru1—N3110.6 (3)
C22—N9—N10—Ru12.4 (4)C5—N1—Ru1—N5165.2 (3)
C30—C31—N11—N120.6 (4)C1—N1—Ru1—N516.3 (3)
Selected bond lengths (Å) top
N1—Ru12.122 (3)N8—Ru12.071 (3)
N3—Ru12.097 (3)N10—Ru12.048 (3)
N5—Ru12.104 (3)N12—Ru12.059 (3)
 

Acknowledgements

The authors would like to thank the EPSRC for funding (grant EP/G02099).

References

First citationAgarwala, H., Das, D., Mobin, S. M., Mondal, T. K. & Lahiri, G. K. (2011). Inorg. Chim. Acta, 374, 216–225.  Web of Science CSD CrossRef CAS Google Scholar
First citationAgarwala, H., Ehret, F., Chowdhury, A. D., Maji, S., Mobin, S. M., Kaim, W. & Lahiri, G. K. (2013). Dalton Trans. 42, 3721–3734.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBonnet, S., Collin, J.-P., Gruber, N., Sauvage, J.-P. & Schofield, E. R. (2003). Dalton Trans. pp. 4654–4662.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCadranel, A., Alborés, P., Yamazaki, S., Kleiman, V. D. & Baraldo, L. M. (2012). Dalton Trans. 41, 5343–5350.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCalvert, J. M., Schmehl, R. H., Sullivan, B. P., Facci, J. S., Meyer, T. J. & Murray, R. W. (1983). Inorg. Chem. 22, 2151–2162.  CrossRef CAS Web of Science Google Scholar
First citationDe, P., Mondal, T. K., Mobin, S. M. & Lahiri, G. K. (2011). Inorg. Chim. Acta, 372, 250–258.  Web of Science CSD CrossRef CAS Google Scholar
First citationDunbar, M. A., Balof, S. L., Roberts, A. N., Valente, E. J. & Schanz, H.-J. (2011). Organometallics, 30, 199–203.  Web of Science CSD CrossRef CAS Google Scholar
First citationFoxon, S. P., Metcalfe, C., Adams, H., Webb, M. & Thomas, J. A. (2007). Inorg. Chem. 46, 409–416.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationIengo, E., Zangrando, E., Baiutti, E., Munini, F. & Alessio, E. (2005). Eur. J. Inorg. Chem. pp. 1019–1031.  Web of Science CSD CrossRef Google Scholar
First citationKatz, N. E., Romero, I., Llobet, A., Parella, T. & Benet-Buchholz, J. (2005). Eur. J. Inorg. Chem. pp. 272–277.  CSD CrossRef Google Scholar
First citationKuzu, I., Nied, D. & Breher, F. (2009). Eur. J. Inorg. Chem. pp. 872–879.  Web of Science CSD CrossRef Google Scholar
First citationLaurent, F., Plantalech, E., Donnadieu, B., Jiménez, A., Hernández, F., Martínez-Ripoll, M., Biner, M. & Llobet, A. (1999). Polyhedron, 18, 3321–3331.  Web of Science CSD CrossRef CAS Google Scholar
First citationLlobet, A., Curry, M. E., Evans, H. T. & Meyer, T. J. (1989). Inorg. Chem. 28, 3131–3137.  CSD CrossRef CAS Web of Science Google Scholar
First citationLlobet, A., Doppelt, P. & Meyer, T. J. (1988). Inorg. Chem. 27, 514–520.  CrossRef CAS Web of Science Google Scholar
First citationMutoh, Y., Kozono, N., Araki, M., Tsuchida, N., Takano, K. & Ishii, Y. (2010). Organometallics, 29, 519–522.  Web of Science CSD CrossRef CAS Google Scholar
First citationRossi, M. B., Abboud, K. A., Alborés, P. & Baraldo, L. M. (2010). Eur. J. Inorg. Chem. pp. 5613–5616.  Web of Science CSD CrossRef Google Scholar
First citationRossi, M. B., Piro, O. E., Castellano, E. E., Alborés, P. & Baraldo, L. M. (2008). Inorg. Chem. 47, 2416–2427.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSerrano, I., López, M. I., Ferrer, I., Poater, A., Parella, T., Fontrodona, X., Solà, M., Llobet, A., Rodríguez, M. & Romero, I. (2011). Inorg. Chem. 50, 6044–6054.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaywell, P., Gonzalez, V., Gill, M. R., Adams, H., Meijer, A. J. H. M., Williamson, M. P. & Thomas, J. A. (2010). Chem. Eur. J. 16, 2407–2417.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWilson, D. C. & Nelson, J. H. (2003). J. Organomet. Chem. 682, 272–289.  Web of Science CSD CrossRef CAS Google Scholar
First citationZagermann, J., Klein, K., Merz, K., Molon, M. & Metzler-Nolte, N. (2011). Eur. J. Inorg. Chem. pp. 4212–4219.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages m549-m550
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds